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Abstract: In laser processing, due to the short interaction time between an ultrashort pulse laser
and silicon, it has been difficult to study the lattice temperature change characteristics of silicon.
In this paper, the interaction between a picosecond laser and silicon was studied. Based on the
Fokker–Planck equation and two-temperature model (TTM) equation, a simulation model of silicon
heating by different pulse-width picosecond lasers was established. The results show that within the
range of 15 to 5 ps, the maximum lattice temperature tended to increase first and then decrease with
the decreasing pulse width. The watershed was around 7.5 ps. The model error was less than 3.2%
when the pulse width was 15 ps and the single pulse energy was 25 µJ.

Keywords: pulse width; picosecond laser; silicon; lattice temperature

1. Introduction

Silicon is the most basic material for the production of electronic components and
optoelectronic devices [1–3]. The processing technologies of silicon include diamond grind-
ing, lithography, chemical etching, laser processing, etc. However, diamond grinding can
lead to defects such as fragmentation and excessive processing area [4], and the processes
of lithography and chemical etching are complex and have poor efficiency [5]. In recent
years, picosecond and femtosecond lasers have begun to be used in the silicon industry
because of the characteristics of ultra-short pulse width and ultra-high peak power, which
can realize the direct writing of integrated optical devices and surface micro-nano structure
processing [6–8]. Compared with the femtosecond laser, the picosecond laser has a lower
cost and more mature manufacturing technology.

The interaction mechanism between the picosecond laser and silicon is complex; the
influencing factors include laser wavelength, pulse width, pulse energy and material
properties. Due to the difficulty of accessing equipment and conducting experiments,
the published experimental data are very limited and low quality; therefore, a theoretical
analysis is more beneficial to explore the mechanism of laser-processing materials. When
the time scale is a nanosecond or even longer, the classical Fourier heat transfer can
describe the heat transfer process inside the material very well [9]. When the picosecond
and femtosecond laser interact with materials, the classical Fourier heat transfer does not
describe the heat transfer process [10]. The atomic response at the atomic scale can be
calculated by means of molecular dynamics. When the picosecond laser irradiates on
silicon, a strong nonlinear absorption effect occurs. The ultra-intense photon energy density
causes electrons in the valence band to excite to the conduction band to form free electrons,
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which absorb photon energy and are rapidly heated in a few femtoseconds [11]. The
electrons and lattice collide with each other to transfer energy to the lattice, leading to an
increase in the lattice temperature. When the lattice temperature reaches the boiling point
of the material, it leads to the vaporization removal of the material [12]. The Fokker–Planck
equation and TTM can describe the physical process of picosecond and femtosecond laser
interaction with materials very well [13,14]. Wang et al. [15] established a finite element
model for the femtosecond laser ablation of sapphire using the Fokker–Planck equation
and the Drude equation, in order to study the spatio-temporal evolution of free electron
concentration. Cai et al. [16] established a multi-photon absorption model of sapphire
substrate under the action of a femtosecond laser with different wavelengths. Zhu et al. [17]
carried out a numerical study of the picosecond laser micro-grooving of single crystal
germanium and compared the simulating ablation depth of different material removal
mechanisms. Gan et al. [18] established a hybrid model of the interaction between an
ultra-fast pulse laser and semiconductor at the atomic level. Goodarzi et al. [19] carried
out a theoretical study of linear chirp effect on femtosecond laser heating silicon using
a two-temperature model. Thorstensen et al. [20] established a simulation model of the
interaction between a femtosecond laser and silicon and analyzed the effects of different
initial substrate temperatures on the ablation threshold. In the application of picosecond
laser processing silicon, the pulse width of laser cannot usually be changed, but it affects
the lattice temperature of silicon and thus the processing efficiency. Currently, few people
have carried out research on the lattice temperature variation of silicon by pulse width.

In this paper, the Fokker–Planck equation was used to simulate the process of free
electrons excitation under the action of a picosecond laser, and TTM was used to simulate
the process of electron–lattice energy coupling. The two-dimensional simulation model
of silicon heating by a picosecond laser with a 1064 nm wavelength was established by
COMSOL finite element simulation software, and the effects of different pulse widths on
free electron concentration, electron temperature, lattice temperature, absorption coeffi-
cient and reflection coefficient were analyzed. The simulating ablation depth is in good
agreement with the experiment.

2. Theoretical Model and Parameters

The process of ultra-fast pulse laser heating silicon is a non-equilibrium thermal
process. Inside materials, the mass of protons is much heavier than that of electrons [21].
When an ultra-fast pulse laser irradiates silicon, the response of ions to the laser-oscillating
electric field is weak, and the photon energy is firstly absorbed by the electrons. The
electrons in the valence band absorb the photon energy and excite to the conduction band
to form free electrons. The free electrons are rapidly heated under the action of the laser-
oscillating electric fields, and they transfer energy to the lattice by colliding with it [22].
Therefore, the interior of the material can be regarded as two subsystems of electron and
lattice, a method that was first proposed by Kaganov and called the two-temperature
model [23]. Later, the two-temperature model was improved and applied to the study of
the interaction between an ultrafast pulse laser and semiconductor materials [24].

2.1. Free Electrons Excitation

The picosecond laser has an ultrahigh power density. When the laser pulse irradiating
on silicon, silicon excites the electrons in the valence band to the conduction band through
single-photon absorption and two-photon absorption to generate free electrons, while re-
ducing the free electron concentration through the diffusion effect and auger recombination.
The Fokker–Planck equation can describe this physical process, as shown in Equation (1):

∂N
∂t

= ∇(D0∇N)− γN3 +
αI
hv

+
βI2

2hv
(1)

where N is the free electron concentration, t is time, D0 is the electron diffusivity coefficient,
γ is the auger recombination coefficient, α is the single-photon absorption coefficient, β is the



Micromachines 2022, 13, 1119 3 of 10

two-photon absorption coefficient, h is Plank’s constant and v is the photon frequency [20].
I is the laser power density, which is Gaussian, distributed in both time and space and
shown as follows:

I =

√
4ln2

π

2J
(πr02)tp

(1− R)exp(−4ln2
(t− t0)

2

tp2 )exp(−2
r2

r02 )exp(−
∫ z

0
(α + βI)dz) (2)

where R is the reflection coefficient, t0 is the moment of peak laser power density, tp is the
pulse width, J is single pulse energy, z and r are two-dimensional plane coordinates, and r0
is the surface spot radius [25,26].

2.2. Energy Absorption and Heat Transfer in Electrons

Under the irradiation of a picosecond laser, the free electrons that are excited into the
conduction band are rapidly heated by the oscillating electric field, and the heated electrons
reach a thermal equilibrium state through electron–lattice energy coupling. This process
can be described as:

∂
(

NEg + CeTe
)

∂t
= ∇(Ke∇Te) + αI + βI2 − 3NKb

τe
(Te − Tl) (3)

where Eg is the band gap width, Ce is the electron heat capacity, Te is the electron tempera-
ture, Ke is the electron heat transfer coefficient, Kb is the Boltzmann coefficient, and τe is the
electron–lattice relaxation time [27].

2.3. Electron–Lattice Energy Coupling

The heated electrons collide with the lattice and transfer energy to it, resulting in a
rise in lattice temperature, and the heated lattice eventually reaches a thermal equilibrium
state through thermal diffusion. This process can be described as Equation (4):

Cl
∂Tl
∂t

= ∇(Kl∇Tl) +
3NKb

τe
(Te − Tl) (4)

where Cl is the lattice heat capacity, Kl is the lattice heat transfer coefficient, and Tl is the
lattice temperature [26].

The thermal radiation on the irradiated surface by the laser was considered in this
numerical study, and the heat transfer of the lattice system could be described by the
Fourier heat transfer, as Equation (5):

Kl∇Tl = εσ
(

Tsur
4 − Tl

4
)

(5)

where ε is the thermal radiation coefficient, σ is the Stefan–Boltzmann constant and Tsur is
the ambient temperature [28]. The expression and unit of the above parameters are shown
in Table 1.

Table 1. Model parameters and values of silicon.

Parameter Value Unit Parameter Value Unit

D0 [20] 2.98 × 10−7Te m2/s τe [19] 240[1 + ( N
6×1026 m−3 )

2
] fs

γ [27] 3.8 × 10−43 m6/s Cl [26] 1.97× 106 + 354Tl − 3.68× 106Tl
−2 J/(m3·K)

α [20]
−5895 + 62.26Tl − 0.2309Tl

2

+3.186× 10−4Tl
3 + 9.967 ×

10−8Tl
4 − 1.409× 10−11Tl

5
1/m Kl [26] 1.585× 105Tl

−1.23 W/(m K)

β [20] 1.5 × 10−11 m/W r0 15 µm
R [26] 0.37 + 5× 10−5(Tl − Tsur ) Tsur 300 K
Eg [27] 1.12 eV ε 0.8
Ce [25] 3NKb J/(Kg·K) σ [17] 5.67 × 10−8 W/m2·K4

Ke [25] −0.556 + 7.13× 10−3Te W/(m·K)
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3. Results and Discussion
3.1. Simulation

The simulation model of a picosecond laser heating silicon has been established, as
shown in Figure 1. The laser beam in the optical path is a three-dimensional axisymmetric
Gaussian beam, and the free electron concentration, electron and lattice temperature inside
the material are rotationally and symmetrically distributed along the z axis. In order to
improve computational efficiency and resources, the model was simplified to an r-z two-
dimensional plane model. The length and width of the model were 100 µm; the initial
temperature was 300 K; no constraint was imposed on the symmetry axis; the incident
boundary considered the thermal radiation; and the remaining two boundaries adopted
adiabatic boundary conditions, as shown in Figure 1a. Considering the accuracy and
efficiency of the calculation, the grid type was set as a free quadrangle grid that was
controlled by the user and calibrated as a refined semiconductor. In meshing, the geometric
sequence increased along the negative direction of the r-axis and the z-axis, and the analysis
domain was refined into a rectangular grid for discretization and solved at the element
node, as shown in Figure 1b. In the simulation, the single pulse energy was 25 µJ; the laser
wavelength was 1064 nm; the pulse widths were 15 ps, 12.5 ps, 10 ps, 7.5 ps, 6 ps and 5 ps;
the analysis time step was 0.1 ps; and the total time step was 100 ps.
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Figure 1. Simulation model. (a) boundary condition; (b) mesh division; (c) the solution process.

The solution process is shown in Figure 1c. The specific simulation steps are as follows:

Step 1: Calculating the free electron concentration by Equations (1) and (2).
Step 2: The electron heat capacity and electron–lattice relaxation time were calculated
according to the calculated free electron concentration.
Step 3: Calculating the electron temperature by Equation (3).
Step 4: The electron diffusion coefficient and electron heat transfer coefficient were calcu-
lated according to the calculated electron temperature.
Step 5: Calculating the lattice temperature by Equations (4) and (5).
Step 6: The single photon absorption coefficient, reflection coefficient, lattice heat ca-
pacity and lattice heat transfer coefficient were calculated according to the calculated
lattice temperature.
Step 7: Resolving formula (2) according to the calculated reflection coefficient and single-
photon absorption coefficient and repeating the above steps.



Micromachines 2022, 13, 1119 5 of 10

3.2. Simulation Results

The picosecond laser pulses have a Gaussian distribution in time, and the peak laser
power density on the silicon surface is not only related to the pulse energy and spot radius,
but also to the pulse width.

First, when the pulse energy was certain 25 µJ, the laser peak power density increased
with the decreasing pulse width. When tp = 15 ps, the laser peak power density was
2.75 × 1015 W/m2; when tp = 5 ps, the laser peak power density was 8.2 × 1015 W/m2, as
shown in Figure 2a. Under the action of a picosecond laser with ultrahigh power density,
the electrons in the valence band of silicon absorb the photon energy and rapidly respond
to the transition to the conduction band to generate free electrons [29]. A higher peak laser
power density could achieve a higher free electron concentration, so the maximum free
electron concentration increased with the decreasing pulse width. When tp = 15 ps, the
maximum free electron concentration was 2.02 × 1027 m−3; when tp = 5 ps, the maximum
free electron concentration was 2.76 × 1027 m−3, as shown in Figure 2b.
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Second, the electron heat capacity was so small that the free electrons in the conduction
band were rapidly heated in a few femtoseconds under the action of the laser-oscillating
electric field. Therefore, as the peak moment of the picosecond laser power arrived, the
electrons were heated to the highest temperature. A higher laser peak power density could
achieve a higher electron temperature, and the maximum electron temperature increased
with the decreasing pulse width. When tp = 15 ps, the maximum free electron temperature
was 18,713 K; when tp = 5 ps, the maximum free electron temperature was 48,631 K, as
shown in Figure 2c. In terms of time distribution, the free electron concentration, electron
temperature and laser power density had similar variation trends. As the peak of the
picosecond laser power arrived, the free electron concentration and electron temperature
also rose to the maximum value and slid down to an equilibrium state after the end of the
laser pulse.

Third, the time that it takes for free electrons to transfer energy to the lattice, known as
electron–lattice relaxation time, is on the order of a picosecond. The electron–lattice relaxation
time is a function of the free electron concentration, calculated by τe = 240[1 + ( N

6×1026 m−3 )
2
]

(fs) [19,30], and it increases with an increasing electron concentration, as shown in Figure 3a.
The prolongation of the electron–lattice relaxation time leads to a longer time for the
electron–lattice temperature to reach an equilibrium state. The lattice can be sufficiently
heated when the electron–lattice temperature reaches an equilibrium state before the
end of laser pulse, but the lattice cannot be sufficiently heated when the electron–lattice
temperature reaches the equilibrium state after the end of laser pulse. The times for the
electron–lattice temperature to reach an equilibrium state under the action of picosecond
lasers with different pulse widths are shown in Figure 3b.
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Fourth, the lattice temperature reached a maximum when tp was around 7.5 ps. When
tp = 15 ps, the maximum free electron concentration was 2.02 × 1027 m−3, the electron–
lattice relaxation time was 2.96 ps, the electron–lattice temperature reached equilibrium
state at around t = 55 ps, and the laser pulse ended at t = 60 ps. Therefore, the lattice could
be sufficiently heated, but the maximum electron temperature was low and the energy
that was obtained by the lattice was also small. The maximum lattice temperature was
3200 K, as shown in Figure 4a. When tp was shortened to 7.5 ps, the maximum free electron
concentration was 2.65 × 1027 m−3, the electron–lattice relaxation time was 4.92 ps, the
electron–lattice temperature reached an equilibrium state at around t = 30 ps, and the laser
pulse ended at the same time (t = 30 ps). Therefore, the lattice could be sufficiently heated
and the higher electron temperature enabled the lattice to reach a higher temperature. The
maximum lattice temperature was 3862 K, as shown in Figure 4a. When tp came to 5 ps, the
maximum free electron concentration was 2.76 × 1027 m−3, the electron–lattice relaxation
time was 5.31 ps, the electron–lattice temperature reached equilibrium state at around
t = 22 ps, and the laser pulse ended at t = 20 ps. Although the electron temperature was
the highest in this condition, the lattice could not be heated sufficiently, and the maximum
lattice temperature decreased to 3749 K, as shown in Figure 4a. Therefore, when the pulse
width was 5 to 15 ps, the maximum lattice temperature tended to increase first and then
decrease with the decreasing pulse width, with a peak near tp = 7.5 ps, as in Figure 4b.
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Fifth, the optical properties of silicon, the absorption coefficient and the reflection
coefficient, have a similar trend to the lattice temperature, which first increases and then
decreases with the decrease in the pulse width. When tp = 15 ps, the maximum absorption
coefficient was 1.4 × 107 m−1 and the maximum reflection coefficient was 0.515. When
tp = 7.5 ps, the maximum absorption coefficient was 2.53 × 107 m−1 and the maximum
reflection coefficient was 0.548. When tp = 5 ps, the maximum absorption coefficient
dropped to 2.3 × 107 m−1 and the maximum reflection coefficient dropped slightly to 0.542,
as shown in Figure 5. These were because the absorption and reflection coefficients of
silicon were positively related to the lattice temperature [20,31].
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Figure 5. (a) Variation characteristic of absorption coefficients; (b) variation characteristic of reflection
coefficients under the action of picosecond lasers with different pulse widths as 15 ps, 12.5 ps, 10 ps,
7.5 ps, 6 ps and 5 ps.

Sixth, within 50 ps, vaporization and ablation of the silicon surface began to occur. In
the simulation, when J = 25 µJ and tp = 15 ps, the evolution of the absorption coefficient
at different depths inside the silicon occurred, as shown in Figure 6a. The maximum
absorption coefficient of the silicon surface was 1.4 × 107 m−1, and the laser energy
was rapidly absorbed within tens of nanometers on the silicon surface. The absorption
coefficient decreased rapidly with an increasing depth. Due to the absorption of the laser
energy by the silicon, the laser energy density decayed rapidly with an increasing depth.
Therefore, the lattice temperature was the highest at z = 0, as shown in Figure 6b.
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Figure 7 shows the two-dimensional distribution of the lattice temperature when
J = 25 µJ and tp = 15 ps. It can be seen that the lattice temperature presents a Gaussian
distribution in space, which is due to the energy of the picosecond laser being Gaussian
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in space. In simulation, the vaporization ablation mechanism was adopted, and only the
region where the lattice temperature was lower than the boiling point was filled in the
solution domain. The picosecond laser had not yet acted on the silicon at 0 ps, and the
lattice temperature was the initial temperature of 300 K. With the arrival of the laser peak,
the lattice temperature increased gradually and reached the melting point of 1683.15 K at
42 ps. With the continuous heating of the picosecond laser, the boiling point of 2628.15 K
was reached, and vaporization ablation began to occur on the silicon surface at 47 ps. The
ablation depth of the silicon was 196 nm at 100 ps. Under the same laser parameters as the
simulation, we also carried out the experiments of the picosecond laser ablation of silicon. A
picosecond laser system (YPP-IR-30, HUAKUAI, Guangdong, CHINA) was selected with a
pulse width of 15 ps, a maximum average power of 30 W, a maximum repetition frequency
of 100 kHz and a wavelength of 1064 nm. The ablation depth was characterized using
atomic force microscopy (DSM14049BF-1, Bruker, Billerica, MA, USA). The experiments
were repeated five times and the ablation depths were 195.5 nm, 204.7 nm, 200.4 nm,
195.2 nm and 215.1 nm, respectively, and the average ablation depth was 202.2 nm, as
shown in Table 2. There was a difference of 6.2 nm between the simulation and the
experiments, and the error was less than 3.2%. The source of the error should be that the
surface topography changed when the surface was ablated.
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Table 2. The ablation depths of experiment and simulation.

No. 1 2 3 4 5 Average Simulation

Depth 195.5 nm 204.7 nm 200.4 nm 195.2 nm 215.1 nm 202.2 nm 196 nm

4. Conclusions

In this paper, a simulation model of a picosecond laser heating silicon was established
based on the Fokker–Planck equation and TTM. The lattice temperature variation char-
acteristic of silicon under the action of picosecond lasers with different pulse widths was
analyzed, as well as the spatial and temporal evolution of the free electron concentration,
electron temperature, reflection and absorption coefficient. When the pulse width was
5 to 15 ps, the maximum lattice temperature tended to increase first and then decrease
with the decreasing pulse width, and there was a peak near tp = 7.5 ps. The absorption
coefficient and reflection coefficient were positively correlated with the lattice temperature,
so their variation trends were similar to the lattice temperature. When processing silicon
with a picosecond laser, selecting a picosecond laser with an appropriate pulse width
can achieve a higher surface lattice temperature, which is beneficial for improving the
processing efficiency. This numerical study has theoretical guiding significance for the
selection of a picosecond laser.
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