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Animal models are essential for the discovery of mechanisms and treatments
for neuropsychiatric disorders. However, complex mental health disorders such as
depression and anxiety are difficult to fully recapitulate in these models. Borrowing
from the field of psychiatric genetics, we reiterate the framework of ‘endophenotypes’ –
biological or behavioral markers with cellular, molecular or genetic underpinnings – to
reduce complex disorders into measurable behaviors that can be compared across
organisms. Zebrafish are popular disease models due to the conserved genetic,
physiological and anatomical pathways between zebrafish and humans. Adult zebrafish,
which display more sophisticated behaviors and cognition, have long been used to
model psychiatric disorders. However, larvae (up to 1 month old) are more numerous
and also optically transparent, and hence are particularly suited for high-throughput
screening and brain-wide neural circuit imaging. A number of behavioral assays have
been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will
review these assays and the current knowledge regarding the underlying mechanisms
of their behavioral readouts. We will also discuss the existing evidence linking larval
zebrafish behavior to specific human behavioral traits and how the endophenotype
framework can be applied. Importantly, many of the endophenotypes we review do not
solely define a diseased state but could manifest as a spectrum across the general
population. As such, we make the case for larval zebrafish as a promising model
for extending our understanding of population mental health, and for identifying novel
therapeutics and interventions with broad impact.
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POPULATION MENTAL HEALTH AND ENDOPHENOTYPES

Mental health disorder prevalence has increased globally, and has recently been aggravated by the
onset of the COVID-19 pandemic, with an estimated worldwide increase of 682.4 cases of major
depressive disorder and 977.5 cases of anxiety disorders per 100,000 population in 2020 alone
(Santomauro et al., 2021). Depression and anxiety arising due to COVID-19 are estimated to have
caused 49.4 and 44.5 million Disability adjusted life years (DALYs), respectively, the metric used by
the biennial global burden of disease study to represent the number of years of healthy life lost to
disability or death caused by disease (Santomauro et al., 2021).

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 June 2022 | Volume 15 | Article 900213

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.900213
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2022.900213
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.900213&domain=pdf&date_stamp=2022-06-24
https://www.frontiersin.org/articles/10.3389/fnmol.2022.900213/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-900213 June 23, 2022 Time: 7:57 # 2

Tan et al. Larval Zebrafish Mental Health Endophenotypes

Even though the Diagnostic and Statistical Manual of Mental
Disorders (DSM) (American Psychiatric Association, 2013) has
clear-cut criteria for mental illness diagnosis, there is also
increasing evidence that mental health exists as a spectrum,
or continuum of states, rather than a binary classification of
healthy vs. ill (Keyes, 2002; Kupfer and Regier, 2011). Multiple
disorders share common risk factors, and disorders arise through
a combination of gene effects and environmental factors. Hence,
Hyman (2010) summarizes the arguments for a mental health
continuum model, highlighting the current limitations of a
categorical system.

Despite the prevalence and severity of mental illnesses
or ill-being, the development of interventions has lagged
behind. We attribute this to at least two reasons. Firstly,
mental health disorders are highly complex and heterogeneous,
involving multiple interacting mechanisms. Secondly, no
animal model can fully recapitulate the intricacies of these
disorders, leaving us limited in studying disease mechanisms
and searching for potential therapeutics. Rather than tackling
such a multidimensional problem head on, it may be helpful
to focus on individual quantifiable features of such disorders,
which could then be dissected in diverse model systems. Hence,
the endophenotypic approach is an attractive solution, wherein
complex disorders are dissected into simpler components
(“endophenotypes”).

The term “endophenotype” was first used in the field of
psychiatric genetics by Gottesman and Shields (1967, 1973) to
discuss schizophrenia, and was further refined by Gottesman and
Gould (2003). According to their definition, an endophenotype
must be associated with a disease, heritable, independent of
disease state, cosegregate with the disease within families and
found in unaffected relatives more than the general population.
Different patients, even under the same diagnosis, may present
with distinct endophenotypes (Chen et al., 2000; Nandi et al.,
2009; Lee et al., 2016; Buch and Liston, 2021), hence dissecting
a complex disorder into these individual components can
also allow for more personalized and targeted treatments
for their illness.

An example of an endophenotype is prepulse inhibition
(PPI), which reflects compromised sensorimotor gating in
schizophrenia (Parwani et al., 2000), as well as in obsessive-
compulsive disorder and Huntington’s disease (Swerdlow et al.,
1995; Hoenig et al., 2005). Healthy individuals have a startle
response when presented with a strong sensory stimulus, which
can be attenuated if a weaker stimulus precedes it by around
100 ms – this attenuation is not observed in patients with these
disorders. Genome-wide association studies identified a strong
correlation between the AKT3 gene locus and schizophrenia
(Ripke et al., 2013), where patients’ brains had lower expression
levels of AKT3 protein (van Beveren et al., 2012). In zebrafish, PPI
defects were similarly found in akt3 mutants (Thyme et al., 2019).
Since sensorimotor gating impairment via prepulse inhibition
has a genetic underpinning and segregates schizophrenia patients
from healthy individuals, it is a strong endophenotype, which
shares conserved mechanisms across species including zebrafish.

Whereas schizophrenia only affects a small subset of the
population, other mental health disorders such as depression

and anxiety exist as a broad spectrum (Angst et al., 2000; Lang
and McTeague, 2009; Dichter et al., 2012; McTeague and Lang,
2012) and reflect dysregulation of motivated behavioral drives
that are deeply conserved across evolution (LeDoux, 2012, 2021).
In this review, we will more broadly define endophenotypes as
behavioral markers that are associated with a human disorder
and have a neural circuit or molecular-genetic underpinning
(Table 1). We will identify parallel behaviors in larval zebrafish
and compare the extent to which they can recapitulate human
endophenotypes and their underlying mechanisms. Importantly,
the identified behaviors can be assayed in a high-throughput
manner using this model, facilitating both drug screening and
mechanistic dissection which are key for discovering treatments
for mental health disorders and improving mental health
across the population.

ADVANTAGES OF LARVAL ZEBRAFISH

Zebrafish are popular models in studying neurological
phenomena as summarized by Kalueff et al. (2014a) and
Stewart et al. (2014). Sharing 70% of their genes with humans
and conserved physiological and neuronal pathways (Howe
et al., 2013; Stewart et al., 2015), many neurobehavioral
parallels have been uncovered between zebrafish and mammals,
including humans. For example, both the human and
zebrafish hypothalamic-pituitary-adrenal (HPA) axes [also
known as the hypothalamic-pituitary-interrenal (HPI) axis
in zebrafish] are activated in response to stress, leading
to the secretion of corticotropin releasing hormone/factor
(CRH/CRF) which stimulates pituitary corticotroph cells to
release adrenocorticotropic hormone (ACTH). ACTH then
activates the adrenal glands to produce and release cortisol
into the blood. Unlike in rodent models, where corticosterone
is the main stress hormone (Joëls et al., 2018), cortisol is the
main stress hormone in both fish and humans, and exerts
wide-ranging effects on physiology to allow the body to cope
with stress. Depression and anxiety, amongst other mental health
disorders, have been associated with HPA anomalies and cortisol
dysregulation (Feder et al., 2004; Erhardt et al., 2006; Faravelli
et al., 2012; Nandam et al., 2019). Hence, the zebrafish shares a
core feature of human stress biology.

Not surprisingly, zebrafish have been used extensively
to model psychiatric disorders and identify pharmacological
interventions. Many such studies and reviews have focused on
adult zebrafish (Cachat et al., 2010; Maximino et al., 2018)
as they have more complex behaviors and a fully-developed
brain. Nevertheless, there are significant benefits to using larvae,
such as increased scalability and tractability. At the larval
stage (up to 30 days old), zebrafish are numerous, small,
and optically transparent. Larvae only require small volumes
of water and can be contained in 48- or 96-well plates.
A top view camera can be used to acquire videos of many
larvae simultaneously during behavioral assays for live or post-
acquisition analysis. This makes it well-suited for drug screening
which emphasizes throughput. Beyond drug screening, dietary
interventions (O’Neil et al., 2014; Godos et al., 2020) and the role
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TABLE 1 | Definitions.

Term Definition References

Endophenotype Behavioral markers that are associated with a human disorder and have a
neural circuit or molecular-genetic underpinning.

Gottesman and Shields, 1967,
1973; Gottesman and Gould, 2003

Stress Physiological/hormonal response to disruption of homeostasis (caused by
threat or environmental changes e.g., salinity).

Munck et al., 1984; Chrousos,
2009; Tsigos et al., 2020

Anxiety Brain state induced by exposure to threatening or dangerous stress(ors),
that persists even after the removal of danger/threat, in anticipation of
future threat, and which is reflected by behavioral changes such as an
enhancement of defensive behavior.
A diagnosis of anxiety disorder is made when individuals display
persistent and excessive prolonged anxiety with related behavioral
disturbances.

Rosen and Schulkin, 1998; Martin
et al., 2010; American Psychiatric
Association, 2013; Lang et al.,
2014

Fear Acute brain state induced by external threat that triggers defensive
behavior (fight, flight, and freeze).

Rosen and Schulkin, 1998; Misslin,
2003; American Psychiatric
Association, 2013

Depression Brain state reflected by reduced motivation to perform normal survival
behaviors (e.g., feeding/defense), and anhedonia. May be induced by
inescapable threat or other factors.
A diagnosis of depressive disorders is made when this dysregulated
emotional/motivational state (i.e., mood) is accompanied by behavioral or
physiological changes that impair normal function.

Pizzagalli et al., 2008; Admon and
Pizzagalli, 2015; Proulx et al., 2018

Defensive behaviors Defensive behaviors arise as a survival response to threats, and include
behaviors like freezing, escape, or avoidance. This is opposed to
aggression where the threat is actively engaged.

Blanchard et al., 1986; Blanchard,
1997; Sternson, 2013;
Lovett-Barron et al., 2020

Avoidance behaviors The act of avoiding or moving away from a negatively valenced situation
or environment. These behaviors are often exaggerated in high-stress
conditions. Occasionally used interchangeably with “defensive behaviors,”
particularly in reference to escape maneuvers.

Bandura and Menlove, 1968;
Russell and Mehrabian, 1978; Chen
and Bargh, 1999; Elliot, 2013

Motivated behaviors There are behaviors that are energized by the motivation to survive.
Deficits in motivation are observed in multiple psychiatric disorders
including anxiety and depression.

Simpson and Balsam, 2016

Appetitive behaviors Appetitive behaviors are behaviors executed to seek out rewarding stimuli. Hoebel, 1997; Ball and Balthazart,
2008

of probiotics (Liu, 2017; Skonieczna-Żydecka et al., 2018) can also
be explored. Furthermore, brain imaging to study the underlying
biological mechanisms of endophenotypes or interventions is
more convenient due to their transparency. Hence, this review
will focus primarily on the potential of larval zebrafish to model
human endophenotypes in mental health and disease.

HUMAN AND ZEBRAFISH ANXIETY AND
MOOD ENDOPHENOTYPES

While there are many mental health disorders, we will primarily
be discussing anxiety/stress-related and mood disorders (see
Table 1 for definitions). The Diagnostic and Statistical Manual
(DSM5) details a specific set of criteria for diagnosis of
these disorders based on symptoms and behaviors exhibited
(American Psychiatric Association, 2013). Anxiety is a brain
state induced by dangerous or stressful situations that continues
to persist even after the threat has subsided (Rosen and
Schulkin, 1998; Martin et al., 2010; Lang et al., 2014). Anxiety
and stress-related disorders are diagnosed when the individual
experiences persistent and excessive fear and anxiety and related
behavioral disturbances (American Psychiatric Association,
2013). These are accompanied by physical symptoms such
as restlessness, fatigue, difficulty concentrating, irritability and

sleep disturbances (American Psychiatric Association, 2013).
Depressive disorders are part of a broader class of mood disorders
in which emotional and motivational states are dysregulated. In
depression, individuals experience persistent feelings of sadness,
irritability, emptiness, or anhedonia as well as a reduction in
ability and motivation to perform normal survival functions
(Pizzagalli et al., 2008; Admon and Pizzagalli, 2015; Proulx
et al., 2018). Diagnostic criteria include exhibiting some subset
of symptoms that include diminished interest in daily activities,
insomnia, appetite or weight gain or loss, psychomotor agitation
or retardation, fatigue, feelings of guilt or suicidal ideation
(American Psychiatric Association, 2013).

These mental illnesses have high prevalence in the population
as described in Section “Population Mental Health and
Endophenotypes.” In addition, they tend to exist as a
continuum – patient diagnosis occurs for more severe cases
where the disorder interferes significantly with their daily lives;
however, many undiagnosed individuals span the spectrum
between mental wellness and illness and could also benefit from
measures to improve mental health (Figure 1).

Current treatments for mental illnesses are directed at
symptom management. Thus, we dissect these 2 mental disorders
into simpler behavioral markers (Table 2) by considering
their symptoms and diagnosis criteria. We also classify the
endophenotypes into four broad categories: (1) Activity and
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TABLE 2 | Summary of endophenotypes.

General category Human endophenotype Fish behavioral assay
(endophenotype)

Specificity to mental
health phenomena

Mechanisms (non-exhaustive)

Activity and arousal Catatonia or restlessness Hypoactivity or
hyperactivity

Low Multiple (De Marco et al., 2013,
2016; Irons et al., 2013; Woods
et al., 2014; Vom Berg-Maurer
et al., 2016; Barrios et al., 2020;
Corradi et al., 2022)

Sleep dysregulation Sleep initiation/sleep
maintenance (arousal
threshold)/sleep

Medium Multiple (Prober et al., 2006; Chiu
et al., 2016; Rihel et al., 2010)

Reduced arousal
threshold

Light-dark transition Medium Monoamines, HPA (De Marco et al.,
2013, 2016; Irons et al., 2013;
Sveinsdóttir et al., 2022)

Flight or freeze Freezing/immobility Freezing Medium Left dorsal
habenulo-interpeduncular pathway
(Duboué et al., 2017)

Increased startle
responsiveness

Escape and startle
potentiation/habituation

Medium NMDAR, Pth, fmr1, serotonin
(Roberts et al., 2011; Pantoja et al.,
2016; Randlett et al., 2019;
Anneser et al., 2022;
Marquez-Legorreta et al., 2022)

Heightened response to
fearful stimuli

Larval alarm
(Schreckstoff) response

High Habenula-raphe, dopamine,
serotonin (Basnakova et al., 2021;
Jesuthasan et al., 2021)

Learned helplessness Active avoidance/passive
coping

High Habenula-raphe,
glia-norepinephrine (Andalman
et al., 2019; Lee et al., 2019; Mu
et al., 2019)

Other defensive
behaviors

Nocifensive
behavior/large-angle tail
bends, aggression

Medium Oxytocin, HPA (Wee et al., 2019a;
Lovett-Barron et al., 2020)

Exploration and
avoidance

Avoidance of
risk/unfamiliar spaces

Light/dark avoidance High Serotonin, CRH (Steenbergen et al.,
2011; Wagle et al., 2022)

Avoidance of risk/open
spaces

Thigmotaxis Medium GABA (Schnörr et al., 2012)

Avoidance of
risk/unfamilar spaces

Novel tank diving High Monoamines (Maximino et al.,
2013b)

Responses to
appetitive stimuli

Appetite dysregulation Feeding assay Low Multiple (Jordi et al., 2018; Wee
et al., 2019b)

Stress-induced anorexia Salt stress feeding assay High HPA (De Marco et al., 2014; Cheng
et al., 2022)

Avoidance of social
eating

Social feeding assay Medium Oxytocin (Wee et al., 2022)

Social avoidance Social
aggregation/avoidance/
orienting/preference
assays

Medium Pth, disc1, egr1, monoamines,
basal forebrain (Tunbak et al., 2020;
Harpaz et al., 2021; Anneser et al.,
2022; Tallafuss et al., 2022)

Response to addictive
substances

Preference/self-
administration
assays

High HPA, monoamines, glutamate,
cholinergic system (Darland and
Dowling, 2001; Ninkovic et al.,
2006; Mathur and Guo, 2010;
Bossé and Peterson, 2017; Müller
et al., 2020)

Arousal, (2) Flight or Freeze, (3) Exploration and Avoidance, and
(4) Responses to Appetitive Stimuli (Figure 1).

Activity and Arousal
Changes to activity and arousal levels are observed in mood
and anxiety disorders. Agitation (e.g., fidgeting, pacing, and
restlessness) and retardation (e.g., lethargy) represent two ends
of the activity level spectrum but are often exhibited in

mood and anxiety disorders (American Psychiatric Association,
2013). Individuals also tend to experience sleep disturbances,
particularly insomnia, which is the result of lowered arousal
thresholds (Riemann et al., 2010).

Locomotion
In mood and anxiety disorders, humans may display hypo- or
hyperactivity. Hypoactive behaviors include reduced movement,
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FIGURE 1 | Conceptual relationship between endophenotypes and disease
spectrum. Depression and anxiety exists along a spectrum of mental wellness
to illness. There are overlapping and distinct aspects of these disorders that
are also reflected in their shared and individual endophenotypes. Although we
have categorized the endophenotypes into four main groups, these
endophenotypes are interconnected and their relationships are worth
investigating. The endophenotypes are supported by various underlying
mechanisms, many of which are also interconnected. Multiple mechanisms
may govern a single endophenotype while likewise, many endophenotypes
can share similar pathways.

staring, or selective mutism. In extreme cases, patients can
develop catatonia, which if left untreated, has lethal effects
(Wilcox and Reid Duffy, 2015). On the other hand, some patients
with anxiety may be restless, easily distracted, and irritable. In
severe cases, patients can be diagnosed with agitated depression
(Park, 2018).

Locomotor behavior can be easily studied in zebrafish
larvae. Various locomotion parameters such as swim speed,
or detailed bout kinematics (interbout intervals and bout
duration) can be obtained, both spontaneously and in response
to stimuli, and may help distinguish increases or reductions in
locomotion from specific defensive behaviors such as escapes
and freezing (see Section “Flight or Freeze”) or sleep behavior
(see Section “Sleep”) (Prober et al., 2006; Ingebretson and
Masino, 2013). In zebrafish, environmental stressors such as
low pH, high salt, high temperatures and water flow have
been shown to cause changes in locomotion (Clark et al.,
2011; De Marco et al., 2016; Vom Berg-Maurer et al., 2016;
Lee et al., 2019; Cleal et al., 2020) which correlates also
with the recruitment and increased synchronization of CRH

neuron (part of HPA axis) activity (Vom Berg-Maurer et al.,
2016). CRH neurons and downstream pituitary corticotrophs
(De Marco et al., 2013, 2016) have been shown to modulate
zebrafish locomotor responses to these, as well as other
stimuli, however, the precise direction of locomotor change
appears to be context-dependent (see Sections “Sleep,” “Light-
Dark Transition,” “Freezing,” and “Other Defensive Behaviors”
for elaboration).

Multiple neuropeptidergic pathways regulate locomotion
in zebrafish, as studied in detail in Woods et al. (2014). In
another study, galanin-producing neurons in the zebrafish
preoptic hypothalamus were found to be activated by
hyperosmotic stress. The ablation of these neurons resulted
in significant stress-induced hyperactivity, suggesting the
galanin-producing neurons are involved in the inhibition of
the stress response. The HPA axis was also more active in
larvae with ablated galanin-producing neurons, as indicated by
higher cortisol levels (Corradi et al., 2022). In mammals, the
neuropeptide galanin similarly regulates the stress response,
particularly via the HPA axis to prevent overactivation
which is often the case in stress-related anxiety and mood
disorders (Karlsson and Holmes, 2006; Picciotto et al., 2010;
Juhasz et al., 2014).

Another important regulator of zebrafish locomotor activity
is the dopaminergic system. Dopamine receptor agonist
apomorphine caused increased hyperactivity at low and high
doses while antagonist butaclamol caused hypoactivity at high
doses (Irons et al., 2013). Zebrafish have multiple dopaminergic
populations that modulate locomotion (Barrios et al., 2020).
Notably, dopamine plays a major role in anxiety (Zarrindast and
Khakpai, 2015) and mood disorders (Belujon and Grace, 2017).

Hypoactivity or decreased locomotion could result in
decreased exploratory behavior (see also Section “Exploration
and Avoidance”) as the range of novel space that can be explored
is reduced. In rodents (Crawley, 1985) and zebrafish (Stewart
et al., 2012), decreased exploratory behavior is also frequently
observed in anxiety models. Thus, the locomotion assay can be
used to test the anxiety endophenotypes relating to both activity
and exploration. However, locomotion can also be affected by
a multiplex of causes such as muscle or nerve impairment, and
can be influenced by many genetic, developmental or nutritional
factors. Hence, it is not a specific endophenotype for anxiety and
mood disorders and cannot be used exclusively.

Sleep
Sleep dysregulation is a common symptom in mood and anxiety
disorders. Patients often face trouble maintaining sleep, resulting
in early awakening, or difficulty initiating sleep, resulting in
insomnia. Furthermore, sleep disturbances worsen these mental
disorders, resulting in a positive feedback loop (Yang et al.,
2022). Sleep-enhancing drugs are often prescribed in anxiety
or mood disorders (Saletu-Zyhlarz et al., 2003; World Health
Organization, 2009). Zebrafish exhibit similar sleep-like behavior
primarily at night as regulated by their circadian cycle (Chiu
and Prober, 2013). Like humans, zebrafish have characteristic
sleep postures, increased arousal threshold during sleep as well
as after sleep deprivation. Additionally, hypnotic or anesthetic
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drugs can be used to induce sleep and a sleep-like brain-state
in both humans and zebrafish (Zhdanova et al., 2001; Leung
et al., 2019). Regulation of sleep in humans and zebrafish is
also conserved at the molecular level (Corradi and Filosa, 2021).
The human Hypocretin Neuropeptide Precursor (HCRT) and
zebrafish homolog hcrt decrease the arousal threshold when
overexpressed, resulting in insomnia in humans and increased
locomotion in zebrafish (Prober et al., 2006). Norepinephrine, an
acute stress response hormone and neurotransmitter, has been
shown to be a downstream effector of hcrt activity in zebrafish
(Singh et al., 2015). Hypocretin is a neuropeptide involved
directly in sleep regulation but a hyperactive hypocretin system
is also linked to anxiety and depression. For instance, hypocretin
activity results in wakefulness which is associated with heightened
vigilance that is common in anxiety disorders (Johnson et al.,
2012) while hypocretin protects against depression by promoting
stress resilience (Nollet and Leman, 2013; Ji et al., 2019).

A rest/wake behavioral assay can be used to screen for drugs
that modulate sleep (Prober et al., 2006; Rihel et al., 2010) in
a high-throughput manner. Rihel et al. (2010) tested several
classes of drugs that are used in anxiety and mood disorder
treatment [e.g., serotonin, dopamine, GABA (Lydiard, 2003),
epinephrine (Dooley, 2015) agonists and antagonists]. The drugs
varied in their effects on different aspects of rest. For example,
dopamine D2-receptor agonists reduced waking activity and
increased rest while antagonists increased both waking activity
and rest. Investigating drug effects on sleep might identify more
specific mechanisms or treatments for mood or anxiety-induced
sleep dysregulation.

The neuropeptide neuromedin U (Nmu) causes a reduction
in sleep, and hyperactivity (Chiu et al., 2016). Overexpression
of Nmu in larval zebrafish increased activity both in the day
and at night, reduced sleep initiation and led to poorer sleep
maintenance, suggesting a reduction in arousal threshold.
A CRH receptor 1 (CRHR1) antagonist blocked the Nmu
overexpression-induced waking hyperactivity in a dose-
dependent manner. Hence, just as CRH is involved in locomotion
regulation (see Section “Locomotion”), CRH also mediates the
sleep and locomotion-related effects of Nmu overexpression.

There are certainly correlations between measures of sleep and
locomotion (see also Cheng et al., 2022) though sleep can be
distinguished from general activity using specific criteria (Prober
et al., 2006). Similar to locomotion, sleep dysregulation itself
is not exclusively an endophenotype for mental disorders, and
needs to be considered alongside other more specific behaviors.

Light-Dark Transition
In the light-dark transition assay, zebrafish larvae are subjected to
5–30 min periods of whole-field darkness. During light periods,
the larvae display low levels of activity while in the dark, they
are hyperactive, which may reflect a heightened anxiety state
(Irons et al., 2010; Golla et al., 2020). Chronically stressed (from
10 to 17 dpf) larval zebrafish displayed increased locomotion
in response to the light-dark transition compared to non-
chronically stressed counterparts (Golla et al., 2020). This light-
dark transition assay was carried out in the light/dark partitioned
well to simultaneously study light/dark choice (described in

Section “Light/Dark Choice”) (Golla et al., 2020). However, the
control and the group that had been exposed to chronic stress did
not exhibit any difference in light/dark preference, suggesting a
dissociation between these behaviors.

In another study, addition of anxiolytic compounds ethanol
and cocaine caused a reduction in hyperactivity during dark
periods while anxiogenic D-amphetamine caused an increase
in hyperactivity during the dark period (Irons et al., 2010).
Furthermore, increased thigmotaxis (see Section “Exploration
and Avoidance”) was seen in dark periods compared to light
periods even in control conditions. When anxiolytic aconitine
was added, the extent of thigmotaxis behavior observed in the
dark periods was reduced significantly (Ellis et al., 2012). In
a recent study we observed that acute salt stress increased
thigmotaxis in a light/dark choice assay (see Section “Light/Dark
Choice”) relative to uniform light condition, suggesting a
potential interaction of darkness with thigmotactic behavior
(Cheng et al., 2022).

Monoaminergic systems have been implicated in both mood
and anxiety disorders, and many antidepressants and anxiolytic
drugs target monoamine function (Heninger and Charney,
1988; Tyrer and Shawcross, 1988; Delgado, 2000; Meyer et al.,
2006; Liu et al., 2018). The vesicular monoamine transporter 2
(Vmat2) transports monoamines such as dopamine, serotonin,
norepinephrine, and histamine into secretory vesicles for release
from monoaminergic cells of the nervous system. Vmat mutants
have reduced levels of the aforementioned monoamines as
well as increased thigmotaxis (see also Section “Thigmotaxis”)
(Sveinsdóttir et al., 2022; Wang, 2022). The vmat mutant larvae
displayed a larger increase in movement immediately after dark
transition but also reduced locomotion after the light was turned
back on compared to wild-type larvae (Sveinsdóttir et al., 2022).
However, neither dopamine agonist pramipexole nor precursor
L-Dopa could rescue the immediate peak in activity after dark
transition, suggesting the involvement of other monoamines or
mechanisms (Sveinsdóttir et al., 2022).

While the above evidence supports the use of light-dark
transitions as a measure of anxiety, there may be other
mechanisms underlying dark hyperactivity that could confound
the interpretation of results. For example, the hyperactivity
observed in the dark could also be a sensorimotor response
to environmental change. Heightened locomotion in the dark
has been shown to be mediated by deep brain photoreceptors
as a non-visually-mediated undirected photokinesis reflex
(Fernandes et al., 2012). This reflex allows the larvae to swim
to illuminated areas without having to visually detect light and
orientate towards it like in phototaxis behavior. If and how this
reflex relates to anxiety pathways remains to be seen. Given such
alternative explanations, caution needs to be taken in interpreting
this assay as a specific anxiety endophenotype.

Additionally, light of different wavelengths may also induce
different behavioral responses. In a variation of the light-dark
transition assay, De Marco et al. (2013, 2016) also showed that
in dark-adapted larvae, blue or yellow light exposure induced
hypoactivity during the period of exposure followed by recovery
following light offset. Optically enhancing pituitary corticotroph
activity via blue light stimulation of Beggiatoa photo-activated
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adenylyl cyclase (bPAC+) larvae further reduced locomotor
activity, which also correlated with an increase in whole-
body cortisol. Hence, blue/yellow light-induced hypoactivity can
be potentiated by HPA axis activation downstream of CRH
neuron activity. Further, under exposure to external stress (high
temperatures and water flow), blue-light activated bPAC+ larvae
exhibited enhanced locomotor activity, compared to controls
in which CRH activation was solely through external stressor
exposure. This means that pituitary corticotroph activity, which
is downstream of CRH activity, potentiates and hence increases
the magnitude of cortisol release and locomotor responses to
stressors (De Marco et al., 2016). Such evidence points toward
this assay as a promising anxiety endophenotype. Further,
dark-adapted larvae avoided blue light and showed enhanced
escape behaviors in a blue-light versus dark choice assay.
Hence, HPA axis activation at multiple levels regulates diverse
anxiety behaviors.

Flight or Freeze
Across all species, predator, pain, and other aversive stimuli
activate withdrawal or escape reflexes, or alternatively, a freezing
response (Crawford et al., 1977; Blanchard et al., 1986; Blanchard,
1997; Roelofs, 2017). Anxiety and mood disorders have been
shown to modulate these reflexes, as summarized in this section.

Freezing
Similar to mammals, freezing, or prolonged immobility, is a
fear response in zebrafish and suggested to be the most reliable
measure of anxiety in adults (Blaser et al., 2010). In larval
zebrafish, freezing in response to an electric shock has also been
observed, where freezing is defined as a period of inactivity
exceeding 1.99s (Duboué et al., 2017). Severing the left fasciculus
retroflexus (FR) caused an increase in freezing behavior post-
shock while severing the right FR did not have a significant effect
on shock recovery. The FR connects the dorsal habenula to the
interpeduncular nucleus. These results suggest that the left dorsal
habenulo-interpeduncular pathway is responsible for recovery
from a heightened fear and anxiety state (Duboué et al., 2017).
The HPA axis is also involved in the freezing response. A loss-
of-function mutation to the glucocorticoid receptor ablated the
negative feedback glucocorticoid cortisol provides to terminate
the stress response (Gjerstad et al., 2018). This results in chronic
HPA activation. Adult zebrafish with the mutation freeze for
longer periods when placed in a novel tank and do not habituate
even on subsequent exposures to a novel tank (Ziv et al., 2013). It
remains to be seen if this freezing response in adults is related to
stressor-induced hypoactivity observed in larvae (e.g., in response
to water flow or blue light), since both are HPA-axis mediated
(De Marco et al., 2016).

Since there are underlying neural circuits involved in freezing
behavior, it can be an endophenotype for anxiety. Other
genetic, molecular, and neural pathways may also interact to
regulate freezing in zebrafish [see Sections “Alarm (Schreckstoff)
Response” and “Learned Helplessness”].

Startle Responsiveness
Startle potentiation is a phenomenon where exposure to aversive
stimuli causes an increase in the startle reflex. In humans, startle

potentiation can be tested by measuring electromyographic
activity of the orbicularis oculi muscle during blinking when
shown aversive pictures. In humans, people with higher fear
or anxiety levels display stronger startle, especially toward
pictures relating to their phobias (Vaidyanathan et al., 2009).
Repeated startle may lead to habituation where the stimuli no
longer triggers a response; however, in some subjects, deficits
in habituation may occur, which correlates with an anxiety-like
state. Notably, Campbell et al. (2014) found a positive correlation
between anxiety sensitivity and abnormal startle habituation.

Habituation and startle potentiation (Bhandiwad et al., 2018)
has also been observed in zebrafish. Predator-like stimuli
typically elicits escape reflexes such as O-bends and C-starts.
O-bends enable reorientation of the body 180◦ to the direction
of swimming and is commonly observed as a response to
dark flashes (whole-field darkness) (Burgess and Granato,
2007). Vibrational-acoustic, mechanosensory and looming visual
stimuli typically elicit C-starts mediated by the giant Mauthner
cell and its homologs, during which the body curves in a
‘C’ shape to propel itself in a different direction from the
stimulus (Hatta and Korn, 1998; Kohashi and Oda, 2008;
Dunn et al., 2016). Randlett et al. (2019) developed a high-
throughput dark-flash habituation assay where the aversive
stimuli (darkflash) is delivered repetitively at spaced intervals.
They found that the larvae gradually learnt not to respond
to each darkflash, thus displaying habituation. The habituation
response could be dissected into several components of behavior,
and these were regulated by multiple molecular mechanisms
(Randlett et al., 2019).

Multiple mechanisms of C-start habituation have also been
discovered (Wolman et al., 2011; Corradi and Filosa, 2021;
Nelson et al., 2022). For example, the persistent form of
habituation response in zebrafish that lasts 25 min to 1 h
could be inhibited by N-methyl-D-aspartate receptors (NMDAR)
antagonists (Roberts et al., 2011). In humans, NMDAR
antagonists such as ketamine have been used as antidepressants
in mood (Amidfar et al., 2019) and anxiety disorders (Taylor
et al., 2018b), though the precise mechanism behind the success
of NMDAR antagonist action in humans still requires research
(Sattar et al., 2018). In addition, deficiency of the neuropeptide
parathyroid hormone 2 (Pth2) causes increased responsiveness
in larval zebrafish to vibrational startle and reduces the delay
between startle and response (Anneser et al., 2022). Larval
zebrafish with reduced serotonin levels in the dorsal raphe
nucleus (DRN) had increased habituation to acoustic startle,
whereas optogenetic activation or a serotonin agonist was
able to reduce habituation. This evidence points toward a
significant role of DRN serotonin activity in startle habituation
(Pantoja et al., 2016).

Fragile X syndrome arises from the silencing of the fmr1
gene, causing habituation deficiencies in humans, mice, and
zebrafish (Restivo et al., 2005; Kim et al., 2014; Ethridge et al.,
2016; Marquez-Legorreta et al., 2022). Fmr1 mutants displayed
slower habituation to looming visual stimuli compared to wild
type. Brain-wide imaging attributed this to overly-connected
neural networks that failed to disconnect upon sensorimotor
learning during habituation, leading to hypersensitivity in
fmr1 mutants (Marquez-Legorreta et al., 2022). Overall,
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changes in habituation kinematics could potentially be used
as an endophenotype for anxiety, although they may also
reflect more general differences in sensorimotor learning
circuits.

Alarm (Schreckstoff) Response
Schreckstoff is an alarm substance that is released when
a fish is injured. In adult zebrafish, this substance serves
to alert the shoal to danger and therefore triggers a fear
response indicated by darting and freezing behavior (Speedie
and Gerlai, 2008; Mathuru et al., 2012; Chia et al., 2019).
Alarm response behavior has recently been reported in larval
zebrafish (Jesuthasan et al., 2021). After exposure to high
concentrations of Schreckstoff, 50% of larval zebrafish [slightly
lower than the 70% response rate observed in adults (Chia
et al., 2019)] displayed a sustained increase in immobility
of up to 20 min, which may reflect a prolonged heightened
anxiety state. Consistently, neuroimaging showed a prolonged
change in brain state after exposure to Schreckstoff in several
areas (Jesuthasan et al., 2021). Of those areas the midbrain
tegmentum, norepinephrinergic locus coeruleus and serotonergic
raphe nucleus have been found to be involved in anxiety disorders
(Lowry et al., 2008; Spiacci et al., 2012; DeGroot et al., 2020;
Morris et al., 2020).

Interestingly, after exposure to Schreckstoff, larval zebrafish
display reduced startle as compared to before (Basnakova
et al., 2021). The authors’ interpretation of these results
is that Schreckstoff exposure caused a heightened state of
anxiety in the larval fish and hence increased their expectation
of danger. The fish were therefore not startled when they
encountered a second shock. Alternatively, the neural
pathways regulating the Schreckstoff freezing response may
override or inhibit those regulating startle. Disrupting Clock
gene signaling in the habenula of larval zebrafish caused
abnormal circadian regulation of dopamine and serotonin,
and modulated Schreckstoff responses (Basnakova et al.,
2021). Hence, both the acute Schreckstoff response and its
influence on subsequent behaviors could potentially be useful
endophenotypes for anxiety.

Learned Helplessness
Learned helplessness is the phenomenon where animals fail
to exert control over aversive scenarios, which usually occurs
after they are exposed to prolonged, unavoidable aversive events
(Maier and Seligman, 2016). Depressed individuals display
learned helplessness to a greater extent than healthy individuals.
Miller et al. (1975) found that depressed subjects were more
likely to wrongly perceive skilled responding as being up to
chance. In other words, they believed they were helpless when
in reality, they could learn to control the outcome. Hiroto
(1974) experimentally demonstrated the learned helplessness
effect in humans. During training, one group was able to
control exposure to an aversive noise by pushing a button
while for the other pressing the button had no effect. During
the test, the group that had learned that they were helpless
in dealing with the trauma did not attempt to end the
trauma while the other two group took action. Hence, learned

helplessness results in a reduced motivation to deal with
difficult situations.

Animals will initially respond vigorously to an aversive
stimulus but switch to a passive coping response when the
inescapability of the stimulus becomes apparent (Koolhaas
et al., 1999). In 10–15 dpf larval zebrafish, passive coping
can be induced by inescapable shock and is characterized
by immobility (Andalman et al., 2019). Whole-brain activity
mapping revealed that the ventral habenula was uniquely
hyperactive in the transition to passive coping. Modeling and
optogenetic manipulation of neural connectivity also showed
that aversive stimuli triggered significant changes in the intra-
habenula and habenula-raphe connections, suggesting that the
habenula-raphe pathway is involved in modulating the passive
coping response (Andalman et al., 2019). In a prior study, 3–
5 weeks old late larval/juvenile zebrafish were trained to avoid
electric shock by moving away from a red light, a form of
avoidance learning (Lee et al., 2010). When instead exposed to
inescapable shock, the fish learnt that they were helpless and
hence did not move away from the red light. The study also
found that disabling the dorsal habenula using tetanus toxin
caused larval zebrafish to behave as if they were exposed to
inescapable shock even though they could have avoided the shock
(Lee et al., 2010). Both the habenula and raphe nucleus have
been implicated in human depression (Matthews and Harrison,
2012; Hahn et al., 2014; Gold and Kadriu, 2019). Hence, learned
helplessness is a promising endophenotype for depression in
larval zebrafish.

Larval zebrafish have also been shown to reduce their
motivation to act in mildly aversive contexts. While they
usually swim reflexively when encountering forward-flowing
visual stimuli (an adaptive response that allows them to
maintain their position in water currents) they will struggle
and then become passive when the visual stimuli remains
forward-flowing regardless of the fish’s swim attempts (Mu
et al., 2019). Through activation and ablation experiments, the
authors Mu et al. (2019) showed that glial cells play a critical
role in integrating information from multiple failed attempts,
which they receive from norepinephrinergic circuits, leading
to the behavioral switch to passiveness. Hence, both neuronal
and non-neuronal populations are involved in modulating the
animal’s propensity to react to unsuccessful behavior. Given the
distinct mechanisms, whether this phenomenon is related to
learned helplessness or is enhanced in a depressive brain state
remains to be seen.

Other Defensive Behaviors
Noxious stimuli activate the nociceptive system of animals, to
trigger the conscious perception of pain or aversion (Pogatzki-
Zahn and Schaible, 2020). Different noxious stimuli activate
distinct pathways for pain perception in humans which have
been reviewed extensively by Dubin and Patapoutian (2010).
In zebrafish, hypothalamic oxytocin neurons transform noxious
stimuli to motor output, evoking large-angle tail bends that
can be described as a defensive response (Wee et al., 2019a).
Lovett-Barron et al. (2020) similarly found that oxytocin neurons
as well as other neuropeptidergic populations in the preoptic
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hypothalamus respond to homeostatic threats such as salinity,
acidity, and heat. Calcium imaging, optogenetic and ablation
experiments confirmed that both hypothalamic oxytocin and
CRH neurons contribute toward these defensive behaviors via
downstream brainstem targets which are distinct from those
mediating escape responses (Wee et al., 2019a; Lovett-Barron
et al., 2020).

Anomalies in sensitivity to noxious stimuli, magnitude
of reaction, and the duration taken to recover are possible
endophenotypes for anxiety disorders. Notably, oxytocin has also
been implicated in anxiety and pain in mammals, including
humans (Grillon et al., 2013; Poisbeau et al., 2018).

Aggression can also co-occur with anxiety and depression
(Sánchez and Meier, 1997; van Praag, 1998; Neumann et al.,
2010; Blain-Arcaro and Vaillancourt, 2017). However, since
aggression only develops after the larval stage, aggression assays
have mainly been designed for older zebrafish, as summarized
by Way et al. (2015). In the mirror-biting assay, aggression is
measured based on how much time a zebrafish spends ‘fighting’
with its mirror image or exhibiting aggressive postures (e.g., nose
touching the mirror). Juvenile zebrafish (1 month old) exhibit
similar responses to various aggression-reducing compounds
including caffeine and sildenafil (Gutiérrez et al., 2020). Genetic
inactivation of the histamine H3 receptor (Hrh3) in adult
zebrafish caused reduced aggression and heightened anxiety,
likely via altered serotonergic signaling in the telencephalon
and hypothalamus (Reichmann et al., 2020). This suggests a
link between aggression and anxiety, although more research
is needed as aggression modulation pathways have yet to be
fully characterized.

Exploration and Avoidance
Avoidance and the reduction of exploratory behavior are typically
observed in anxiety disorders, which will be elaborated on
in the subsections below. However, these behaviors could
also be modulated in depression and other mood disorders
(Cella et al., 2010; Blanco et al., 2013; Haskell et al.,
2020). We will focus on light/dark choice, thigmotaxis and
novel tank diving, however other assays for exploration
and avoidance have also been developed, as discussed in
Corradi and Filosa (2021).

Light/Dark Choice
The state of anxiety often triggers an increase in avoidance when
presented with an approach-avoidance conflict (AAC). An AAC
occurs when two situations – one safe and one risky – are present
simultaneously. A heightened anxiety state would typically cause
the subject to choose the safer options over riskier unknowns
(Aupperle et al., 2011). In rodent models, a choice between light
and dark presents an AAC where the dark zone is perceived
as safer. Imaizumi and Onodera (1993) found that the addition
of anxiogenic drugs zolantidine and thioperamide increased the
time spent in the dark zone. In mice, the type 2 CRF receptor
neurons in the lateral septum regulate anxiety by projecting to
the anterior hypothalamus. Optogenetic studies to activate these
neurons had an anxiogenic effect, where mice preferred to remain
in the dark side of the light/dark partitioned box (Anthony et al.,

2014). These studies suggest that behavior in a light/dark test
could be an indicator of anxiety.

The light/dark choice assay has also been successfully
implemented in zebrafish. Larval zebrafish exhibit a natural
preference for light (phototaxis) and avoidance of dark
(scotophobia). Notably a behavioral switch to dark preference has
been reported in adulthood (Lau et al., 2011). Larval zebrafish are
placed individually in an arena with a well-lit and dark region
and the proportion of time in the light area can be used to
quantify anxiety (Steenbergen et al., 2011). When the larvae are
exposed to stressful stimuli such as UV light, their cortisol levels
and dark-avoidance behavior increase (Bai et al., 2016). This
provides evidence that increased dark avoidance is an indicator
of heightened stress and anxiety levels. Hence, the light/dark
choice assay could be used to assess anxiety state in zebrafish.
However, it is worth noting that heat stress and mechanical
disturbance did not trigger the expected correlated increase in
dark avoidance and cortisol levels. We show that prolonged,
but not acute osmotic stress enhances dark avoidance in larvae
(Cheng et al., 2022). This could suggest that different stressors
and stressor durations generate distinct anxiety states that are
regulated by diverse pathways.

Steenbergen et al. (2011) further validated the larval
zebrafish light/dark choice assay using clinically-established
anxiolytic or anxiogenic compounds. They found that larval
zebrafish spent more time in the dark region when treated
with buspirone, a serotonin receptor (5-HT1A) agonist, while
the converse was true for anxiogenic compounds such as
caffeine. Hence, serotonin signaling as well as other conserved
signaling pathways may share common roles in modulating
anxiety across species. The role of serotonin in regulating
zebrafish anxiety has been further supported by studies in
adult zebrafish using novel tank, light/dark, light/dark plus
maze assays (Sackerman et al., 2010; Maximino et al., 2013a;
Nowicki et al., 2014).

Recently, hypothalamic CRH neurons were shown to promote
dark avoidance behavior (Wagle et al., 2022). These CRH neurons
displayed lower overall activity in the presence of light, and their
ablation increased brainwide representations of light and reduced
dark avoidance (Wagle et al., 2022). CRH receptor antagonism
or crhb knockout similarly reduced dark avoidance. In contrast,
oxytocin neuron ablation enhanced dark avoidance, suggesting
distinct roles of hypothalamic peptidergic neurons in light/dark
choice regulation.

Additionally, dark avoidance is a form of reduction in
exploratory behavior as the animals show reduced propensity
to enter unfamiliar places. Such decreased exploratory behavior
has been observed in anxiety models in both rodents (Crawley,
1985) and zebrafish (Stewart et al., 2012). Overall, the light/dark
choice assay might be one of the more specific anxiety
endophenotypes in zebrafish.

Thigmotaxis
Thigmotaxis, or wall-hugging behavior, is also conserved in many
animal species. The fear of exposure to predators in open spaces
causes animals to prefer staying close to the perimeter of the
environment. Thigmotaxis can also be interpreted as a reduction
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in exploratory behavior as there is a reduction in willingness to
enter the unfamiliar open space. Decreased exploratory behavior
has been observed in animal models of anxiety (Crawley, 1985;
Stewart et al., 2012). An open field test showed that humans
with high anxiety sensitivity and agoraphobia also have a
higher tendency to keep to the edges of the arena while their
healthy counterparts spent most time in the center of the arena
(Walz et al., 2016).

Similarly, larval zebrafish display increased thigmotaxis in
stressed conditions such as in the presence of chemical irritants
(Roberts et al., 2020). Therefore, a version of the open field test
can be used as a measure of anxiety levels. Zebrafish larvae are
placed in an arena and their movement is recorded for a set
amount of time. Thigmotaxis is quantified as a percentage of the
distance moved in the outer zone of the well out of the total
distance moved. Anxiolytic drugs have been found to reduce
thigmotaxis while anxiogenic compounds increase thigmotaxis.
For example, Schnörr et al. (2012) found that diazepam, an
FDA-approved drug for anxiety treatment, significantly reduced
thigmotaxis. In humans, diazepam binds allosterically to gamma-
aminobutyric acid (GABA) receptors in the limbic system,
reducing the excitability of neurons, which mediates its anxiolytic
effect. While the mechanism of diazepam action in zebrafish has
not been precisely elucidated, diazepam has been shown to bind
to GABA receptors in other species of fish (Wilkinson et al., 1983;
Friedl et al., 1988).

Through selective breeding, Wagle et al. (2017) found
that dark aversion and thigmotaxis are heritable traits. Fish
that display strong dark avoidance also displayed increased
thigmotaxis in an open field test, indicating increased propensity
of being in a high anxiety state. This suggests that both
thigmotaxis and dark avoidance have a genetic underpinning,
making them candidate endophenotypes for anxiety.

In a recent study, we showed that acute salt stress enhances
thigmotaxis in a light/dark choice assay, with thigmotaxis only
during the light/dark period as compared to during uniform light.
However, dark avoidance was unaffected, suggesting that dark
avoidance and thigmotaxis behaviors are dissociable traits with
potentially different underlying pathways. In contrast, prolonged,
high salt stress enhanced dark avoidance but had weaker effects
on thigmotaxis (Cheng et al., 2022).

However, thigmotaxis can also be induced by other biological
phenomena such as seizures (Baraban et al., 2005), and may
be influenced by experimental factors (see Section “Controls
and Considerations in Endophenotype Investigation”), hence it
should be interpreted with caution as an anxiety phenotype.

Novel Tank Diving
In the novel tank diving (NTD) assay, the zebrafish is placed
into a narrow tank to constraint most of its movement to the
vertical axis. The unfamiliar environment increases stress and
anxiety, causing the zebrafish to initially dwell at the bottom of
the tank. In the next 5 min, they gradually begin to explore the
upper regions of the tank. NTD assays are typically conducted on
adult zebrafish, but have been successfully conducted using 25 dpf
larval zebrafish (Golla et al., 2020). Larval zebrafish exposed to
chronic stress (net-chasing, water turbulence, salt stress, low pH,

and light flashes applied randomly during the day) have increased
bottom-dwelling times (Golla et al., 2020) which is in agreement
with increased responsiveness to light-dark transition. However,
they do not display increased thigmotaxis, dark avoidance and
shoaling.

A variation of the NTD has been proposed for younger larvae.
Seven dpf larvae were shown to display depth preference in
the first 30 min of introduction to a novel tank, with caffeine
enhancing, and diazepam alleviating bottom-dwelling behavior
(Fontana and Parker, 2022).

In adults, the anxiolytics nicotine, diazepam and buspirone
caused a reduction in the time spent bottom dwelling (Bencan
and Levin, 2008; Bencan et al., 2009), suggesting that bottom-
dwelling behavior is indicative of anxiety. The leo mutant
strain has increased monoamine oxidase (MAO) activity and
serotonin turnover rate, leading to increased thigmotaxis and
light avoidance in adult zebrafish (Maximino et al., 2013b). In
a NTD assay, leo mutant zebrafish displayed increased bottom-
dwelling (Cachat et al., 2011; Maximino et al., 2013b), suggesting
that there are genetic underpinnings to the NTD.

In addition to the propensity to explore novel environments,
the NTD has been used to measure habituation in adult zebrafish
(Wong et al., 2010). In an unfamiliar environment, time
is needed for the zebrafish to acclimatize before normal
behavior is resumed. As described above (see Section
“Startle Responsiveness”), habituation deficits are also
characteristics of anxiety-related disorders. Hence, the novel
tank diving assay could be one of the more specific anxiety
endophenotypes in zebrafish.

Responses to Appetitive Stimuli
Disruptions in reward pathways of the brain have been associated
with mood and anxiety disorders (Ulrich-Lai et al., 2010; Russo
and Nestler, 2013). Atypical responses to pleasurable stimuli such
as food or positive social interaction might be an indication of
dysfunctional reward signaling which could be a sign of mood or
anxiety disorders, as summarized in this section.

Appetite Dysregulation
Appetite, or the drive to consume food, is often dysregulated
in mood and anxiety disorders, as observed behaviorally and
supported by numerous studies (Rudenga et al., 2013; Weidenfeld
and Ovadia, 2017). Feeding when stressed is correlated with
reduced activation in reward areas of the brain (amygdala,
hippocampus, and cingulate cortex), suggesting that stress causes
reduced sensitivity to the pleasurable rewards derived from food,
which leads to excessive eating (Born et al., 2010). Furthermore,
excessive cortisol causes strong increases in appetite. This effect
has been confirmed in studies on Cushing’s syndrome patients
who face prolonged exposure to glucocorticoids, resulting in
significant weight gain (Fleseriu et al., 2012), as well as
depression and anxiety as comorbidities (Sonino and Fava,
2001). On the other extreme, stress-induced anorexia is also
commonly observed in humans and other mammals [see Section
“Stress Feeding Behavior/Stress-Induced Anorexia” (Shimizu
et al., 1989; Liu et al., 2007; Guarda et al., 2015)]. Hence,
appetite dysregulation can be an endophenotype for mood
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and anxiety disorders. However, since appetite is regulated
by many homeostatic and hedonic factors, it is also not a
specific endophenotype.

Zebrafish larvae begin feeding by 5 dpf, often hunting
small aquatic organisms such as paramecia or rotifers. While
paramecia hunting assays have been commonly used to quantify
zebrafish feeding, they are relatively low-throughput and require
specialized imaging setups (Gahtan, 2005; McElligott and
O’malley, 2005). More recently, variations of gut fluorescence
feeding assays (Shimada et al., 2012; Jordi et al., 2015, 2018; Wee
et al., 2019b; Cheng et al., 2022) have been used to quantify
paramecia intake in individuals or groups of larval zebrafish.
Larvae are starved before fluorescently-labeled paramecia are
added to the arena. Gut fluorescence can be imaged continuously
using customized setups (Jordi et al., 2015, 2018), or alternatively,
larvae can be anesthetized or fixed after specific time windows
(e.g., 15 min) and fluorescently imaged (Wee et al., 2019b, 2021;
Cheng et al., 2022). This feeding assay can be adapted accordingly
to study more specific aspects of appetite dysregulation, such
as under stress or in social contexts, as described in the
next sections.

Stress Feeding Behavior/Stress-Induced Anorexia
During stress, HPA activation causes increased release of cortisol,
which has been shown to stimulate hunger and increased
food intake (Tataranni et al., 1996). However, there is some
evidence that the type of stress (e.g., physical vs. social,
traumatic vs. non-traumatic) can have different effects on
appetite (Adam and Epel, 2007). While some may binge when
stressed, others might have reduced food intake. In rats, restraint
and forced swimming stress results in anorexic behavior (Calvez
et al., 2011). Regardless of the directional change in appetite,
dysregulation of eating patterns is implicated in anxiety and
stress-related disorders. Moreover, there is a high comorbidity
between anxiety and eating disorders (Swinbourne et al.,
2012), further supporting the relationship between dysregulated
appetite and anxiety.

Larval zebrafish are freshwater fish, hence high salinity can be
used as a stressor. De Marco et al. (2014) found that salt stress
at 50 and 100 mM NaCl suppressed feeding motivation – in
normal conditions, larval zebrafish would preferentially occupy
the region of the arena that contained paramecia, whereas
when placed in hyperosmotic salt solutions, the larvae occupied
all regions equally. Since whole body cortisol levels of the
larvae increased with increasing salt concentration, the HPA
axis was activated by the salt stress (De Marco et al., 2014). To
improve scalability, we have adapted our gut fluorescence feeding
assay to examine stress-induced anorexia (Wee et al., 2019b;
Cheng et al., 2022). Using this assay and a new machine-based
gut segmentation approach, we found that both acute and
prolonged salt exposure reduced paramecia consumption in a
dose-dependent manner (Cheng et al., 2022). Given the high
homology between the zebrafish and human HPA stress axes, and
the fact that appetite dysregulation has been linked to this stress
pathway, stress feeding behavior could be a viable endophenotype
for anxiety disorders.

When stressed, humans tend to choose caloric dense food
such as sweet, high-carbohydrate and high-fat snacks (Oliver
et al., 2000; Zellner et al., 2006; Adam and Epel, 2007),
often leading to stress-associated weight gain. The increase in
consumption of such foods also leads to reprogramming of
stress pathways and behavioral changes, as detailed by Hardaway
et al. (2015). For example, carbohydrate-rich food is thought
to increase serotonergic activity, thus decreasing anxiety and
depression (Rogers, 1995). Consumption of these different meal
compositions also likely has corresponding effects on their mood
and stress levels (Born et al., 2010). It remains to be seen if these
phenomena can be modeled in larval zebrafish.

Social Feeding Behavior
Social facilitation of eating is the phenomenon where individuals
eat more when in groups than when alone (Zajonc, 1965; Higgs
and Thomas, 2016; Herman, 2017; Ruddock et al., 2019). Similar
observations have been made in many animal models (Harlow,
1932; Tolman, 1964; Reynaud et al., 2015), including freshwater
fish (Uematsu and Ogawa, 1975). While it may not be possible
to fully model such a complex phenomenon in zebrafish, the
ability to regulate feeding based on social context could be a
useful indicator of mental function, with abnormal reactions to
social context (e.g., reduced feeding in groups) reflecting mental
ill-being (Patel and Schlundt, 2001; Brown et al., 2003).

Larval zebrafish have been shown to eat more when in
groups than alone (Wee et al., 2022). Larvae at 6–8 dpf
were plated either individually or in small groups for 2 h
and the amount of food consumed by each zebrafish was
compared. Fish density and crowding were controlled for by
limiting the groups to small numbers (e.g., 3 fish) in the same-
sized arena as isolated fish (see also Section “Controls and
Considerations in Endophenotype Investigation”). The authors
found that acutely (2 h) isolated larvae displayed reduced feeding
compared to the larvae that were in groups. Notably, the odor
of kin conspecifics was sufficient to enhance feeding in isolated
fish. The authors identified a olfactory-subpallial-oxytocinergic
pathway that integrates conspecific social cues, and showed that
ablation of the oxytocinergic neurons or application of oxytocin
antagonists could rescue the effects of isolation on feeding (Wee
et al., 2022). This oxytocinergic circuit also promotes defensive
behavior (see Section “Other Defensive Behaviors”), which is
similarly modulated by conspecific social cues (Wee et al., 2022).
In humans, oxytocin neurons can be activated by stressful
stimuli, and have been implicated in appetite regulation, aversive
responses, and social behavior (Striepens et al., 2012; Lieberwirth
and Wang, 2014; Neumann and Slattery, 2016). Further, the basal
forebrain (subpallial) neurons connecting olfactory to oxytocin
circuits have been previously implicated in visually-mediated
social orienting behaviors, and may be conserved in mammals
(Stednitz et al., 2018).

Alternatively, this social feeding assay can also be used
to study isolation-induced anxiety. To socially-reared larval
zebrafish, isolation activates overlapping brain regions as aversive
or stressful stimulus, including the oxytocin network (Wee
et al., 2022), hence the isolation state may also reflect an
anxiety state that affects feeding (also see Section “Controls and
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Considerations in Endophenotype Investigation”). Currently,
the effects of chronic social isolation on zebrafish feeding
are still unknown – in Drosophila, this leads to enhanced,
rather than reduced food intake as well as reduced sleep
(Li et al., 2021). In short, by comparing the relative effects
of interventions on isolated and group feeding behavior,
it may be possible to quantify both anxiety and social
behavior endophenotypes.

Social Preference or Avoidance Behavior
Social avoidance is a common theme in mood and anxiety
disorders – patients become more isolated and partake in fewer
social activities (Coyle and Dugan, 2012; Holt-Lunstad et al.,
2015; Taylor et al., 2018a; Santini et al., 2020). Zebrafish, like
humans, are a social species. Group behavior allows better
defense against predators, more efficient hunting and improved
foraging. In larvae, aggregation can be used as a proxy for
social cohesion. Interestingly, younger larvae (7 dpf) have a
natural tendency for mutual repulsion while older larvae (21 dpf)
exhibit mutual attraction. Harpaz et al. (2021) suggests that
this could be an adaptation to the lower oxygen levels in
sheltered waters where younger larvae dwell. In the larval group
assay, groups of 5 larvae were placed in custom arenas and
aggregation was measured as the negative log of the sum of
nearest-neighbor distance between each of the fish of test groups
divided by that of the shuffled control groups. Disc1 mutants,
previously shown to have abnormal stress responses (Eachus
et al., 2017), displayed increased social cohesion in this group
assay (Harpaz et al., 2021). Interestingly, mutated forms of
the human homolog DISC1 protein have been found in the
brains of major depression patients (Sawamura et al., 2005).
Overall there is potential for the group assay to be used to
study social aggregation or avoidance in the context of anxiety
and mood disorders.

Social avoidance in larval zebrafish is characterized by
increased frequencies of high acceleration escapes and short
latency c-start swim bout types upon social interaction.
Mechanosensory stimuli in the form of water vibrations
generated by a piezoelectric bender actuator mimics social
interaction. When these water vibrations are detected within
certain proximity, the larvae will attempt to swim to avoid what
they perceive to be other fish. Larvae raised in isolation will
react when vibrations are detected at closer proximity (smaller
avoidance distance) compared to those raised in groups. Ablation
of the lateral line, through which larval zebrafish sense water
motion, caused larval zebrafish raised in isolation to have similar
avoidance distance as those raised in groups (Groneberg et al.,
2020). In addition, mechanosensory stimuli generated by the
movements of nearby fish modulates the expression of pth2.
Isolation of socially-reared zebrafish larvae caused a reduction
in pth2 transcripts (Anneser et al., 2020). Pth mutants not
only show increased startle responsiveness (see Section “Startle
Responsiveness”) but also reduced social preference and shoaling
at late juvenile stages (Anneser et al., 2022).

The early growth response factor 1 (Egr1) has been implicated
in depression in humans (Covington et al., 2010) and social
anxiety-like behaviors in mice (Stack et al., 2010). In zebrafish,
isolation induced downregulation of the egr1 transcript (Anneser

et al., 2020). In a different social interaction assay - the larval
dyad assay (Stednitz and Washbourne, 2020) – the loss-of-
function egr1 mutant 14 dpf zebrafish spent less time near
the divider between itself and another similar-size zebrafish
(Tallafuss et al., 2022). Furthermore, it displayed less social
orienting behavior, indicating weak social interaction behavior.
In a biological motion assay (Larsch and Baier, 2018), the egr1
mutants displayed less inclination to follow projected dots that
had size and movement kinematics mimicking that of a 14 dpf
larva (Tallafuss et al., 2022), also supporting the hypothesis
that Egr1 is essential for normal social behavior. These egr1
mutants also had fewer tyrosine hydroxylase 2 (Th2) expressing
neurons in the basal forebrain. Ablation of 30% of this neuronal
population in wild types yielded similar behavior as seen in the
egr1 mutants. Notably, the zebrafish basal forebrain contains
other cell types, such as cholinergic neurons, which have been
shown to be important for social development and function,
and may interact with these Th2 neurons (Stednitz et al., 2018;
Wee et al., 2022).

Another variation of the social preference assay allows larvae
to choose between a region where it can see conspecifics and a
region where it cannot. The assay is conducted using 14–21 dpf
larval zebrafish in which social preference has already developed
(Dreosti et al., 2015). Larvae raised in groups displayed social
interaction behavior, orienting themselves at a 45-degree angle
and synchronizing their motion with conspecifics. Conversely,
larvae raised in isolation were found to freeze or simply watch
the conspecifics. Treatment of isolated larvae with buspirone (a 5-
HT1A receptor agonist) rescued such anti-social behavior, further
supporting an involvement of monoamines in the regulation of
social behavior (Tunbak et al., 2020).

Overall, social avoidance or abnormal social interactions have
been shown to be supported by multiple underlying circuit and
hormonal mechanisms and is a candidate mood and anxiety
endophenotype in larval zebrafish.

Responses to Addictive Substances
There is a high comorbidity between drug/alcohol addiction
and mood or anxiety disorders (Robbins, 1974; Merikangas
et al., 1998; Grant et al., 2004). The self-medication hypothesis
suggests that individuals first develop mood or anxiety disorders
as a result of external stressors or trauma before they turn
to drug abuse to cope through a form of ‘self-medication’
(Khantzian, 1985). Over time, this develops into an addiction.
Several assays have been developed for mainly late larval/juvenile
(> 3–4 weeks) and adult zebrafish to study addiction behaviors,
including conditioned place preference (CPP) assays where
the animal associates the drug with a neutral environmental
stimulus (Tzschentke, 2007; Webb et al., 2009; Mathur et al.,
2011; Collier and Echevarria, 2013) and self-administration
assays in which the zebrafish triggers the delivery of addictive
substances by its own actions (Bossé and Peterson, 2017; Nathan
et al., 2022). Müller et al. (2020) reviews these and additional
assays in more detail. Addictive drugs such as nicotine, ethanol,
opioids, and cannabinoids have also been shown to affect anxiety
and endophenotypes in both zebrafish and mammals, such as
light/dark choice and light-dark transition (Irons et al., 2010;
Steenbergen et al., 2011). Conserved genes and pathways such
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as the dopaminergic and cholinergic systems have been shown
to underlie addictive drug responses (Darland and Dowling,
2001; Ninkovic et al., 2006; Mathur and Guo, 2010). As there
are many shared mechanisms between addiction behaviors and
mood and anxiety disorders (Goeders, 2004; Lüthi and Lüscher,
2014), behavioral responses to addictive substances could be
useful endophenotypes particularly for cases of addiction and
mood/anxiety disorder comorbidity.

CONTROLS AND CONSIDERATIONS IN
ENDOPHENOTYPE INVESTIGATION

As described in Section “Human and Zebrafish Anxiety
and Mood Endophenotypes,” multiple assays can be used to
characterize endophenotypes in different mental disorders using
the larval zebrafish model. For many assays, variations in specific
protocols could potentially affect interpretation of results. It is
therefore important to consider the choice of protocol in relation
to the aims of the study. Here, beyond protocol differences,
we briefly describe other variables that can affect experimental
outcomes, which may need to be controlled or accounted
for Table 3.

Age
While our review focuses on larval stages, many studies have
shown a strong age dependence of behaviors even within the first
4 weeks of development. For example, in an operant conditioning
task, Valente et al. (2012) found that the ability to learn began at
week 3 and reached the max performance index at week 6. Hence,
many learned helplessness and addiction assays are conducted at
later ages (Lee et al., 2010; Andalman et al., 2019; Müller et al.,
2020). Similarly, larval age was found to be a factor affecting
locomotion in light-dark transitions (Padilla et al., 2011). In light
periods, larval zebrafish increased their locomotor activity as they
developed from 4–6 dpf (Padilla et al., 2011). Age was similarly
shown to affect baseline locomotion and locomotor variability in
a different study (Ingebretson and Masino, 2013). Larval zebrafish
are known to exhibit scotophobia in the light/dark choice assay
but Lau et al. (2011) has shown that the maturation of fishes into
adulthood reversed this paradigm and resulted in light avoidance
behavior. Finally, age also influences social behavior. Multiple
studies have shown that preference for conspecifics and social
aggregation or orienting tends to occur only after 2 weeks of
age (Dreosti et al., 2015; Stednitz and Washbourne, 2020; Harpaz
et al., 2021), although other social behaviors emerge sooner
(Wee et al., 2022).

Arena Size and Depth
Media volume used in arenas was also found to affect larval
zebrafish behavior. Christou et al. (2020) reported that the
distance moved and activity time of 4–7 dpf larval zebrafish
increased when more media volume was used in wells. Similarly,
locomotor activity was found to be affected by well depth in an
age-dependent manner (Ingebretson and Masino, 2013). While
Ingebretson and Masino (2013) showed that variability but not
motility was affected by wells of different diameters, Padilla et al.
(2011) demonstrated an effect of arena size on larvae locomotion,

with larvae kept in 24-well plates exhibiting more movement than
larvae kept in 48 and 96-well plates. Other behaviors such as
thigmotaxis are also likely affected by arena size (Cheng et al.,
2022).

Genotype/Strain
The use of different wild-type strains, such as the AB and Tüpfel
long-fin (TL), can also produce variable results. In the light-dark
transition assay, both strains responded differently to light-
dark/dark-light transitions, with AB strains showing stronger
behavioral responses (van den Bos et al., 2017). Furthermore, AB
strains have been demonstrated to display stronger habituation
to repeated acoustic stimuli and thus showed weaker responses
when compared to TL strains (van den Bos et al., 2017). The use
of nacre mutants in imaging protocols has been favored due to
their low pigmentation and transparency. Differences in behavior
between nacre and wild-type fishes have not been fully studied,
but O’Malley et al. (2004) has shown that nacre larvae displayed
locomotor behaviors identical to those of wild-type larvae. We
also found that salt stress-induced anorexia differed across AB,
TL and nacre genotypes, with AB fish showing the strongest
reduction in feeding (Cheng et al., 2022).

Feeding State and Diet
The effects of feeding on different behavioral parameters have also
been studied. Relative to unfed fish, fed 6 dpf larvae displayed
differences in avoidance responses, swim speeds and resting
periods, while fed 7 dpf larvae additionally displayed changes in
thigmotaxis and social distancing behaviors (Clift et al., 2014).
These changes in behaviors might be associated with increased
energy availability in the fed state, but did not imply that
the behaviors were linked (Clift et al., 2014). When fed with
dry food, larvae were found to have shorter body lengths and
displayed social deficits, suggesting that diet is an important
factor in social behavior (Stednitz and Washbourne, 2020).
Hunger state also influences feeding-related endophenotypes and
threat avoidance behaviors. Filosa et al. (2016) demonstrated an
effect of feeding status on the propensity to avoid an ambiguous
visual stimulus representing either prey or predator, which is
mediated by serotonergic raphe neurons and the HPA axis. Wee
et al. (2019a,b) found that neuronal populations such as the
caudal hypothalamus are convergently activated by starvation
and aversive stimuli. Hence, it is possible that the feeding
state can affect anxiety/depression-like behaviors via convergent
neural pathways.

Environmental State
Not surprisingly, environmental context, such as water quality,
temperature, noise, or water flow/agitation could similarly
affect the manifestation of anxiety or depression-like behaviors,
and should be avoided or controlled for in behavioral
assays. As described above, a hyperosmotic environment and
mechanosensory stress can increase cortisol and reduce feeding,
and can themselves be utilized as a behavioral assay for stress-
induced anorexia (De Marco et al., 2014; Cheng et al., 2022).
Clark et al. (2011) found that hyperosmotic shock caused a dose-
dependent effect on larval fish movement. However, De Marco
et al. (2014) reported no changes in locomotor activity due

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 June 2022 | Volume 15 | Article 900213

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-900213 June 23, 2022 Time: 7:57 # 14

Tan et al. Larval Zebrafish Mental Health Endophenotypes

TABLE 3 | Summary of factors influencing behavioral assay outcomes.

Factor Description/assays affected
(non-exhaustive)

References

Age Learned helplessness, locomotion, light/dark
choice and transition, social
aggregation/preference/orienting

Lee et al., 2010; Lau et al., 2011; Padilla et al.,
2011; Valente et al., 2012; Dreosti et al., 2015;
Andalman et al., 2019; Stednitz and
Washbourne, 2020

Arena size and depth Locomotion Padilla et al., 2011; Ingebretson and Masino,
2013; Christou et al., 2020

Genotype/strain Light-dark transition, startle habituation,
stress-induced anorexia

O’Malley et al., 2004; van den Bos et al., 2017;
Cheng et al., 2022

Feeding state and diet Locomotion, social preference/orienting,
thigmotaxis, feeding

Clift et al., 2014; Filosa et al., 2016, Wee et al.,
2019b; Stednitz and Washbourne, 2020

Environmental state Feeding, locomotion, light/dark choice, sleep,
startle habituation

McHenry et al., 2009; Clark et al., 2011;
Olszewski et al., 2012; Suli et al., 2012; Yeh
et al., 2013; De Marco et al., 2014, 2016; Bai
et al., 2016; Olive et al., 2016; Oteiza et al.,
2017; Bhandiwad et al., 2018; Cheng et al.,
2022

Crowding/fish density Thigmotaxis, locomotion, social
aggregation/avoidance, feeding, defensive
behavior, startle responsiveness

Burgess and Granato, 2008; Zellner et al.,
2011; Delomas and Dabrowski, 2019;
Groneberg et al., 2020; Zaki et al., 2021; Wee
et al., 2022

Time of day Locomotion and arousal, startle responsiveness Zhdanova et al., 2001; Hurd and Cahill, 2002;
Prober et al., 2006; MacPhail et al., 2009;
Randlett et al., 2019; Basnakova et al., 2021

Microbiome Locomotion, thigmotaxis, social orienting Davis et al., 2016; Phelps et al., 2017; Bruckner
et al., 2020; Weitekamp et al., 2021

to salt stress. Our experiments suggest that prolonged osmotic
stress reduces sleep while leaving swim speed mostly intact
(Cheng et al., 2022). Temperature changes (cold or hot stressors)
have also been shown to affect locomotion and dark avoidance
behaviors (Bai et al., 2016). Changes in pH also increased
cortisol levels in fish, with cortisol levels being correlated to HCl
concentration (Yeh et al., 2013).

Environmental noise levels can alter behavioral and
physiological responses of larvae. Prolonged exposure to
20 dB re 1 ms−2 flat-spectrum noise caused decreased startle
response thresholds and increased sensitization to startle
stimuli (Bhandiwad et al., 2018). These noise-exposed larvae
also displayed reduced locomotor activity (Bhandiwad et al.,
2018). Water flow stimuli can also evoke an escape, avoidance,
or hypoactive locomotor response in larvae, correlating with
cortisol levels (McHenry et al., 2009; Olszewski et al., 2012; De
Marco et al., 2016), and continuous water flow also induces
rheotaxis (Olszewski et al., 2012; Suli et al., 2012; Olive et al.,
2016; Oteiza et al., 2017). Hence, excessive agitation should be
avoided before and during behavioral experiments.

Crowding/Fish Density
Fish density has also been found to affect zebrafish behavior. As
described in Section “Other Defensive Behaviors” and “Social
Feeding Behavior,” the presence or absence of conspecifics
influences feeding and defensive behavior (Wee et al., 2022).
Circling behavior – defined as multiple conspecifics moving
in an organized manner along the edges of the arena
towards one direction – was observed in dishes with dense
zebrafish populations and occurred more frequently along with

increased densities (Zaki et al., 2021). Furthermore, it was also
shown that larvae in dense arenas preferred edges and the
outer circumferences of the arena. These behaviors resemble
thigmotaxis as observed in anxious zebrafish, though it is
unclear if it is an anxiety phenotype. Isolation also affects
larval behavioral responses. Singly-reared larvae were found
to exhibit lower locomotor activity in dark periods compared
to group-reared larvae (Zellner et al., 2011). Larvae raised in
isolation had impaired social preference (Tunbak et al., 2020),
increased social avoidance, and also swam fewer but longer bouts
(Groneberg et al., 2020). Burgess and Granato (2008) reported
that larvae raised in lower density had increased sensitivity
to startle. Aggregation behavior is also likely affected by fish
density. Similarly, feeding increases with fish density though
overcrowding may counteract this effect (Wee et al., 2022).
Crowding stress was affected by tank size and water volume
in adult zebrafish, but studies on crowding stress have not
been reported in larval zebrafish. However, holding densities of
larvae were also inversely related to larval growth, with higher
densities (>22 fish/L) leading to lower mean individual larvae
weights (Delomas and Dabrowski, 2019). Thus, adhering to a
standard raising protocol for zebrafish larvae is important to
avoid complications from confounding factors.

Time of Day
MacPhail et al. (2009) tested the locomotion of larvae from
10:00 to 15:30 h in darkness using infrared and found that
locomotor behavior was affected by time of day. Activity was
highest when testing began and decreased to a stable level by the
afternoon, with no changes being noted between 13:00 to 15:30 h
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(MacPhail et al., 2009). At night, larvae display lower activity and
characteristics of sleep, including increased arousal thresholds
(Zhdanova et al., 2001; Hurd and Cahill, 2002; Prober et al., 2006).
Disturbances to sleep also affected locomotion. Mechanical
stimuli applied during the last 6 h of night resulted in decreased
daytime locomotor activity and increased arousal thresholds in
the following day (Zhdanova et al., 2001). Larvae display stronger
dark flash habituation responses in subjective night versus day
phases (Randlett et al., 2019). Larvae also show circadian effects
in their startle responses following alarm substance exposure (see
Section “Alarm (Schreckstoff) Response”) which are abolished by
habenula clock disruption (Basnakova et al., 2021).

Microbiome
The microbial status of larvae also influences their anxiety
or mood-related behavior. Germ-free (GF) zebrafish exhibited
increased locomotor activity and reduced thigmotactic behavior
compared to conventionalized (CV) and conventionally-raised
(CR) larvae (Davis et al., 2016; Weitekamp et al., 2021).
Furthermore, bacterial load was found to be inversely related to
locomotor activity (Weitekamp et al., 2021). However, Phelps
et al. (2017) reported no difference in thigmotaxis regardless
of colonization, despite GF larvae displaying hyperactivity in
dark periods by 10 dpf. No locomotor differences were found
between CV and CR groups despite compositional differences in
the microbiota profiles (Davis et al., 2016). Microbial colonization
was also found to modulate stress responses. In GF larvae,
expression of genes related to stress response and cortisol levels
did not increase after osmotic stress, and microbial colonization
within 24 h was able to restore this cortisol response (Davis
et al., 2016). Similarly, colonization of axenic larvae by 6 dpf was
shown to block hyperactivity (Phelps et al., 2017). Lactobacillus
plantarum colonization was also found to reduce thigmotactic
behavior, though it did not significantly affect cortisol levels in
response to stress (Davis et al., 2016). The microbiome has also
been reported to regulate social behavior development by shaping
basal forebrain development (Bruckner et al., 2020). Hence,
the variation between microbial communities across different
locations and zebrafish facilities (Roeselers et al., 2011) could
also contribute to differences in behavioral endophenotypes
observed.

OPEN QUESTIONS, CHALLENGES, AND
FUTURE PROSPECTS

Despite its many advantages, there are certainly limitations of
the larval zebrafish in modeling mental health endophenotypes.
For instance, larval zebrafish may insufficiently capture more
complex emotional, social, and cognitive phenomena as
compared to adult zebrafish or even rodent or primate models.
The zebrafish brain lacks a prefrontal cortex which is heavily
involved in reward and emotional processing (Drevets, 2001;
Keedwell et al., 2005). In addition, subcortical circuits that are
largely involved in socio-emotional behavior and learning, such
as the hippocampus and amygdala, may be present but not
structurally well-conserved in the zebrafish model (Geng and

Peterson, 2019). The midbrain dopaminergic system which is
crucial for reward learning and motivational salience (Bissonette
and Roesch, 2016) is also lacking in zebrafish (Schweitzer
and Driever, 2009; Du et al., 2016). While some learning
assays have been developed in larvae (Roberts et al., 2013;
Dempsey et al., 2022) (see Sections “Learned Helplessness”
and “Age”), larval zebrafish are generally less capable of
higher-order cognitive processes such as learning and memory-
related tasks (Lovett-Barron, 2021). Hence, the full range of
endophenotypes may not be accessible in this model, and
complementary models will have to be used in cases where the
costs outweigh the benefits.

An important criterion for a candidate endophenotype
is that it has an underlying genetic, biochemical or neural
circuitry mechanism. However, many of the underlying pathways
mechanisms are not exclusive and interact extensively. The
HPA axis, including CRH and pituitary corticotrophs, plays a
central role in regulating stress levels, sleep, locomotion and
dark avoidance (De Marco et al., 2013, 2016; Wagle et al.,
2022) in zebrafish. The monoamine class of neurotransmitters,
including serotonin, is also involved in avoidance, arousal, and
appetitive behavior endophenotypes. Habenula-raphe circuitry
has been implicated both in the alarm response and learned
helplessness (Lee et al., 2010; Andalman et al., 2019; Basnakova
et al., 2021). Feeding, social, and defensive behaviors have been
shown to be modulated by oxytocin and other hypothalamic
neuropeptides (Wee et al., 2019a, 2022; Landin et al., 2020;
Lovett-Barron et al., 2020). Another neuropeptide, Pth, is
involved in both social behavior as well as startle responsiveness
(Anneser et al., 2020, 2022). When endophenotypes share
an underlying pathway, it could suggest that these behaviors
are related. At the same time, two behaviors with distinct
pathways can be connected by interactions across these pathways.
Brain and organism-wide imaging or transcriptomic approaches
(Ahrens et al., 2013; Thyme et al., 2019; Marques et al., 2020),
which are growing increasingly prevalent in the field, as well as
other novel experimental or computational modeling techniques
probing molecular, genetic, and circuit interactions (Vladimirov
et al., 2018; Wanner and Vishwanathan, 2018; Tabor et al.,
2019; Loring et al., 2020), will be crucial to dissecting these
intricate relationships.

Recent studies have also begun to probe the relationships
between mental health-related endophenotypes, by conducting
different behavioral assays on the same fish or under the same
contexts. For example, Blaser and Rosemberg (2012) found that
light avoidance and the tank diving response in adult zebrafish
are dissociable behavioral traits. In another study, van den
Bos et al. (2019) showed dissociation between thigmotaxis and
startle responsiveness. We have now shown similar dissociations
between light/dark choice and thigmotaxis, and thigmotaxis from
light-dark transition behavior or night-time startle in response to
acute or prolonged osmotic stress (Cheng et al., 2022).

Further, the relationships between endophenotypes are likely
context-dependent and may be influenced by factors such as
those reviewed in Section “Controls and Considerations in
Endophenotype Investigation.” For example, maternal stress
had either correlated or dissociable effects on habituation and
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thigmotaxis depending on strain background (AB or TL) (van
den Bos et al., 2019). In our light/dark choice experiments, salt-
induced thigmotaxis was observed during the light/dark but
not uniform light period, suggesting an interaction between
environmental state and anxiety behavior (Cheng et al., 2022).
Increasing salt or dark intensities also reduced the strength of
correlations between endophenotypes. Finally, we found that
osmotic stress suppressed feeding in a strain-dependent manner
(Cheng et al., 2022). Importantly, research into endophenotype
correlations, dissociations, and context dependence goes beyond
helping us understand endophenotypes better – the convergent
pathways underlying such relationships are potential novel
drug targets (Kalueff et al., 2014b; Kalueff and Stewart,
2015).

In this review, we focus on behavioral endophenotypes.
However, the value of biological endophenotypes in studying
mental health cannot be discounted. Changes in heart rate
or other cardiac parameters could be indicative of anxiety
state. Mild electric shock to cause startle in larval zebrafish
caused transient bradycardia while repeated shocks triggered
delayed tachycardia (Mann et al., 2010). A sustained increase
in heart rate was also induced by a chemical irritant (Roberts
et al., 2020). Heart rate can be measured via imaging larvae
embedded in agarose (Mann et al., 2010) while more complex
features such as blood flow velocity and circulation can be
assessed concurrently with behavioral responses (fin beating)
using microfluidic set-ups (Subendran et al., 2021). Another
biological endophenotype is cortisol levels that can be assayed
via radioimmunoassays (Steenbergen et al., 2012) or enzyme-
linked immunosorbent assays (ELISAs) (Yeh et al., 2013).
The endpoint of HPA axis activation in the stress response is
cortisol release. Thus, cortisol levels could be a good proxy
for the stress state of the fish and have been used in the
validation of behavioral endophenotypes (De Marco et al.,
2014, 2016; Bai et al., 2016). However, as Bai et al. (2016)

showed, there was again a dissociation between changes in
cortisol levels and changes in dark avoidance behavior. When
using biological endophenotypes, extra caution must be taken
to ensure that changes in these biological markers were the
result of changes in mood/anxiety state as opposed to off-
target physiological effects. Also, behavioral assays can better
distinguish between different aspects and mechanisms of anxiety
or mood disorders while biological markers predominantly
reflect overall stress or mood levels.

In summary, a nuanced and detailed understanding of the
state-dependent relationships between endophenotypes and their
underlying genetic, molecular and circuit mechanisms will be
a crucial next step in leveraging the zebrafish for mental
health modeling.
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