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Review
Trichomonads are common parasites of many vertebrate
and invertebrate species, with four species classically
recognized as human parasites: Dientamoeba fragilis,

Pentatrichomonas hominis, Trichomonas vaginalis, and
Trichomonas tenax. The latter two species are considered
human-specific; by contrast, D. fragilis and P. hominis

have been isolated from domestic and farm mammals,
demonstrating a wide host range and potential zoonotic
origin. Several new studies have highlighted the zoonotic
dimension of trichomonads. First, species typically
known to infect birds and domestic mammals have been
identified in human clinical samples. Second, several
phylogenetic analyses have identified animal-derived tri-
chomonads as close sister taxa of the two human-specific
species. It is our opinion, therefore, that these observa-
tions prompt further investigation into the importance of
zoonotic trichomonads for human health.

The trichomonad lineage in phylum Parabasalia
Trichomonads are anaerobic, flagellated protists belonging
to the large and diverse groups Trichomonadea and Tri-
trichomonadea of phylum Parabasalia [1]. They are char-
acterized by the presence of three to five anterior flagella,
hydrogenosomes – hydrogen-producing organelles corre-
sponding to anaerobic versions of mitochondria [2], a para-
basal body (a large Golgi), and a complex cytoskeleton. A
few species have been isolated from environmental sam-
ples and may represent free-living species; however, the
majority of species form symbiotic interactions (see Glos-
sary) with various animal hosts. Among the parasitic
trichomonads, several species inhabit the oral, digestive,
and urogenital tracts of invertebrate and vertebrate hosts,
including livestock, pets, and humans.

Historically, phylum Parabasalia was divided into two
groups based on morphological characteristics; however,
the recent inclusion of molecular data recovered six groups:
Trichomonadea, Tritrichomonadea, Hypotrichomonadea,
Cristamonadea, Spirotrichonymphea, and Trichonymphea
[3]. The Trichomonadea, Tritrichomonadea, and Hypotri-
chomonadea are of primary concern to parasitologists;
however, the evolutionary relationships within and
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between these groups are unclear [4]. Several molecular
phylogenies have attempted to resolve these evolutionary
relationships using phylogenetic markers such as ribosom-
al RNA (rRNA) and protein coding genes (Figure 1), which
give inconsistent phylogenies [4,5].

Four species of trichomonad are considered human para-
sites: Trichomonas vaginalis (found in the urogenital tract)
[6], Trichomonas tenax (localized to the oral cavity) [7], and
Pentatrichomonas hominis and Dientamoeba fragilis (locat-
ed in the digestive tract) [8,9]. Only one species has well-
established pathogenic potential: T. vaginalis, the cause of
the most prevalent non-viral sexually transmitted infection
in humans, trichomoniasis [10]. Only T. vaginalis and T.
tenax are considered human-specific, with the former char-
acterized by the richest, although still limited, epidemiology
data [11], but very little is known about the latter. P. hominis
and D. fragilis can cause gastrointestinal symptoms in some
patients, such as abdominal pain and diarrhea [8,12], D.
fragilis has also been proffered as a potential causative
agent of irritable bowel syndrome (IBS) [13,14], but debate
surrounds its pathogenicity, infection route, and epidemiol-
ogy [15]. In addition, several trichomonad species are of
veterinary importance, such as the avian pathogens Trich-
omonas gallinae, Tetratrichomonas gallinarum, and Histo-
monas meleagridis [16–19], and Tritrichomonas foetus, the
causative agent of a venereal disease in cattle [20]. This
extensive host range, along with the isolation of D. fragilis
[21] and P. hominis [22] from various animal hosts, suggests
that certain species of trichomonads may exhibit the char-
acteristics of zoonoses. Although the question of zoonotic
trichomonads has been considered for some years (e.g.,
[23,24]), recent results from several different sources have
highlighted this potential. Here we summarize the clinical
and phylogenetic studies that suggest a zoonotic potential
for trichomonads, discuss their implications for human
health, and the next steps required for investigation into
their epidemiology, pathobiology and evolution.

New evidence supports the zoonotic potential of
trichomonads
Human trichomonad infections are not body

site-specific

The four trichomonad species recognized as human para-
sites were initially thought to be site-specific [25] (Table 1).
However, various clinical studies have shown that they can
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Glossary

Commensal: : a form of symbiosis between two organisms where one derives

benefit, whereas the other is unaffected. Some gut trichomonads are thought

to represent commensals.

Disease incidence: : the number of new disease cases that occur in a

population for a given time period (typically per year).

Dysbiosis: : an imbalance of the microbiota (the microbial populations at a

particular body site of an animal host) that leads, or predisposes, the host to

disease conditions [60].

Emerging infectious disease: : outbreaks of previously unknown diseases or

known diseases that show an increase in incidence, expansion in geographical

range, or spread to a new population. Emerging infections can be caused by

previously unknown or undetected infectious agents, newly evolved strains,

environmental changes, and changes in human demography [51]. A recent

review found that over 60% of human emerging infectious diseases are

zoonotic in origin [53]. Examples include influenza, HIV/AIDS, and severe acute

respiratory syndrome (SARS) coronavirus.

Intermediate host: : a host in or on which a pathogen spends a part of its life,

usually a transition period, but does not reach sexual maturity.

Mutualism (mutualist): : a form of symbiosis between two organisms in which

both benefit from the relationship. Some gut parabasalids from termites are

thought to represent mutualists [80].

Opportunistic: : a potential pathogen that typically does not cause disease in a

healthy host, but can in particular situations cause disease, for example, owing

to the compromised immune system (e.g., attributable to AIDS, chemotherapy,

or malnutrition) of the host. Lung trichomonads represent probable opportu-

nistic infections – see main text.

Parasitic (parasite): : a non-mutual symbiosis between two species where one,

the parasite, benefits at the expense of the other, the host. Parasites typically

do not kill their hosts but exploit them for resources necessary for their

survival. Obligate parasites cannot complete their life cycles and reproduce

without a suitable host.

Pathogenic (pathogen): : a broad term that refers to the ability of an organism

to cause disease. It is typically used to describe an infectious agent or

microorganism, such as a bacterium, protist, virus, etc., that causes disease in

its host. Some pathogens, for example, protists Acanthamoeba spp. and

Naegleria fowleri and fungi Aspergillus spp. are free-living species thriving in

the environment and occasionally infect humans, often in an opportunistic

manner in compromised hosts [59].

Pathogenicity: : the ability of a pathogen to overcome host defenses and cause

disease.

Re-emerging infectious disease: : the reappearance of a historically known

infectious disease after a significant decline in incidence. Acquired resistance

of pathogens to antimicrobial medications is an important factor in the re-

emergence of many diseases. Examples include West Nile virus, cholera,

MRSA (methicillin-resistant Staphylococcus aureus).

Reservoir: : the habitat or host that harbors an infectious agent, where it can

live, grow, and multiply. Reservoirs can include humans, animals, and serve as

a source of potential disease outbreaks.

Symbiosis: : a close and often long-term relationship between two or more

different biological species. These relationships can be obligate or facultative,

mutualistic, commensalistic, or parasitic.

Transmission: : the passing of an infectious agent from one host to another

host. Direct transmission routes include: physical contact, contact with a

contaminated environment or surface, airborne transmission, and fecal–oral

transmission. Indirect transmission routes involve another organism such as

an insect vector or intermediate host.

Vector: : an organism that carries and transmits a pathogen from an infected

individual to another individual.

Virulence: : a property of a pathogen, such as specific structural elements or

biochemical compounds commonly called virulence factors that cause a

reduction in host fitness or damage to the host. It is now recognized that

virulence is multifactorial and involves characteristics of both the pathogen

and its host, which influence the outcome of their interaction and hence the

observed virulence (e.g., an opportunistic pathogen in immunocompromised

patients) [59].

Zoonosis: : an infectious organism, such as a bacterium, virus, parasite, or

fungus, transmissible between wildlife or domesticated animals and humans.

Examples include: (i) the Lyme disease bacterium Borrelia transmitted to

humans by ticks from a natural reservoir in rodents; (ii) the malaria parasite

Plasmodium knowlesi transmitted by Anopheles vectors that causes malaria in

monkeys and humans; and (iii) Cryptosporidium parvum, a parasite found in

cats, dogs, and farmed animals and transmitted as a cyst in contaminated

water, food, or through the fecal–oral route. Zoonoses are the leading cause of

emerging infectious diseases worldwide, responsible for devastating disease

outbreaks, mortality, and serious socioeconomic consequences [21,56,79].

Zoonotic potential: : the potential for infectious diseases of wildlife or domestic

animals to be transmitted to humans.
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also be found in atypical locations. For example, T. tenax, a
commensal of the human mouth found in patients with
poor oral hygiene [7], has been identified by microscopic
and molecular methods in the upper and lower respiratory
tracts [26,27]. One possibility that could account from this
‘aberrant’ location is inhalation of the parasite from the
oral cavity into the respiratory tract. However, in some
cases where T. tenax was identified in the respiratory tract,
no parasites were found in the mouth [26]. Other human
trichomonad species have also been identified in the respi-
ratory tract including the sexually transmitted species T.
vaginalis [28,29] and the gut parasite P. hominis [30],
which suggests that these species too can proliferate out-
side their usual body sites.

At least five species of trichomonad, including P. homi-
nis, T. tenax, T. vaginalis, T. foetus, and T. gallinarum,
have been identified in the human respiratory tract and as
causative agents of pulmonary trichomoniasis (Table 1).
They have been found in up to 60% of patients with
Pneumocystis pneumonia (PcP) and in up to 30% of
patients with acute respiratory distress syndrome (ARDS)
[31]. Because trichomonads are microaerophilic it is un-
likely that they initiate and cause these diseases them-
selves, but may represent secondary and opportunistic
infections that could exacerbate symptoms and prolong
illness [23]. These trichomonad respiratory infections seem
to depend upon: (i) the presence of bacteria on which to feed
and (ii) local anaerobic conditions caused by PcP or ARDS-
associated infections [32] but not necessarily upon immu-
nosuppression, because drugs against PcP consistently
cure patients of pulmonary trichomonosis and, in one
study, treated ARDS patients were not found to be immu-
nocompromised [25]. Thus, the presence of an increasing
number of distinct trichomonads in a broader range of
clinical samples from patients with diverse diseases, such
as AIDS, rheumatoid arthritis, prostate cancer, pulmonary
infections (empyema and pneumonia in addition to PcP
and ARDS), and digestive conditions such as diarrhea and
IBS [33–35], is becoming increasingly apparent. Indeed,
the frequency of pulmonary trichomonosis infections may
be higher than reported because transformation of para-
sites from the motile, pear-shaped stage to the amoeboid
stage renders microscopic identification in clinical samples
difficult [31], highlighting the importance of molecular
data to identify such infections [25].

Non-human species of trichomonad have been isolated

from clinical samples

Trichomonads were thought to have strict host specificity
[25]; however, trichomonad parasites not previously
reported as infecting humans have recently been found
in human clinical samples (Table 1). For example, para-
sites belonging to the genus Tritrichomonas can be isolated
from the reproductive tract of cattle (Tritrichomonas foe-
tus), the nasal mucosa and intestine of pigs (Tritrichomo-
nas suis), and the intestine of non-human primates
(Tritrichomonas mobilensis) [20]. Another example is T.
foetus, historically considered specific to cattle [25,36].
Nonetheless, experimental cross-infections of the parasites
between pigs and cattle in addition to analysis of molecular
data suggest that these three species should be considered
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Figure 1. A molecular phylogeny of trichomonads. A cartoon depicting our current understanding of the relationships between different Parabasalia as determined by

molecular phylogenetics, focusing on the trichomonads discussed in this article and their various hosts. Broken lines indicate discrepancies between different phylogenetic

markers (see text). Adapted from [5].
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strains of the same species [20,37]. In addition, several
different genotypes of T. foetus have been identified as
causing diarrhea in cats in �12 countries [38,39] and have
also been isolated from dogs with diarrhea [40]. Moreover,
in several new clinical cases, T. foetus or T. foetus-like
organisms have unexpectedly been identified in the lungs
of human patients [41]. Such findings suggest that T. foetus
is a zoonotic parasite capable of colonizing an extensive
range of hosts and body sites.

Other examples of species of non-human trichomonads
recently found to infect humans are members of the genus
Tetratrichomonas, currently the largest genus in phylum
Table 1. Trichomonad species identified in clinical studiesa

Species Primary hostb;

infection site

Host range;

infection site

Di

us
ot

Trichomonas vaginalis Human; UGT Humans; RT PC

ITS

Trichomonas tenax Human; DT and

buccal cavity

Humans; RT PC

ITS

Dientamoeba fragilis Humans; DT Humans and

other mammals; DT

Fe

se

ITS

Pentatrichomonas hominis Not known; DT Humans and

other mammals; DT

Fe

se

ITS

Tritrichomonas foetus Bovine; UGT, DT Humans and

other mammals; RT

PC

ITS

EF

va

Tetratrichomonas

gallinarum

Birds; DT Birds, humans; RT PC

ITS

Tetratrichomonas sp. Not known Humans; RT PC

ITS

aAbbreviations: DT, digestive tract; UGT, urogenital tract; RT, respiratory tract; ITS,

pneumonia; ARDS, acute respiratory distress syndrome.

bThe primary host may not represent the true natural history of the species, which m

cPulmonary infections include PcP, ARDS-associated infections, pneumonia, and can 
Parabasalia. Tetratrichomonas species are found in the
small intestine of a wide spectrum of invertebrate and
vertebrate hosts, such as leeches, birds, and rodents
[42]. Indeed, some species of tetratrichomonad are known
to infect a wide range of unrelated hosts, such as Tetra-
trichomonas prowazeki, which has been found in species of
amphibians and reptiles [42]. Another example, Tetratri-
chomonas gallinarum, is primarily thought of as an avian
parasite of the digestive tract in domestic and wild birds
[43], although its pathogenicity is not well established [17].
However, several recent studies have identified Tetratri-
chomonas strains isolated from human lungs or the human
agnostic method

ed to detect in
her hosts or sites

Clinical conditionsc Refs

R and sequencing of the

1–5.8S–ITS2 rRNA region

Trichomoniasis, pulmonary

infections, AIDS

[10,27,28]

R and sequencing of the

1–5.8S–ITS2 rRNA region

Salivary trichomonosis,

pulmonary infections

[7,25,26]

cal smears, PCR, and

quencing of the ITS1–5.8S–

2 rRNA region, 18S rRNA

Chronic diarrhea, IBS [13,14,21]

cal smears, PCR, and

quencing of the ITS1–5.8S–

2 rRNA region

Diarrhea, pulmonary

infections, rheumatoid

arthritis

[8,30,33]

R and sequencing of the

1–5.8S–ITS2 rRNA region,

-1a gene, and TR7/TR8

riable length region

Pulmonary infections, AIDS [20,38,41]

R and sequencing of the

1–5.8S–ITS2 rRNA region

Pulmonary infections [24,44]

R and sequencing of the

1–5.8S–ITS2 rRNA region

Pulmonary infections [24,43]

 internal transcribed spacer; IBS, irritable bowel syndrome; PcP, Pneumocystis

ay have a broader host range.

lead to empyema.
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Figure 2. Rpb1 proteins resolve monophyletic Trichomonadea, Tritrichomonadea, and Hypotrichomonadea. Molecular phylogeny [PhyML 3.0.1, LG+G+I model, 100

bootstrap replicates, based on 387 unambiguously aligned sites (the alignment is available upon request)], based on rpb1 illustrating the relationship between human- and

animal-specific trichomonad species and one isolated from the environment (Pseudotrichomonas keilini). Note the high similarity of sequences derived from the human

Trichomonas vaginalis isolates and Trichomonas sp. (HMO16231) isolated from a dove. This sequence and other Trichomonas gallinae sequences are clearly distinct from

the recently defined Trichomonas stableri (KF233590) species isolated from band-tailed pigeons [49]. Taxa in red were isolated from humans and those in blue isolated from

birds; accession numbers of each sequence are shown. Adapted from [5].
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oral cavity as T. gallinarum or T. gallinarum-like organ-
isms [24,44,45]. Studies have also shown that genus Tetra-
trichomonas is much more diverse than previously thought
and that T. gallinarum comprises at least three cryptic
species with variable host specificity, some that represent
human isolates [24,43]. Notably, experiments failed to
transmit two Tetratrichomonas of human origin to birds,
although the authors suggest this result could be explained
by either adaptation of the T. gallinarum-like trichomo-
nads to the human host or extensive in vitro culturing, so
that infection of birds was no longer biologically achievable
[24].

Molecular phylogenies reveal close relationships

between human and avian trichomonads

Recent molecular phylogenetic analysis of trichomonads
using rRNA and protein coding genes (e.g., Rpb1) has begun
to answer important questions regarding trichomonad
336
phylogeny. Rpb1 is a ubiquitous eukaryotic gene coding
for the largest subunit of RNA polymerase II and is present
as a single copy in many eukaryotes. A recent analysis of
Rpb1 generated a fully resolved phylogeny of Trichomona-
dea, Tritrichomonadea, and Hypotrichomonadea, and spe-
cies and isolates within these groups (Figure 2) [5].
Interestingly, the phylogeny recovered some avian isolates
of Trichomonas spp. as sister taxa to T. vaginalis, and T.
tenax as closely related to T. gallinae; these findings are
consistent with previous phylogenies based upon rRNA and
other protein coding genes [24,46–48]. The common ancestor
to this complex is also related to the avian T. gallinarum
(e.g., [42]). These new phylogenies complicate the inferred
relationship between T. vaginalis and T. tenax, which on the
basis of host specificity might be expected to be sister taxa
[47]. In this scenario, an ancestor of both species infected
humans and subsequently differentiated into two distinct
species with different body site preferences. However, the
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phylogenetic data suggest the zoonotic transfer of trichomo-
nad parasites from humans to birds, and/or vice versa, on at
least two occasions, or a combination of these events.

Other studies investigating outbreaks of avian tricho-
monosis in wild birds, primarily attributed to T. gallinae
infections, have also confirmed the close relationship be-
tween avian and human trichomonads [48]. Epidemic
infections by T. gallinae of passerine species in Europe
have recently been described and associated with high
mortality and population decline [18]. This dramatic case
of disease emergence demonstrates the potential for a
trichomonad to jump host species (columbiform to passer-
ine) and spread rapidly through populations. The disease is
thought to have been initiated and spread through transfer
of the parasite via contaminated water and bird feeders, as
well as through direct contact between passerines [17].
Furthermore, the recent isolation and preliminary charac-
terization of Trichomonas stableri associated with epidem-
ic mortality in California Band-tail pigeons suggest that
avian trichomonosis may be caused by pathogens other
than T. gallinae and H. meleagridis [17,49]. Genetic anal-
ysis at multiple loci indicated T. stableri to be more closely
related to T. vaginalis than to the bird-associated T. galli-
nae [49] (Figure 2), further supporting the hypothesis that
trichomonads are crossing host boundaries. Generating
genetic markers and whole genome sequences of T. stableri
and other T. vaginalis-like isolates derived from cases of
epidemic avian trichomonosis will provide important in-
sight into the evolution and origins of these pathogens. For
example, does the Trichomonas sp. isolate from a white-
winged pigeon extremely closely related to isolates of T.
vaginalis represent a case of human to bird transfer (ac-
cession HM016231 in Figure 2)?

The implications of zoonotic trichomonads for human
health
According to current disease dynamic models, the zoonotic
emergence of parasitic diseases in humans is typically
associated with several characteristics, including broad
host range, genetic variability, presence of genotypes
better suited to the parasitism of humans, and modified
pathogenic potential [50]. Emergent zoonoses are thought
to appear through a number of different stages, for exam-
ple, some develop as animal ‘parasitoses’ that are newly
transmissible to humans, although the source of the dis-
ease remains the animal reservoir [50,51]. In other cases,
parasites are able to cross the species barrier, modify their
specificity, and become sustainably transmissible from
human to human [50,52,53]. The evolution of these emer-
gent parasitoses is not linear, and an explanation for such
a complex process requires consideration of the multi-host
ecology and complex dynamics of zoonotic infections [54].
Based on these models and the clinical and molecular
evidence discussed previously, it may be that several
trichomonads are at different stages of zoonotic emer-
gence (Figure 3). These observations raise important ques-
tions regarding the implications of the potential widening
pathological spectrum of trichomonads in humans and
suggest that owing to links with other diseases these
parasites may be of greater medical importance than
previously thought.
Historically, trichomonads have not been considered as
emerging infections because of their site- and host-specific
occurrence. Nonetheless, the presence of trichomonads in a
diverse array of clinical disorders suggests that they may
exhibit a form of opportunism and multiply when local
conditions are favorable. For example, the diseases in
which trichomonads are found as co-infecting agents in
respiratory infections are probably not limited to PcP and
ARDS-associated infections, but may include other pulmo-
nary diseases such as cystic fibrosis [31,32]. Overall, the
high prevalence of pulmonary diseases globally [55] com-
bined with the higher burden of both lung conditions and
zoonotic diseases among people in resource-limited set-
tings [55,56] suggest that only the ‘tip of the iceberg’ of
pulmonary trichomoniasis may currently be known. Diges-
tive tract infections by trichomonads are also increasingly
recognized as being common. Although the exact clinical
profile of D. fragilis is still poorly understood some consider
this species to have pathogenic capabilities [12], and recent
studies have associated the rise of IBS with a high preva-
lence (�40%) of D. fragilis in Europe [35]. However, the
pathogenicity of D. fragilis has been questioned owing to
the asymptomatic nature of many infections, and it is
considered by some as a commensal of the intestinal flora
[57]. Indeed, treatment of D. fragilis-infected children with
metronidazole was not associated with better clinical out-
comes [58].

Because association is not evidence for causality, addi-
tional data are required to establish the pathogenicity of
trichomonads in the digestive tract and ‘aberrant’ body
sites such as the lungs. In this context, it is important to
consider characteristics of both host and parasite with
regard to the outcome of their interactions. For example,
one extreme is represented by severely immune-compro-
mised patients that are more susceptible to a wider range
of microbial infections compared with immunocompetent
hosts [59]. When studying the outcome of human–microbe
interactions, a complex interplay among viruses, bacteria
and archaea, microbial eukaryotes, and animal parasites
influence the health status of the human host, with muco-
sal microbiota playing a key role influencing health and
disease status [60,61]. Based on these considerations and
examples, trichomonads may be more prevalent and have a
wider pathological spectrum in humans than currently
recognized, influencing human health through direct pa-
thologies but also indirectly through dysbiosis of the mu-
cosal microbiota and local inflammation, facilitating
transmission of pathogens – a prime example being T.
vaginalis infection and bacterial vaginosis contributing
to HIV transmission [61,62]. The potential influence of
gut trichomonads to human health will also have to con-
sider their potential impact on the gut microbiota, which
might explain observations of the association between D.
fragilis and IBS through inducing gut dysbiosis [35]. In-
deed, the ability of trichomonads to live on a variety of
mucosal tissues may be the key to their wide host range
and ability to develop infections at different body sites, as
well as contribute directly or indirectly to pathologies.
Once the capacity to thrive on vertebrate mucosal surfaces
has developed, there may be less of a barrier to cross both
species and mucosal sites. For example, in the case of
337



Trichomonas gallinae
Trichomonas stableri
Tetratrichomonas sp. 
Tetratrichomonas gallinarum

Pentatrichomonas hominis

Tritrichomonas foetus

Trichomonas vaginalis
Trichomonas tenax

? Dientamoeba fragilis

TRENDS in Parasitology

Figure 3. Speculative models of zoonoses caused by trichomonads.Trichomonads are listed on the right and colored according to primary hosts assigned historically in the

literature. Unbroken lines represent known infections or transmission routes, and broken lines represent speculative infections or transmission routes for which data are

lacking. The relationships are represented as follows: (blue box) trichomonads identified in wild bird species (e.g., green finch [16] and toucan [81]) in partially domesticated

species (rock dove) and in fully domesticated species (chicken) circulate within these populations with variable host specificity [17] (blue unbroken circle with arrow). Two of

the four avian trichomonads listed (Tetratrichomonas sp. and Tetratrichomonas gallinarum) have been identified in human lungs [24], and Trichomonas gallinae and

Trichomonas stableri are also included owing to their close relationship to Trichomonas tenax and Trichomonas vaginalis [5,49]. (Red box) T. vaginalis and T. tenax are the

two species considered human-specific, with known human-to-human infections (unbroken red circle). The close genetic relationship of the human and avian trichomonads

(Figure 2) suggests either independent zoonotic acquisitions from avian sources (broken blue arrow) or transfer of the parasites from humans to birds through

environmental contamination (broken red arrow). (Green box) Tritrichomonas foetus has been isolated from a variety of pets and farm animals, with the same strain known

to infect cattle and pigs (unbroken green arrow) [26], but different genotypes infecting cattle and cats [29,31]; the origins of dog infections remain unclear [32]. Thus, there

are at least two T. foetus genotypes capable of colonizing an extensive range of hosts, including humans [41] (broken green circle and arrow). The lack of precise

epidemiological data is indicated by ‘?’. (Purple box) Pentatrichomonas hominis has been isolated from a variety of pets and farm animals [22], but little is known about its

infection route and epidemiology; the same strain could be circulating between all identified hosts (broken purple circle). (Orange box) Dientamoeba fragilis has been

isolated from farm animals (pigs) and non-human primates (gorillas), with the same strain known to infect pigs and humans [21] (unbroken orange arrow). Recent evidence

suggests that household pets do not play a role in transmission [82]; however, the origins remain unclear and multiple strains could be circulating in animal hosts (broken

orange circle and arrow). Additionally, given recent prevalence and transmission data it seems unlikely that transmission from non-human hosts represents a significant

proportion of infections. Contaminated surfaces and water [83], uncooked meat, or direct contact with pets and farm animals could lead to animal-to-human transmissions

of trichomonads. Initial infections were presumably through the digestive tract (via oral ingestion) with further progression to the lungs for some (various) species or the

urogenital tract (T. vaginalis).
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T. foetus, this sexually transmitted species may represent a
recent transfer from the digestive to the urogenital tract,
with a capacity of the parasite to thrive in the gut in
different species (e.g., pigs, cats, and dogs).

Investigating trichomonads as emerging infectious

diseases and zoonoses

Trichomonads provide a unique system for the study of the
origins and pathobiology of zoonotic and emerging infec-
tious diseases. In addition, they have attracted interest as
model systems for evolutionary biology and comparative
genomics [63,64], and for biochemical, molecular, and cell
biology investigations [2,65,66]. The T. vaginalis genome
sequence published in 2007 was the first species of tricho-
monad to be sequenced [67], and others are currently
underway including isolates of T. foetus, P. hominis, T.
gallinae, and T. tenax. These sequences will enable
338
comparative analysis of common and unique parasitic
modes of life cycle, and possible adaptive mechanisms.
For example, T. vaginalis and T. foetus appear to have
evolved independently to colonize the urogenital tracts of
different mammalian hosts [68]. In addition, T. foetus has
been isolated from the digestive tract of cats and dogs,
indicating that it is capable of colonizing a broad range of
hosts and environments [69]. These two species of sexually
transmitted trichomonad probably represent cases of con-
vergent evolution and provide an opportunity to compare
the derived similarities and the origins of these traits that
coincide with a shared niche.

Species of trichomonad exhibit a range of genome sizes,
from �94 Mb for the P. hominis genome to �177 Mb for the
T. foetus genome [70]. The T. vaginalis genome sequence
revealed the �160-Mb genome to be a result of expanded
transposable elements and protein coding gene families,
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including those responsible for interaction of the parasite
with its immediate environment [71–73]. It has been hy-
pothesized that the large genome size may be a recent
event that occurred when the most recent common ances-
tor of T. vaginalis underwent a population bottleneck
during its transition from the digestive tract to the uro-
genital tract. Because genome size is positively associated
with cell volume, an increase in genome size and concomi-
tant increase in cell size might have increased its phago-
cytic potential as well as surface area for the interaction of
the parasite with host cell tissue [67,73]. In this context, it
will be particularly interesting to compare the genomes of
T. vaginalis with its closely related isolates and species
derived from birds (Figure 2) to gain detailed insight into
correlations between genome evolution and how this might
relate to parasite pathobiology in humans and birds. Lat-
eral gene transfers from bacterial donors sometime in the
evolutionary past have also importantly influenced the
evolution of T. vaginalis protein coding genes [63,67].
For example, the parasite has gained an almost complete
pathway for the degradation of complex glycans present in
host mucosal secretions, factors which may contribute to
its adaptive potential and pathogenicity [61,63]. Compari-
son of a broad range of trichomonad genomes will help test
this hypothesis and may pinpoint gene families whose
acquisition and/or expansions correlate with pathogenicity
and facilitated or mediated transitions from: (i) an ances-
tral animal-only stage to human-inclusive infections or (ii)
from the digestive to urogenital tracts.

Trichomonads also provide a unique system to study the
features of a zoonotic lifestyle via comparative examina-
tion of molecular and cellular characteristics. For example,
successful T. vaginalis infections are probably favored by
virulence mechanisms such as cytoadherence and phago-
cytosis [72,73]. The �60 000 predicted protein coding genes
of T. vaginalis [67] includes a plethora of candidate genes
for surface molecules mediating interaction with host tis-
sues and membrane trafficking and signaling, important
processes involved in parasite pathobiology [72,73]. Cyste-
ine proteases in particular have been identified as viru-
lence factors central to the host–pathogen interface in T.
vaginalis [61,72–75]. Transcriptomic studies have shown
upregulation of some of these T. vaginalis virulence factors
in response to contact with host cells in vitro [76] and have
also documented their expression under in vitro growth
conditions in T. foetus [69]. Similar to T. vaginalis, recent
studies have shown the presence of cysteine proteases in
the cell-free filtrate of T. gallinae and demonstrated their
involvement in its in vitro cytopathogenic effects [77].
Mining other trichomonad genome data to identify impor-
tant virulence proteins will improve our understanding of
the molecular and cellular basis of infections and can be
used to test hypotheses, such as whether zoonotic organ-
isms show greater diversity in key virulence proteins
underlying their capacity to parasitize a variety of host
species and mucosal sites [78].

Concluding remarks and future perspectives
Although we have discussed several recent studies that
provide strong evidence for the zoonotic origin and poten-
tial of trichomonads, regular and sustained zoonotic
transmission of these microbes has yet to be definitively
established. To improve our knowledge of the zoonotic
origins of trichomonads, detailed investigations including
systematic surveys of trichomonads in humans and ani-
mals will be required. Molecular methods have been in-
strumental in our understanding of the biology and
complexity of trichomonads so far; however, more data
and novel approaches are needed to resolve evolutionary
relationships and to improve diagnostic tools. Wide sam-
pling and whole genome sequencing of trichomonads, with
subsequent comparative genomic investigations, will facil-
itate identifying the closest relatives of human trichomo-
nad pathogens, providing a solid evolutionary framework
for how these diseases have emerged and forming a basis
for epidemiological studies across both animal (wild and
domestic) and human hosts. Environmental studies such
as the ‘Microbes, Sewage, Health and Disease’ metage-
nomics project in New York City (http://www.nyu.edu/
about/news-publications/nyu-stories/video–mapping-nyc-
s-metagenome.html) will provide important information
on potential transmission routes and the patterns, nature,
and occurrence of trichomonad infections in humans, ani-
mals, and birds; and establish the importance of tricho-
monads zoonotic transmissions – as has been established
for species of Trypanosoma, Cryptosporidium, and Toxo-
plasma [79]. Furthermore, studies investigating the poten-
tial pathogenicity of these parasites in various mucosae
(respiratory, digestive, and urogenital) are needed to de-
termine the clinical significance and public health implica-
tions of trichomonads. Accumulation of these different
types of data will advance our understanding of parasite
biology and infection mechanisms, and provide approaches
towards developing drug targets and vaccine candidates
for species of this increasingly recognized medically and
veterinary important lineage.
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