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Abstract: The biological properties of sixteen structurally related monoanionic gold (III) bis(dithiolene/
diselenolene) complexes were evaluated. The complexes differ in the nature of the heteroatom
connected to the gold atom (AuS for dithiolene, AuSe for diselenolene), the substituent on the
nitrogen atom of the thiazoline ring (Me, Et, Pr, iPr and Bu), the nature of the exocyclic atom or group
of atoms (O, S, Se, C(CN)2) and the counter-ion (Ph4P+ or Et4N+). The anticancer and antimicrobial
activities of all the complexes were investigated, while the anti-HIV activity was evaluated only for
selected complexes. Most complexes showed relevant anticancer activities against Cisplatin-sensitive
and Cisplatin-resistant ovarian cancer cells A2780 and OVCAR8, respectively. After 48 h of incubation,
the IC50 values ranged from 0.1–8 µM (A2780) and 0.8–29 µM (OVCAR8). The complexes with the
Ph4P+ ([P]) counter-ion are in general more active than their Et4N+ ([N]) analogues, presenting
IC50 values in the same order of magnitude or even lower than Auranofin. Studies in the zebrafish
embryo model further showed that, despite their marked anticancer effect, the complexes with [P]
counter-ion exhibited low in vivo toxicity. In general, the exocyclic exchange of sulfur by oxygen or
ylidenemalononitrile (C(CN)2) enhanced the compounds toxicity. Most complexes containing the [P]
counter ion exhibited exceptional antiplasmodial activity against the Plasmodium berghei parasite liver
stages, with submicromolar IC50 values ranging from 400–700 nM. In contrast, antibacterial/fungi
activities were highest for most complexes with the [N] counter-ion. Auranofin and two selected
complexes [P][AuSBu(=S)] and [P][AuSEt(=S)] did not present anti-HIV activity in TZM-bl cells.
Mechanistic studies for selected complexes support the idea that thioredoxin reductase, but not DNA,
is a possible target for some of these complexes. The complexes [P] [AuSBu(=S)], [P] [AuSEt(=S)],
[P] [AuSEt(=Se)] and [P] [AuSeiPr(=S)] displayed a strong quenching of the fluorescence intensity
of human serum albumin (HSA), which indicates a strong interaction with this protein. Overall,
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the results highlight the promising biological activities of these complexes, warranting their further
evaluation as future drug candidates with clinical applicability.

Keywords: gold bis(dithiolene) complexes; diselenolene; structural modification; anticancer activity;
antimicrobial activity; HSA interaction

1. Introduction

Most of the drugs currently in clinical use to treat cancer, microbial or viral infections
present several disadvantages, such as their low selectivity, acquired drug resistance,
toxicity and severe side-effects, evidencing the need for the development of novel and more
efficient strategies. Metal-based complexes can mitigate most of these disadvantages. In
fact, metal complexes have attracted considerable interest mainly due to their versatile
electronic and structural features that can be explored for rational drug design. The metal
ion, its oxidation state, coordination numbers and geometries and type and number of
ligands are some of the key features that must be considered in the design and synthesis
of prospective drugs for medical use. In line with this, numerous compounds of different
transition metal ions are currently under development or reaching the clinical settings for
medical applications [1–4]. Their unique properties offer novel chemistry and provide
great opportunities for the discovery of drugs with new mechanisms of action [1,5,6]. In
particular, Cisplatin, the well-known platinum drug with a long history in cancer treatment
and the knowledge of its side effects, systemic toxicity, mechanism of action, and tumor
resistance, has prompted several efforts to explore novel strategies and formulae to develop
new metal complexes that exhibit non-classical modes of action with improved balance
of risk–benefits [7–10]. In this context, gold complexes have gained much attention and
endured extensive research in the medicinal chemistry domain for the treatment of cancer,
inflammatory disorders and infectious diseases [11].

The investigation on the anticancer properties of gold complexes was primarily fo-
cused on Auranofin, a gold (I) phosphine derivative that has been investigated as a potential
treatment for cancer (e.g., leukemia, ovarian), neurodegenerative disorders, HIV/AIDS, as
well as parasitic and bacterial infections [10]. Motivated by the broad spectrum of activity
of Auranofin, a diversity of gold(I) complexes bearing phosphine ligands such as triph-
enylphosphine, diphenylphosphino-alkanes and dithiocarbamates have been synthetized
and showed potent antiproliferative activity on a variety of cancer cells [12,13]. On the
other hand, gold (III) complexes have been studied as potential anticancer agents due to
their square-planar geometry, similar to that of Cisplatin [14,15]. In general, gold (I/III)
complexes constitute a diverse family of very promising agents for cancer therapy. Indeed,
several gold (I/III) complexes have shown outstanding in vitro antiproliferative activities
against several types of cancer cells, in some cases opening new prospects for further
advanced preclinical studies. Relevant examples are gold(I/III) complexes with polyden-
tate nitrogen donor ligands, (CˆN)-cyclometalated ligands and N-heterocyclic carbenes
(NHCs) [16–19]. Although some gold-NHC derivatives undergo ligand rearrangement
reactions in the presence of water, some other complexes are stable in aqueous environ-
ment and showed anticancer activity superior to Cisplatin, which makes these complexes
excellent potential chemotherapeutics [20–25].

The mechanisms underlying the antiproliferative activities of gold(I/III) complexes
remain unclear [26,27]. In vitro studies showed that Auranofin can overcome Cisplatin
resistance in human ovarian cancer cells, which indicates a mode of action different from
the one described for Cisplatin. In fact, Auranofin has been identified as a potent inhibitor
of thioredoxin reductase (TrxR), due to the high affinity of gold(I) for the selenocysteine
residue of TrxR, thus causing an alteration in the cellular redox balance and a cascade
of severe metabolic impairments that result in apoptotic cell death. In some cases,the
apoptotic response is mediated by mitochondrial membrane potential depolarization and
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enhanced caspase activity [19,26–30]. In several cancer cells, high expression levels of TrxR
are related to cell growth and proliferation and poor prognosis in a variety of cancers [31].

Interactions with cysteine- or selenocysteine-containing enzymes other than thiore-
doxin reductase was also reported, such as phosphatases, cathepsin and topoisomerase
I [32,33].

Literature examples evidence a DNA-independent mechanism of action for some
gold(I/III) complexes, although others report DNA binding, and more recently the binding
to DNA secondary structures such as G-quadruplex (G4) nucleic acids. Metal complexes
as small G4-ligands are expected to interact selectively with G4 nucleic acids, acting as a
promising strategy for the development of anticancer drugs with selective toxicity towards
cancer cells over normal ones [34].

The antimicrobial activity of gold(I/III) complexes has not been investigated as exten-
sively as their anticancer activity. Only recently, due to the threat of multidrug-resistant
(MDR) pathogens, the application of these compounds as antimicrobials has gained more
attention [35]. Nevertheless, a considerable number of gold(I) and gold(III) complexes,
mostly complexes with a + 1 oxidation state, have been tested against a broad spectrum of
bacteria, fungi and parasites. In general, gold(I) complexes with phosphine showed rele-
vant antibacterial and antifungal activities. Auranofin and gold(I/III) complexes with NHC
ligands display antimicrobial potential against many Gram-positive bacteria, including
multidrug resistant strains, but poor activity towards Gram-negative species. Gold(I/III)
complexes with NHCs ligands were found as efficient inhibitors of bacterial TrxR, indicating
that inhibition of this enzyme might be involved in their mechanism of action [36].

The activity of Auranofin against different pathogenic fungi, including multidrug-
resistant Candida albicans, was also demonstrated [37–40].

So far, only a few gold(I/III) complexes have been evaluated as antimalarial com-
pounds. Auranofin was identified in a high-throughput screening as having activity
against the hepatic stage of the rodent Plasmodium berghei parasite in vitro. Further-
more, it displayed in vitro activity against the blood stage of the 3D7 and Dd2 strains of
P. falciparum [41].

Promising candidates for future development have been the gold(I/III) complexes
containing thiosemicarbazonato, phosphines and NHCs ligands [22,42–45]. The presence
of N-containing heterocycles in the series of mononuclear gold(I) complexes is of great
importance to the antiplasmodial activity, which is probably related to lipophilicity, basicity,
and structural features of these complexes. However, further studies are needed to exten-
sively explore these complexes as antimalarial drugs. The mechanism of action seemed
to involve the inhibition of antioxidant systems that are critical for the parasite’s survival.
In vitro, these complexes have been shown to directly inhibit the parasite’s TrxR [21].

Whereas extensive work has been conducted with gold(I) complexes, the high oxida-
tion state counterparts gold(III) have not been explored as much. In view of bridging the
gap and making a contribution to explore other relevant gold(III) complexes, our group re-
cently demonstrate the potential activity of monoanionic gold(III) bis(dithiolene) complexes
against ovarian cancer cells, Gram-positive bacteria, Candida strains and
P. berghei [46,47]. The interactions of these gold(III) bis(dithiolene) complexes with DNA,
the classical cellular target of Cisplatin, are negligible, as was observed for Auranofin,
suggesting a different mechanism of action for the observed biological effects [46]. In addi-
tion, the results obtained indicate that TrxR could constitute a potential target of gold(III)
bis(dithiolene) complexes [47]. These promising results prompted us to herein explore the
multifunctional therapeutic potential of a novel series of structurally related mononuclear
gold(III) bis(dithiolene) complexes as prospective anticancer, antibacterial, antiplasmodial
and anti-HIV drugs. Complexes differing from the ones previously described in [47] by
the substituent on the nitrogen atom of the thiazoline ring, the nature of the chalcogen
atoms within the metallacycles, sulfur vs. selenium, together with the exocyclic sulfur
replacement and the counter-ion, Ph4P+ or Et4N+ (Chart 1). The effect of modifications of
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the ligand skeleton and counter-ion on the biological properties of theses complexes will
be discussed.
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Chart 1. Schematic notation of the Au(III) complexes, [C][AuXR(=Y)], (C = P for Ph4P+ or N for
Et4N+, X = S or Se, Y = O, S, Se, C(CN)2 and R = Me, Et, Pr, iPr and Bu) and the structure relationships
of the series of gold bis(dithiolene/diselenolene) complexes investigated in this study.

One of the crucial steps in the development of novel drugs is studying the interaction
to albumin, the main blood protein. Surprisingly, studies on the interaction of gold(III)
complexes with serum proteins have been poorly explored, despite of their extreme rele-
vance for the mechanism of action, toxic effects, as well as their transport and distribution
in vivo [15,48,49]. In the present study, we investigated the interaction of selected com-
plexes with human serum albumin (HSA) by fluorescence spectroscopy, taking advantage
of the intrinsic fluorescence of this protein.

2. Results and Discussion
2.1. Synthesis and Redox Properties of the Gold Complexes

The general synthetic strategy used to prepare the different gold monoanionic com-
plexes starting from the N-alkyl-1,3-thiazoline-2-chalcogenone 1-R(=Y) is outlined in
Scheme 1. The first step corresponds to the metalation of the heterocyclic ring with
lithium diisopropylamide (LDA) followed by the addition of sulfur or selenium and
bromopropionitrile, in order to form the protected dithiolene or diselenolene ligand,
2-XR(=Y) [50]. Then, the deprotection of the dithiolene (X = S) or diselenolene (X = Se)
ligand was performed in the presence of sodium methoxide, NaOMe, followed by the
subsequent addition of KAuCl4.H2O and Ph4PCl or Et4NBr to afford the monoanionic
gold complexes, [C][AuXR(=Y)]. After recrystallization in acetonitrile, the gold complexes
were isolated as dark greenish crystalline solids. The newly synthesized complexes were
all characterized using 1H NMR, HRMS, elemental analysis and cyclic voltammetry. The
sixteen gold complexes prepared and investigated in this study are collected in Chart 1.

Int. J. Mol. Sci. 2022, 23, 7146 5 of 28 
 

 

 
Scheme 1. Synthetic path to the monoanionic gold bis(dithiolene) [C][AuSR(=Y)], (C = Ph4P+, Et4N+, 
R = Me, Et, Pr, Bu and Y = O, S, Se, C(CN)2 and bis(diselenolene) complexes [C][AuSeR(=Y)], (C = 
Ph4P+, Et4N+, R = Et, Pr, iPr and Y = S, Se). 

The redox properties of the various gold(III) bis(dithiolene) and bis(diselenolene) 
complexes were investigated by cyclic voltammetry using the same conditions, 
dichloromethane solutions and NBu4PF6 as supporting electrolyte. The oxidation 
potentials are shown in Table 1. Under these conditions, the nature of the counter-ion, 
Ph4P+ or Et4N+, had no influence on the redox properties observed, due to ion exchange 
with the Bu4N+ of the supporting electrolyte. Thus, only the result of one monoanion is 
included in Table 1, even if the two salts were analyzed. For all the investigated 
monoanionic bis(dithiolene) complexes, three redox processes are observed on the cyclic 
voltammograms. On the anodic scan, the two oxidation waves correspond to the 
oxidation of the monoanionic species into the neutral and to the monocationic complex. 
Most of these complexes had the tendency to deposit on the electrode once oxidized and 
frequently a strong desorption peak was observed on the reversible scan. This 
phenomenon occurs essentially for the complex with an exocyclic sulfur atom, 
[AuSR(=S)]−1. On the cathodic scan, an irreversible process associated with the reduction 
in the monoanion into the dianion occurs (Scheme 2). Comparison of the redox potentials 
shows that when the nature of the side chain was modified from Me, Et, Pr to Bu, no 
significant differences were observed on the redox potentials. However, the nature of the 
exocyclic substituent = O, = S, = Se to = C(CN)2 significantly affected the redox potentials. 
The presence of oxygen instead of sulfur makes the oxidation of the monoanionic into the 
neutral species easier. On the other hand, the presence of electron-withdrawing 
substituents such as =C(CN)2 induces an anodic shift of the oxidation potentials by 300 
mV, compared with the =O derivative, leading to a monoanion which is more difficult to 
oxidize than the other complexes of the series. Both derivatives, [AuSEt(=C(CN)2)]−1 and 
[AuSEt(=O)]−1 exhibited a wider potential stability window of the neutral species than the 
sulfur analogues [AuSR(=S)]−1 [51]. Indeed, the potential difference between the second 
and the first oxidation potentials amounts to 470 mV and 410 mV for the =O and the 
=C(CN)2 derivatives, respectively, while for the =S analogues this value is smaller (170 
mV). The gold complexes with selenium atoms, either the bis(dithiolene) with exocyclic 
selenium atoms or the bis(diselenolene) complexes, exhibited a different behavior, since 
on the first anodic scan an irreversible oxidation process is observed on the cyclic 
voltammograms presumably due to strong adsorption phenomenon. For comparison, we 
also investigated the redox behavior of Auranofin using the same experimental conditions 
in CH2Cl2 in the presence of NBu4PF6 as a supporting electrolyte. Using these conditions, 
upon anodic scan only one irreversible oxidation process is observed at 1.42 V vs. SCE. 

Scheme 1. Synthetic path to the monoanionic gold bis(dithiolene) [C][AuSR(=Y)], (C = Ph4P+, Et4N+,
R = Me, Et, Pr, Bu and Y = O, S, Se, C(CN)2 and bis(diselenolene) complexes [C][AuSeR(=Y)],
(C = Ph4P+, Et4N+, R = Et, Pr, iPr and Y = S, Se).



Int. J. Mol. Sci. 2022, 23, 7146 5 of 28

The redox properties of the various gold(III) bis(dithiolene) and bis(diselenolene) com-
plexes were investigated by cyclic voltammetry using the same conditions, dichloromethane
solutions and NBu4PF6 as supporting electrolyte. The oxidation potentials are shown in
Table 1. Under these conditions, the nature of the counter-ion, Ph4P+ or Et4N+, had no
influence on the redox properties observed, due to ion exchange with the Bu4N+ of the sup-
porting electrolyte. Thus, only the result of one monoanion is included in Table 1, even if the
two salts were analyzed. For all the investigated monoanionic bis(dithiolene) complexes,
three redox processes are observed on the cyclic voltammograms. On the anodic scan, the
two oxidation waves correspond to the oxidation of the monoanionic species into the neu-
tral and to the monocationic complex. Most of these complexes had the tendency to deposit
on the electrode once oxidized and frequently a strong desorption peak was observed on
the reversible scan. This phenomenon occurs essentially for the complex with an exocyclic
sulfur atom, [AuSR(=S)]−1. On the cathodic scan, an irreversible process associated with the
reduction in the monoanion into the dianion occurs (Scheme 2). Comparison of the redox
potentials shows that when the nature of the side chain was modified from Me, Et, Pr to Bu,
no significant differences were observed on the redox potentials. However, the nature of the
exocyclic substituent = O, = S, = Se to = C(CN)2 significantly affected the redox potentials.
The presence of oxygen instead of sulfur makes the oxidation of the monoanionic into the
neutral species easier. On the other hand, the presence of electron-withdrawing substituents
such as =C(CN)2 induces an anodic shift of the oxidation potentials by 300 mV, compared
with the =O derivative, leading to a monoanion which is more difficult to oxidize than the
other complexes of the series. Both derivatives, [AuSEt(=C(CN)2)]−1 and [AuSEt(=O)]−1

exhibited a wider potential stability window of the neutral species than the sulfur ana-
logues [AuSR(=S)]−1 [51]. Indeed, the potential difference between the second and the
first oxidation potentials amounts to 470 mV and 410 mV for the =O and the =C(CN)2
derivatives, respectively, while for the =S analogues this value is smaller (170 mV). The
gold complexes with selenium atoms, either the bis(dithiolene) with exocyclic selenium
atoms or the bis(diselenolene) complexes, exhibited a different behavior, since on the first
anodic scan an irreversible oxidation process is observed on the cyclic voltammograms
presumably due to strong adsorption phenomenon. For comparison, we also investigated
the redox behavior of Auranofin using the same experimental conditions in CH2Cl2 in the
presence of NBu4PF6 as a supporting electrolyte. Using these conditions, upon anodic scan
only one irreversible oxidation process is observed at 1.42 V vs. SCE. Therefore, all these
monoanionic gold bis(dithiolene) and bis(diselenolene) complexes are easier to oxidize
than Auranofin.

Table 1. Redox potentials of gold bis(dithiolene) and bis(diselenolene) complexes (E in V vs. SCE) in
CH2Cl2, NBu4PF6, Pt, scan rate 100 mV.s−1.

Complexes E−2/−1 E1/2
−1/0 Epa2/Epc2

0/+1

[AuSMe(=S)]−1 −0.85 0.51/0.44 * 0.73/0.56 *
[AuSEt(=S)]−1 −0.90 0.55/0.49 * 0.71/0.61 *
[AuSPr(=S)]−1 −0.85 ** 0.56/0.53 * 0.73/0.64
[AuSBu(=S)]−1 −0.88 ** 0.55/0.50 0.75/0.66 *
[AuSEt(=O)]−1 −1.05 ** 0.42/0.36 0.89/0.83

[AuSEt(=C(CN)2)]−1 − 0.71/0.66 1.13/1.06
[AuSeEt(=Se)]−1 −0.84 ** 0.43/− ** −
[AuSEt(=Se)]−1 −0.80 ** 0.40/− ** −
[AuSPr(=Se)]−1 −0.84 ** 0.45/− ** −
[AuSeEt(=S)]−1 −0.89 ** 0.52/− ** −
[AuSePr(=S)]−1 −0.90 0.54/− ** 0.95/−
[AuSeiPr(=S)]−1 −0.94 0.62/0.57 * 0.75/−

* Adsorption; ** Irreversible process.
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2.2. Molecular Structure and Intermolecular Interactions in the Solid State

X-ray analyses of novel monoanionic dithiolene complexes [AuSBu(C=S)]−1, [AuSEt
(=C(CN)2)]−1, [AuSEt(=Se)]−1 and [AuSPr(=Se)]−1, together with monoanionic diseleno-
lene complexes [AuSePr(=S)]−1 and [AuSeiPr(=S)]−1 have been investigated and the molec-
ular structures of three of these complexes are shown in Figure 1. The molecular structure
of the other complexes is presented in Figure S1. All these complexes surrounded by two
disymmetric R-thiazdt or R-thiazds ligands are obtained as trans isomers, in the solid state,
with a square planar geometry around the gold atom. Besides the [AuSEt(=C(CN)2)]−1

complex, all the other monoanionic complexes are not fully planar, as the metallacycles
are slightly distorted along the S•••S or Se•••Se axis with dihedral angle in the range of
2 to 6◦ (see the lateral views of the complexes in Figure 1). The orientation of the chain
with alkyl flexible groups, R = Et, Pr, Bu is lateral, while with the bulky isopropyl group
R = iPr, the two methyl groups are oriented above and below the plane formed by the
complex core.
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Figure 1. Molecular structures of monoanionic gold complexes, [AuSEt(=C(CN)2)]−1 (left),
[AuSPr(=Se)]−1 (middle) and [AuSePr(=S)]−1 (right).

As these complexes are chalcogen-rich derivatives, in the solid state, various short
chalcogen•••chalcogen contacts are observed, shorter than the sum of the van der Waals
radii of the involved chalcogen atoms. As a reference, the van der Waals contact dis-
tances Se•••Se, S•••Se and S•••S amount to 3.80 Å, 3.70 Å and S•••S 3.60 Å, respec-
tively. The only complex where no short chalcogen•••chalcogen contact was observed is
[AuSEt(C=C(CN)2)]−1. For this complex, hydrogen bonding interactions are established
between two neighboring gold complexes involving the nitrogen atoms of one nitrile group
and the H of the lateral alkyl chain and between another nitrogen atom of another nitrile
group and the H of the counter-ion. In order to exemplify the type of intermolecular
chalcogen•••chalcogen short contacts existing in the solid state, the detailed interactions
are presented in Figure 2 for the complexes [P][AuSePr(=S)] and [P][AuSEt(=Se)] and in
Figure S2 for [P][AuSPr(=Se)] and [P][AuSBu(=S)]. Concerning the diselenolene complex
[P][AuSePr(=S)], the monoanionic gold complexes interact from the longitudinal side of the
molecule. For instance, some interatomic distances such as Se•••Se are as short as 3.29 Å
and Se1•••S1 3.43 Å, which represent a reduction ratio to 86.6% and 92.7%, respectively,
relative to the van der Waals contact distance (Se•••Se: 3.80 Å, Se•••S: 3.70 Å and S•••S:
3.60 Å).
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Figure 2. View of the chalcogen•••chalcogen short contacts between neighboring monoanionic gold
complexes in [P][AuSePr(=S)] (left) and [P][AuSEt(=Se)] (right).

As noticed for the bis(diselenolene) complex [P][AuSePr(=S)], the bis(dithiolene)
[P][AuSEt(C=Se)] forms layers along the ab plane with several short chalcogen••• chalco-
gen interactions, shorter than twice the van der Waals radii. For example, on the side along
the long axis of the molecule, two short S•••S contacts are identified, S1•••S1 3.25 Å and
S1•••S3 3.39 Å, which correspond to 90.3 and 94.2% of the reduction ratio. Nonetheless, an
additional short contact involving the exocyclic selenium atoms is also observed, Se•••Se
3.55 Å (RR of 93.4%).

2.3. Cytotoxicity in Ovarian Cells

The anticancer activity of the sixteen complexes under study and the reference drugs
Cisplatin and Auranofin was evaluated in the A2780 and OVCAR8 ovarian cancer cells. The
Cisplatin-resistant cells OVCAR8 were introduced to ascertain the ability of the complexes
to overcome cisplatin resistance, since the majority of ovarian tumors eventually recurs in a
drug-resistant form. OVCAR8 were used as a control cell line, selecting the incubation time
point of 48 h.

Cells were exposed to increasing concentrations of the complexes (0.01–100 µM) for 24
and/or 48 h, at 37 ◦C. The IC50 values were calculated from dose–response curves using the
colorimetric MTT assay. Results show that the differences in the cytotoxic profile were more
evident at 24 h incubation, whereas at 48 h incubation most of the complexes displayed
similar high cytotoxic activities with IC50 values ranging from 0.1–8 µM (A2780) and
0.8–29 µM (OVCAR8). Most complexes presented a similar cytotoxicity profile compared
to Auranofin, but higher activity compared to Cisplatin, and, most importantly, were active
in the Cisplatin-resistant OVCAR8 cells (Table 2).

Table 2. IC50 values (µM) calculated for the sixteen Au(III) bis(dithiolene/diselenolene) complexes
and the reference drug Cisplatin and Auranofin on the ovarian cancer cells (A2780 and OVCAR8)
after 24 and/or 48 h incubation.
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Interestingly, in relation to their anticancer activity, and when compared at 48 h incuba-
tion, these gold complexes clustered in two groups, i.e., those having Ph4P+ as a counter-ion
and those having Et4N+ as a counter-ion, being the former more cytotoxic than the later ones.
This is even more obvious when comparing the same gold complexes [N][AuSEt(C=S)] vs.
[P][AuSEt(C=S)] (1.30 vs. 0.18), [N][AuSeEt(C=Se)] vs. [P][AuSeEt(C=Se)] (4.84 vs. 0.64),
and [N][AuSeiPr(C=S)] vs. [P][AuSeiPr(C=S)] (8.27 vs. 0.68). Of note, if some discrepancies
can be observed after 24 h incubation, the nature of the exocyclic chalcogen atom do not
significantly modify the IC50 after 48 h incubation for the A2780 ovarian cancer cells. How-
ever, for OVCAR8 ovarian cancer cells, the presence of selenium atoms in the metallacycles
seems to diminish the efficiency of the gold complexes.

2.4. Toxicity Studies in Zebrafish Embryo

Toxicity is a major challenge for drug development and is the leading cause of drug
failure. Consequently, the evaluation of the potential toxicity represents a critical step in
the development of new drugs. In this context, the zebrafish embryo represents a notable
in vivo vertebrate model for studying the toxic effects of chemical compounds due to the
small size, robustness, multiple progenies from a single mating, chemical permeability,
easiness of observation and maintenance under laboratory conditions. In addition, the
close phylogeny of zebrafish and mammals, with highly conserved signaling pathways,
makes this species increasingly used and ideal for performing toxicological studies [52–56].
Therefore, we evaluated the complexes acute toxicity by measuring mortality of 72 h post-
fertilization (hpf) zebrafish embryos when incubated with increasing concentrations of the
Au(III) complexes for 48 h.

The zebrafish lethality curves for each complex after 48 h of treatment are presented in
Figure S3 and Figure 3 for selected complexes. Complexes were evaluated at concentrations
ranging from 0.1–10 µM. For all the investigated complexes having Et4N+ as a counter-
ion, the survival was affected upon 24 h of treatment for concentrations higher than
1 µM. Contrariwise, for the complexes with Ph4P+ as counter-ion, no toxicity was evident
except for the complex with an exocyclic oxygen atom, [P][AuSEt(C=O)]. The nature of
the exocyclic atom or group of atoms (=O, =S, or (=C(CN)2) seemed to have an impact on
the effect of the gold complexes in the zebrafish embryo model. In fact, [P][AuSEt(=O)]
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was more toxic than [P][AuSEt(=S)] (=O vs. =S), and [N][AuSEt(=C(CN)2)] was more toxic
than [N][AuSEt(=S)] (=C(CN)2 vs. =S). Importantly, all the complexes with a Ph4P+ as
a counter-ion of formulae [P][AuXR(=Y)], with high antitumor effect on cancer cell lines
(Table 2), showed low mortality, an interesting property in preclinical studies for novel
therapeutic agents.

Figure 3. Zebrafish lethality curves of the acute toxicity assay at 48 h for selected Au(III)
bis(dithiolene/diselenolene) complexes [P][AuSBu(=S)], [P][AuSEt(=S)], [N][AuSeiPr(=S)] and
[N][AuSPr(=S)]. In total, 72 hpf zebrafish embryos (n = 30) were exposed to increased concen-
trations of the represented complexes and mortality was evaluated after 48 h of treatment with
the compounds.

2.5. Antiplasmodial Activity

Au(III) bis(dithiolene/diselenolene) complexes were initially screened for their ac-
tivity against the obligatory and clinically silent hepatic stage of the rodent P. berghei
parasite’s life cycle (Figure 4). Atovaquone (ATQ), a standard antiplasmodial drug, was
employed as a positive control, displaying nanomolar-ranged activity. In the negative
control, DMSO was incubated at a percentage equivalent to that of the highest compound
concentrations tested. All compounds reduced infection at 5 µM. However, in the case of
[P][AuSEt(=S)], [P][AuSEt(=Se)], [P][AuSPr(=Se)], [N][AuSMe(=S)], [P][AuSEt(=O)] and
[N][AuSEt(=C(CN)2)], this was accompanied by some degree of toxicity, as observed by
the lower cell confluency values. Eight complexes, [P][AuSePr(=S)], [P][AuSeiPr(=S)],
[P][AuSEt(=S)], [P][AuSEt(=Se)], [P][AuSPr(=Se)], [P][AuSeEt(=Se)], [N][AuSMe(=S)] and
[P][AuSBu(=S)] presented the strongest activity and were consequently selected for IC50
determination (Table 3).
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Table 3. IC50 values of selected Au(III) bis(dithiolene/diselenolene) complexes against the hepatic
stage of P. berghei and the blood stage of P. falciparum NF54 for selected complexes.

IC50 (nM)

P. berghei PfNF54

[P][AuSEt(=Se)] 415.67 ± 122.73 1002.30 ± 391.31

[N][AuSMe(=S)] 428.73 ± 39.62 ND

[P][AuSBu(=S)] 469.57 ± 114.63 ND

[P][AuSEt(=S)] 474.00 ± 109.77 1062.25 ± 392.80

[P][AuSeEt(=Se)] 517.83 ± 245.87 ND

[P][AuSePr(=S)] 543.60 ± 19.37 ND

[P][AuSPr(=Se)] 643.85 ± 1.34 ND

[P][AuSeiPr(=S)] 748.45 ± 70.22 ND
Results are represented as mean ± SD. ND—not determined.
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Complex [P][AuSEt(=Se)] was the most active, with an estimated IC50 of 415.67± 122.73 nM,
whereas [P][AuSeiPr(=S)] was the least active, with an estimated IC50 of 748.45 ± 70.22 nM.
The main difference between these two complexes lies in the nature of the chalcogen
within the metallacycle and the exocyclic chalcogen atom. The gold bis(diselenolene)
complexes bearing the same exocyclic substituent are less active than the corresponding
gold bis(dithiolene) complexes. Among the compounds that presented an interesting liver
stage activity, [P][AuSEt(=Se)], [P][AuSPr(=Se)], [P][AuSEt(=S)] and [P][AuSBu(=S)] were
selected for assessment against the blood stage of P. falciparum infection. In this assay,
[P][AuSEt(=S)] and [P][AuSEt(=Se)] displayed the strongest activity against Pf NF54 blood
stages (Figure 5) and were consequently selected for IC50 determination (Table 3).
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Figure 5. Assessment of the in vitro activity of selected Au(III) bis(dithiolene/diselenolene) com-
plexes against the blood stage of P. falciparum NF54 infection. Infection was assessed by flow cytometry
as the percentage of SYBR green positive events. A percentage of DMSO equivalent to that present in
the highest compound concentrations was employed as a negative control. Results are represented as
mean ± SD, n = 1.

2.6. Antibacterial and Antifungal Activity

The antibacterial activity and antifungal activity of the complexes under study were
assessed based on their MIC values against E. coli, S. aureus, C. albicans and C. glabrata.
Results obtained are presented in Table 4.
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Table 4. MIC values (in µg/mL) of the complexes under study against the representative Gram-
positive S. aureus, the Gram-negative representative E. coli and the Candida species C. albicans and
C. glabrata. MIC values below 10 µg/mL are boxed in bold.
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All the complexes that demonstrated activity against S. aureus have the tetraethy-
lammonium counter-ion Et4N+. Interestingly, the same complexes with the tetraphenyl
phosphonium counter-ion, Ph4P+, are not active, showing again the influence of the counter-
ion in the activity of these complexes. Moreover, the nature of the exocyclic substituent
also induces some modulation in the activity of the complexes against S. aureus as only
those with an exocyclic sulfur atom, =S, show minimum inhibitory concentrations. The two
complexes exhibiting the closest MIC values to Auranofin (0.2 µg/mL) are the diseleno-
lene gold complex [N][AuSeiPr(=S)] (1.5 ± 0.1 µg/mL) and the dithiolene gold complex
[N][AuSPr(=S)] (1.5 ± 0.1 µg/mL).

None of the complexes were able to inhibit the growth of E. coli. This observation is in
line with results obtained previously with gold(III) bis(dithiolene) complexes [46,47].

C. glabrata was the most susceptible to the Au(III) complexes, having its growth af-
fected by six of these complexes, namely [N][AuSEt(=S)], [N][AuSMe(=S)], [N][AuSeEt(=S)],
[N][AuSeEt(=Se)], [N][AuSPr(=S)] and [N][AuSeiPr(=S)], being the MIC value for last five
complexes between 1.6 and 2.9 µg/mL. All these active complexes bear the tetraethylam-
monium counter-ion (Et4N+).

The complex [N][AuSPr(=S)] was the most active against C. albicans, with a MIC value
of 3.1 µg/mL, below the 7.9 µg/mL found for Auranofin.

All the complexes with the tetraphenylphosphonium (Ph4P+) counter-ion were inac-
tive against S. aureus, E. coli, C. albicans and C. glabrata.

2.7. Cytotoxicity and Anti-HIV Activity of Auranofin, [P][AuSEt(=S)] and [P][AuSBu(=S)]

No significant cytotoxicity was observed in vitro in TZM-bl culture cells in the pres-
ence of [P][AuSEt(=S)] and [P][AuSBu(=S)] (Figure S4). Auranofin and [P][AuSEt(=S)]
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presented a CC50 of 3.21 µM and 4.92 µM, respectively. For [P][AuSBu(=S)], it was not
possible to calculate the CC50 (Figure S4). The activity of Auranofin, [P][AuSEt(=S)] and
[P][AuSBu(=S)] was evaluated in TZM-bl cells in a single-round infectivity assays against
HIV-1 SG3.1 reference isolate. Similar to Auranofin, none of the compounds presented
anti-HIV-1 activity (Figure 6). Of note, Auranofin was considered a candidate anti-HIV
reservoir as it targets the memory T lymphocytes which are the viral reservoirs of HIV-1 [57].
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2.8. Mechanistic Studies

The inhibition of thioredoxin reductase (TrxR), the interaction with DNA and the
interaction with human serum albumin were assessed for selected complexes to investigate
the effect of the substituent on the nitrogen atom of the thiazoline ring, the nature of the
exocyclic atom and the counter-ion.

2.8.1. Inhibition of TrxR by the Gold Complexes

The assessment of TrxR as a possible target for antitumor drugs has attracted wide
attention as this enzyme participates in the regulation of redox reactions and other im-
portant physiological processes, such as cell proliferation, cell differentiation and cell
death [58]. Gold complexes typically behave as strong inhibitors of TrxR, possibly due to
the high affinity of gold to its active site selenocysteine. Moreover, gold complexes bearing
sulfur-containing ligands display stronger association to TrxR [59,60].

The effect of the selected gold complexes on the activity of TrxR was evaluated by a
colorimetric DTNB assay as previously described [47]. Figure 7 shows the effect of the com-
plexes tested in a concentration range of 0.1 nM–2 µM, with Auranofin included in the assay
for comparative purposes. As shown in Figures 7 and S5, the inhibitory effect of the com-
plexes differs, although suggesting TrxR as a possible biological target for these complexes.
The most active TrxR inhibitors were [P][AuSBu(=S)], [P][AuSeiPr(=S)] and [P][AuSEt(=S)],
displaying IC50 values of 0.13 ± 0.08 µM, 0.40 ± 0.25 µM and 0.86 ± 0.32 µM, respectively.
In contrast, the complex, [P][AuSEt(=Se)] with an exocyclic selenium atom was the weaker
inhibitor of TrxR, displaying an IC50 value of 4.81 ± 1.02 µM. Moreover, it can be no-
ticed that between [P][AuSeiPr(=S)] and [N][AuSeiPr(=S)], where the only difference is
the counter-ion, the weakest effect is with the Et4N+, indicating that the nature of the
counter-ion has a potential effect on the enzyme. The substituent on the nitrogen atom
of the thiazoline ring ([P][AuSEt(=S)] vs. [P][AuSBu(=S)]) and the nature of the exocyclic
atom ([P][AuSEt(=S)] vs. [P][AuSEt(=Se)]) seemed to influence the inhibitory effect on
the enzyme. The exocyclic selenium atoms of [P][AuSEt(=Se)] seemed to disfavor the
intermolecular interaction with the enzyme in relation with the peripheral thione group of
[P][AuSEt(=S)]. As expected, Auranofin displayed the lowest IC50 value, at least one order
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of magnitude lower. The TrxR inhibitory potential of these complexes is comparable to that
of the [Au(R-thiazdt)2]−1 complexes previously described [47].
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Figure 7. Inhibition of TrxR by the selected complexes under study [N][AuSeiPr(=S)],
[P][AuSeiPr(=S)], [P][AuSEt(=S)], [P][AuSEt(=Se)], [P][AuSBu(=S)] and Auranofin (AUR). Data are
shown as the mean ± SD of two independent experiments carried out with four replicates for each
complex concentration.

TrxRs from different organisms, such as cells, bacteria and Plasmodium falciparum, show
different chemical mechanisms of reduction, which constitute the basis for the development
of specific TrxR inhibitors against bacterial pathogens and parasitic diseases such as malaria.
Most protozoan parasites are fast replicating organisms compared with tumor cells and
share the same requirements, i.e., rapid DNA synthesis and protection from ROS generated
by the host’s immune system. The thioredoxin system can fulfil both tasks and therefore
seems to be an essential part of the parasite’s metabolism. On the basis of our results, it is
likely that most of the complexes impair the antioxidant system of the parasites [61–64]. On
the other hand, many Gram-positive and Gram-negative bacteria including S. aureus and
E. coli, respectively, possess the Trx-TrxR system to maintain the thiol-redox balance and
also to protect bacterial cells from oxidative stress. However, E. coli also has the additional
glutathione system to maintain the thiol-redox balance. Auranofin inhibits the bacterial
TrxR and impair their redox balance, resulting in bacterial cell death. In our study, the
activities against Gram-positive and Gram-negative bacteria are consistent with other
previous reports indicating a high activity against S. aureus (MIC = 0.2 µg/mL) and a
significant lack of activity for E. coli. (MIC = 35.5 µg/mL) [65].

2.8.2. DNA Electrophoresis

Mechanistic studies suggested that, in contrast to Cisplatin, DNA was not the primary
target for gold complexes. In fact, gold has different oxidation states, rich coordination
chemistry, and therefore, it is possible to tune their biological activities by subtle changes in
the structure of the complexes. Gold(III) complexes have been synthesized to reproduce the
main features of Cisplatin, i.e., its planar geometry. Unlike Cisplatin, the main biological tar-
gets of gold compounds are still unknown. Several reports mention the DNA-independent
mechanism of some gold(III) complexes, while others report that binding to DNA is respon-
sible for the cytotoxic effect [16]. We determined the ability of a set of complexes under
study to interact with ΦX174 supercoiled DNA in vitro. As shown in Figures 8 and S6,
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none of the compounds were able to induce conformational changes in the DNA, following
the same pattern observed for Auranofin [46]. Cisplatin was able to alter the electrophoretic
mobility of the nicked and supercoiled forms of DNA in a dose-dependent way (Figure S6).
These results suggest that the cytotoxic effect of these complexes is not mediated by their
interaction with the DNA, suggesting instead a mechanism of action distinct from that
of Cisplatin.
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Figure 8. Assessment of the interaction between supercoiled φX174 DNA and selected complexes
under study ([P][AuSEt(=Se)], [P][AuSeiPr(=S)], ([P][AuSEt(=S)] and [P][AuSBu(=S)],) after 24 h of
incubation at 37 ◦C.

2.8.3. Gold-Complexes–HSA Interaction Studies

Understanding the interaction of a drug with serum proteins is an important aspect
to be taken into account in the development of new drugs, since this binding may affect
its distribution and transport in the human body, as well as influencing its bioavailabil-
ity, elimination and toxic effects. Fluorescence spectroscopy was used to investigate the
interaction between gold complexes [P][AuSEt(=S)], [P][AuSEt(=Se)], [P][AuSeiPr(=S)] and
[P][AuSBu(=S)] with HSA, taking advantage of the intrinsic fluorescence of the latter. The
complexes display a strong quenching of the intensity of the HSA fluorescence as a function
of increasing concentration of gold complexes, indicative of a strong interaction between the
Au complexes and this protein, without changes in the emission maximum (Figure 9a–d).
Upon incubation of two molar excesses of complexes [P][AuSEt(=S)], [P][AuSEt(=Se)],
[P][AuSeiPr(=S)] and [P][AuSBu(=S)] with HSA, the fluorescence intensity was quenched
by 76.3%, 79.4%, 60% and 89.7%, respectively. No intrinsic fluorescence was observed for
the gold compounds, in the range 295–550 nm under our experimental conditions and
therefore there is no contribution to the HSA fluorescence.

To gather information about the nature of the interaction of the gold complexes with
HSA, the Stern–Volmer relationship was applied (Equation (S2)). As illustrated in the insets
of Figure 9a–d, the Stern–Volmer plots for the quenching of HSA by the gold complexes
showed a good linearity within the tested concentrations, indicating that one type of
mechanism, dynamic or static, is involved in this process. The binding constants (KSV)
deduced from the slope of the linear plot and number of binding sites (n) determined from
Equation (S3) are presented in Table S1. The KSV values followed the pattern [P][AuSBu(=S)]
>[P][AuSEt(=S)] >[P][AuSEt(=Se)] >[P][AuSeiPr(=S)]. The bimolecular quenching constants
(Kq) estimated from Equation (S2) (Table S1) are much greater than the scattering collision
quenching constant (2.0 × 1010 dm3 mol−1 s−1) [66], suggesting that the quenching is
mainly due to the formation of ground state complex exclusively and not initiated by the
collision/dynamic process.



Int. J. Mol. Sci. 2022, 23, 7146 16 of 28

Int. J. Mol. Sci. 2022, 23, 7146 16 of 28 
 

 

To gather information about the nature of the interaction of the gold complexes with 
HSA, the Stern–Volmer relationship was applied (Equation (S2)). As illustrated in the 
insets of Figure 9a–d, the Stern–Volmer plots for the quenching of HSA by the gold 
complexes showed a good linearity within the tested concentrations, indicating that one 
type of mechanism, dynamic or static, is involved in this process. The binding constants 
(KSV) deduced from the slope of the linear plot and number of binding sites (n) determined 
from Equation (S3) are presented in Table S1. The KSV values followed the pattern 
[P][AuSBu(=S)] ˃ [P][AuSEt(=S)] ˃ [P][AuSEt(=Se)] ˃ [P][AuSeiPr(=S)]. The bimolecular 
quenching constants (Kq) estimated from Equation (S2) (Table S1) are much greater than 
the scattering collision quenching constant (2.0 × 1010 dm3 mol−1 s−1) [66], suggesting that 
the quenching is mainly due to the formation of ground state complex exclusively and not 
initiated by the collision/dynamic process. 

 
Figure 9. Fluorescence emission spectra in the absence (line with highest IF) and presence of gold 
complexes: (a) [P][AuSEt(=S)], (b) [P][AuSEt(=Se)], (c) [P][AuSeiPr(=S)] and (d) [P][AuSBu(=S)]. 
Inset: Stern–Volmer plot at pH 7.4 of HSA–Au systems. Experimental conditions: [HSA] = 2.5 µM 
and [gold compound] = 0−5 µM, 10 mM Hepes buffer, pH 7.4; incubation at 37 °C during 24 h. 

Overall, the fluorescence spectroscopy indicates that the binding of the gold 
complexes to the HSA proceeds through a single interaction mode that strongly affects 
the protein emission, consistent with the formation of a non-fluorescent 1:1 adduct in the 

Figure 9. Fluorescence emission spectra in the absence (line with highest IF) and presence of gold
complexes: (a) [P][AuSEt(=S)], (b) [P][AuSEt(=Se)], (c) [P][AuSeiPr(=S)] and (d) [P][AuSBu(=S)].
Inset: Stern–Volmer plot at pH 7.4 of HSA–Au systems. Experimental conditions: [HSA] = 2.5 µM
and [gold compound] = 0−5 µM, 10 mM Hepes buffer, pH 7.4; incubation at 37 ◦C during 24 h.

Overall, the fluorescence spectroscopy indicates that the binding of the gold complexes
to the HSA proceeds through a single interaction mode that strongly affects the protein
emission, consistent with the formation of a non-fluorescent 1:1 adduct in the ground
state for all complexes, except for the complex [P][AuSEt(=Se)] which seems to form a
non-fluorescent 1:2 adduct. The binding constants determined for these four complexes are
higher than that found for Cisplatin (102 M−1) and similar to those found for other gold
complexes (103−104 M−1) [67–71].

3. Materials and Methods
3.1. General Methods for Chemistry

All reagents and materials from commercial sources were used without further purifi-
cation. NMR spectra were recorded at room temperature using CDCl3 unless otherwise



Int. J. Mol. Sci. 2022, 23, 7146 17 of 28

stated (Figures S7–S15). Chemical shifts are reported in ppm and 1H NMR spectra were
referenced to residual CHCl3 (7.26 ppm) and 13C NMR spectra were referenced to CHCl3
(77.2 ppm). Mass spectra were recorded with an Agilent 6510 instrument for organics
compounds and with a Thermo-Fisher Q-Exactive instrument for complexes by the Cen-
ter Régional de Mesures Physiques de l’Ouest, Rennes. Cyclic voltammograms (CV)s
were carried out on a 10−3 M solution of complex in CH2Cl2-[NBu4] [PF6] 0.1 M. CVs
were recorded on a Biologic SP-50 instruments at 0.1 Vs−1 on a platinum disk electrode.
Potentials were measured versus KCl Saturated Calomel Electrode (SCE). Column chro-
matography was performed using silica gel Merck 60 (70–260 mesh). The solvents were
purified and dried by standard methods. The proligand 2-SEt(=C(CN2)), [72] and com-
plexes [N][AuSMe(=S)], [73] [N][AuSEt(=S)], [74] [P][AuSEt(=O)], [75] [N][AuSeEt(=S)] [75]
and [P][AuSPr(=S)] [76] were synthesized according to the previously reported procedure.

3.2. General Synthetic Procedures
3.2.1. Typical Procedure for the Synthesis of the Dithiolene and Diselenolene Proligand
2-XR(=Y):

Under inert atmosphere at 0 ◦C, lithium diisopropylamide (LDA) was prepared by
adding nBuLi (2.9 mL, 4.71 mmol, 1.6 M in hexane) to a solution of diisopropylamine
(0.7 mL, 4.71 mmol) in 10 mL of anhydrous THF. The LDA solution was added to a so-
lution of 1-R(=Y) (3.14 mmol) in 40 mL of anhydrous THF at −10 ◦C. After stirring for
30 min, sulfur for dithiolene or selenium for diselenolene (4.71 mmol) was added to the
reaction mixture, and the medium was stirred for an additional 30 min before the addi-
tion of LDA (6.28 mmol prepared from 3.9 mL of nBuLi, 1.6 M in hexane and 0.9 mL of
diisopropylamine in 15 mL of anhydrous THF). The reaction mixture was stirred for 3 h,
and sulfur (for dithiolene) or selenium for diselenolene was added (6.28 mmol), followed
30 min later by the addition of 3-bromopropionitrile (2.6 mL, 31.4 mmol). Then, the tem-
perature was allowed to rise to room temperature and the reaction mixture was stirred
overnight. Tetrahydrofuran (THF) was evaporated and the residue was extracted with
dichloromethane. The organic phase was washed with water and dried over MgSO4. The
resulting oil was purified by column chromatography on silica gel using CH2Cl2 as eluent.

2-SBu(=S), brown oil in 59% yield; Rf = 0.45 (SiO2, CH2Cl2); 1H NMR (300 MHz) δ 1.03
(t, 3H, CH3, 3J = 7.3 Hz), 1.45 (m, 2H, CH2), 1.75 (m, 2H, CH2), 2.75 (t, 4H, CH2, 3J = 7.0 Hz),
3.14 (t, 2H, CH2, 3J = 7.0 Hz), 3.20 (t, 2H, CH2, 3J = 7.0 Hz), 4.39 (t, 2H, CH2, 3J = 7.3 Hz);
13C NMR (75 MHz) δ 13.7 (CH3), 18.7 (CH2-CN), 19.9 (CH2-CH3), 29.8 (CH2-CH2-N), 31.7
(S-CH2), 32.4 (S-CH2), 49.5 (CH2-N), 117.6 (CN), 117.8 (CN), 125.7 (C=C), 136.1 (C=C), 187.3
(C=S); HRMS (ESI) calcd for C13H17N3S4

+•: calcd 343.0305. Found: 343.0335.
2-SePr(=S), beige powder in 51% yield; mp = 142 ◦C. Rf = 0.54 (SiO2, CH2Cl2/Et2O,

9.8/0.2). 1H NMR (300 MHz) δ 0.99 (t, 3H, CH3, 3J = 7.5 Hz), 1.76 (sextuplet, 2H, CH2,
3J = 7.5 Hz), 2.87 (t, 4H, CH2,

3J = 6.9 Hz), 3.11 (t, 4H, CH2,
3J = 6.9 Hz), 4.35 (t, 2H, CH2,

3J = 7.5 Hz). 13C NMR (75 MHz) δ (10.9 (CH3), 19.3 (Se-CH2-CH2-CN), 21.5 (CH3-CH2-
CH2-N), 24.2 (Se-CH2-CH2-CN), 52.5 (CH3-CH2-CH2-N), 117.8 (CN), 131.1 (C=C), 188.9
(C=S). HRMS (ASAP) calcd for C12H16N3S2Se2

+•: 425.91161, found: 425.9111. Anal. calcd
for C12H15N3S2Se2: C, 34.04; H, 3.57; N, 9.92; S, 15.15. Found: C, 33.90; H, 3.45; N, 9.23;
S, 14.87.

2-SeiPr(=S), orange oil in 50 % yield; Rf = 0.43 (SiO2, CH2Cl2/Et2O, 9.8/0.2). Two
rotamers can be observed on the NMR spectra. 1H NMR (300 MHz) δ main rotamer (56.2%):
1.80 (d, 6H, CH3, 3J = 7.0 Hz), 3.02 (t, 8H, CH2, 3J = 7.1 Hz), 5.27 (sept, 1H, CH, 3J = 7.0 Hz);
other rotamer (43.8%): 1.64 (d, 6H, 2CH3, 3J = 7.2 Hz), 2.97 (t, 4H, CH2, 3J = 7.1 Hz), 3.08 (t,
4H, CH2, 3J = 7.1 Hz), 5.96 (sept, 1H, CH, 3J = 7.2 Hz). 13C NMR (75 MHz) δ main rotamer:
18.0 (N-CH(CH3)2), 20.2 (Se-CH2-CH2-CN), 25.2 (Se-CH2-CH2-CN), 53.7 (CH), 118.9 (CN),
126.1 (=C), 128.4 (=C), 189.3 (C=S); other rotamer: 21.9 (N-CH(CH3)2), 21.2 (Se-CH2-CH2-
CN), 27.32 (Se-CH2-CH2-CN), 58.6 (CH), 119.0 (CN), 126.3 (=C), 131.7 (=C), 187.7 (C=S).
HRMS (ASAP) calcd for C12H15N3S2Se2

+•: 425.91161. Found: 425.9115.
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3.2.2. Procedure for the Synthesis of Monoanionic Gold Bis(Dithiolene) and Bis
Diselenolene Complexes:

To a dry two-neck flask containing the 2-XR(=Y) (0.8 mmol), 7.5 mL of 1M solution
of sodium methoxide in MeOH was added under nitrogen atmosphere at room temper-
ature. After stirring for 30 min, a solution of potassium tetrachloroaurate (III) hydrate
(KAuCl4.H2O) (0.4 mmol) in 7 mL of anhydrous methanol was added to the reaction
mixture followed, 5 h later, by the addition of tetraphenylphosphonium chloride Ph4PCl
or Et4NBr (0.4 mmol) in 7 mL of anhydrous methanol. The reaction was stirred overnight
at room temperature under argon atmosphere. The dark brown solution was filtered
over a vacuum flask. The resulting solid was washed with MeOH and recrystallized
from acetonitrile.

[P][AuSePr(=S)], black crystals, in 61% yield; mp = 172 ◦C; 1H NMR (300 MHz) δ 0.97
(t, 6H, CH3, 3J = 7.5 Hz), 1.77 (m, 4H, CH2, 3J = 7.6 Hz), 4.05 (t, 4H, CH2, 3J = 7.6 Hz), 7.61
(m, 8H, CHAr), 7.74 (m, 8H, CHAr), 7.89 (m, 4H, CHAr); 13C NMR (75 MHz) δ (ppm): 11.0
(N-CH2-CH2-CH3), 21.0 (N-CH2-CH2-CH3), 50.2 (N-CH2-CH2-CH3), 104.7 (C=C), 116.5
(CAr), 117.7 (CAr), 128.7 (C=C), 130.5 (CAr), 134.0 (CAr), 135.6 (CAr), 192.6 (C=S); UV-vis-NIR
(CH2Cl2) λ (nm), ε (M−1.cm−1): 362, 32455; 314, 27964; 260, 26167; 224, 44491. HRMS (ESI)
calcd for [2C+, A−]+ [C60H54N2P2S4Se4Au]+: 1508.89661, found: 1508.8991. Anal. calcd
for C36H34AuN2PS4Se4: C, 37.06; H,2.94; N, 2.40; S, 10.99. Found: C, 36.59; H, 3.17; N, 2.31;
S, 10.69.

[P][AuSeiPr(=S)], black-green crystals, in 48% yield; mp = 216 ◦C; two rotamers can
be observed on the 1H NMR spectrum realized at 243 K the main one at 87% and the
other at 13% 1H NMR (300 MHz) δ 1.57 (broad signal, 12H, CH3, 87%), 1.60 (broad signal,
12H, CH3, 13%), 4.56 (broad signal, 2H, CH, 13%), 5.83 (broad signal, 2H, CH, 87%), 7.60
(m, 8H, CHAr), 7.77 (m, 8H, 8CHAr), 7.93 (m, 4H, CHAr). UV-vis-NIR (CH2Cl2) λ (nm),
ε (M−1.cm−1): 364, 28982; 318, 32095; 260, 29341; 224, 54311; HRMS (ESI) calcd for calcd
for [2C+, A−]+ [C60H54N2P2S4Se4Au]+: 1508.89661, found: 1508.8976. Anal. calcd for
C36H34AuN2PS4Se4: C, 37.06; H,2.94; N, 2.40; S, 10.99. Found: C, 36.64; H, 3.12; N, 2.38;
S, 10.98.

[P][AuSeEt(=Se)], black-green crystals, in 45% yield; mp = 216 ◦C; 1H NMR (300 MHz)
δ 1.33 (t, 6H, CH3, 3J = 7.2 Hz), 4.28 (q, 4H, CH2, 3J = 7.2 Hz), 7.60 (m, 8H, CHAr), 7.75 (m,
8H, CHAr), 7.85 (m, 4H, CHAr). HRMS (ESI) calcd for [2C+, A−]+ [C58H50AuN2P2S2

80Se6]+:
1576.7542. Found: 1576.7573. Anal. calcd for C34H30AuN2PS2Se6. CH2Cl2: C, 31.91; H, 2.45;
N, 2.13; S, 4.87. Found: C, 32.08; H, 2.46; N, 2.09; S, 5.21.

[P][AuSEt(=Se)], black-green crystals, in 20% yield; mp = 214 ◦C; 1H NMR (300 MHz)
δ 1.30 (t, 6H, CH3, 3J = 7.2 Hz), 4.20 (q, 4H, CH2, 3J = 7.2 Hz), 7.62 (m, 8H, CHAr), 7.78 (m,
8H, CHAr), 7.91 (m, 4H, CHAr); HRMS (ESI) calcd for [2C+, A−]+ [C58H50AuN2P2S6

80Se2]+:
1384.9764. Found: 1384.9776; Anal. calcd for C34H30AuN2PS6Se2: C, 39.08; H,2.89; N, 2.68.
Found: C, 38.77; H, 2.44; N, 2.70.

[N][AuSPr(=S)], black-green crystals, in 47% yield; mp = 231 ◦C; 1H NMR (300 MHz)
δ 0.98 (m, 6H, CH3), 1.32 (m, 12H, CH2), 1.81 (m, 4H, CH2), 3.25 (q, 8H, CH2, 3J = 7.3 Hz),
4.06 (m, 4H, CH2); HRMS (ESI) calcd for [2C+, A−] [C28H54AuN4S8]+: 899.17743. Found:
899.1775; Anal. calcd for C20H34AuN3S8: C, 31.20; H,4.45; N, 5.46. Found: C, 30.87; H, 4.44;
N, 5.96.

[P][AuSPr(=Se)], black-green crystals, in 47% yield; mp = 228 ◦C; 1H NMR (300 MHz)
δ 0.96 (m, 6H, CH3), 1.79 (m, 4H, CH2), 4.09 (m, 4H, CH2), 7.61 (m, 8H, CHAr), 7.76 (m,
8H, CHAr), 7.89 (m, 4H, CHAr); HRMS (ESI) calcd for [2C+A−] [C12H14AuN2S6

80Se2]−:
734.4828. Found: 734.7488. Anal. calcd for C36H34AuN2PS6Se2: C, 40.30; H,3.19; N, 2.61.
Found: C, 40.24; H, 3.44; N, 2.96.

[P][AuSBu(=S)], dark crystals, in 29% yield. mp 225 ◦C; 1H NMR (300 MHz, (CD3CN)
δ 0.95 (t, 6H, CH3, 3J = 7.3 Hz), 1.39 (sext, 4H, CH2, 3J = 7.3 Hz), 1.70 (m, 4H, CH2), 4.06 (t,
4H, CH2, 3J = 7.3 Hz), 7.69 (m, 16H, Ar), 7.91 (m, 4H, Ar); 13C NMR (75 MHz, (CD3)2SO)
δ 13.5 (CH3), 19.5 (CH2-CH3), 29.1 (CH2-CH2-CH3), 46.9 (CH2-N), 110.2 (C = C), 117.1
(CAr), 118.3 (CAr), 130.4 (CAr), 134.6 (CAr), 135.4 (C = C), 190.7 (C = S); Anal. calcd for
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C38H38AuN2PS8: C, 45.32; H, 3.80; N, 2.78; S, 25.47. Found: C, 45.47; H, 3.92; N, 2.72;
S 24.97.

[N][AuSEt(=C(CN)2)], 47% yield as dark crystals; Mp > 250 ◦C; 1H NMR (300 MHz,
(CD3)2SO) δ 1.18 (m, 12H, CH3), 1.31 (t, 6H, CH3, 3J = 7.1 Hz), 3.21 (q, 8H, CH2, 3J = 7.3 Hz),
4.07 (q, 4H, CH2, 3J = 7.1 Hz); 13C NMR (75 MHz, (CD3)2SO) δ 7.6 (N-(CH2-CH3)4), 15.0
(N-CH2-CH3), 44.6 (N-CH2), 51.9 (N-(CH2-CH3)4) 111.0 (C-CN), 117.3 (C = C), 134.3 (CN),
174.3 (C = C(CN)2). HRMS (ESI) calcd for [2C+, A−]+ [C32H50N8S6Au]+: 935.21428. Found:
935.2143. Anal. calcd for C24H30AuN7S6. CH2Cl2: C, 33.71; H 3.62; N, 11.01; S, 21.59.
Found: C, 33.24; H, 3.58; N, N, 10.76; S, 21.85.

[P][AuSEt(=C(CN)2)], 40% yield as dark crystals; Mp > 250 ◦C; 1H NMR (300 MHz,
CD3CN) δ 1.34 (t, 6H, CH3, 3J = 7.3 Hz), 4.10 (q, 4H, CH3, 3J = 7.3 Hz), 7.70 (m, 16H, Ar), 7.91
(m, 4H, Ar); 13C NMR (75 MHz, (CD3)2SO) δ 14.9 (CH3), 44.3 (CH2), 112.1 (C-CN), 117.0
(C = C), 117.5 (C = C), 118.2 (CN), 130.4 (CAr), 134.4 (CAr), 136.1 (CAr), 174.7 (C = C(CN)2);
HRMS (ESI) calcd for [2C+, A−]+ [C64H50P2S6Au]+: 1353.15566. Found: 1353.1551. Anal.
calcd for C40H30AuN6PS6 + 2CH2Cl2: C, 42.58; H 2.89; N, 7.09. Found: C, 42.44; H, 2.86;
N, 7.10.

3.3. Crystallography

Data collections were performed on an APEXII Bruker-AXS diffractometer equipped
with a CCD camera for [P][AuSePr(=S)], [P][AuSeiPr(=S)], [P][AuSEt(=Se)], [P][AuSPr(=Se)],
[P][AuSBu(=S)], on a D8 VENTURE Bruker AXS diffractometer for [P][AuSEt(=C(CN)2)].
Apart from [P][AuSEt(=C(CN)2)], the structures were solved either by direct methods using
the SIR97 program [77] and then refined with full-matrix least-square methods based on F2

(SHELXL-97) [78] with the aid of the WINGX [79] program. For [P][AuSEt(=C(CN)2)], the
structure was solved by direct methods using SIR97 program [77], and then refined with
full-matrix least-squares methods based on F2 (SHELXL program [80]). All non-hydrogen
atoms were refined with anisotropic atomic displacement parameters. H atoms were finally
included in their calculated positions. Details of the final refinements are summarized in
Table S2 in supporting information.

3.4. Biological Studies
3.4.1. Cytotoxic Activity

The cytotoxic activity of the complexes was evaluated in the A2780 (cisplatin sensitive)
(Sigma-Aldrich) and OVCAR8 (cisplatin resistant) (ATCC) ovarian cancer cells. Cells were
grown in RPMI-1640 medium (Gibco, Thermo Fisher) supplemented with 10% fetal bovine
serum (FBS) and were maintained at 37 ◦C in a humidified atmosphere with 5% CO2. The
complexes were initially dissolved in DMSO and then in culture medium to prepare serial
dilutions in the range 10−9–10−4 M. After 24 and/or 48 h incubation the cellular viability
was measured by the colorimetric MTT assay, as previously described [46,47].

The in vitro cytotoxicity of auranofin, [P][AuSBu(=S)] and [P][AuSEt(=S)] was evalu-
ated in TZM-bl cells using alamarBlue cell viability reagent (Life Technologies, Carlsbad,
CA, USA) [81]. TZM-bl cells (AIDS Research and Reference Reagent Program, National In-
stitutes of Health, Bethesda, MD, USA) were cultured in complete growth medium that con-
sists of Dulbecco’s minimal essential medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 100 U/ml of penicillin-streptomycin (Gibco/Invitrogen, Waltham, MA, USA),
1 mM of sodium pyruvate (Gibco/Invitrogen, Carlsbad, CA, USA), 2 mM of L-glutamine
(Gibco/Invitrogen, USA) and 1 mM of non-essential amino acids (Gibco/Invitrogen, USA).
Cells were cultured in the presence and absence of serial-fold dilutions of the compounds.
At least two independent experiments were performed for each cytotoxicity analysis. Each
dilution of each compound was performed in triplicate wells. For each assay we had
medium controls (only growth medium), cell controls (cells without test compound) and
cytotoxicity controls (a compound that kill cells). The cytotoxicity of each compound
was expressed by the 50% cytotoxic concentration (CC50), which is the concentration of
compound causing 50% decrease in cellular viability.
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3.4.2. Toxicological Assessment in Zebrafish Embryo

To test the toxicological effect of the gold (III) complexes, zebrafish (Danio rerio) em-
bryos at developmental stage of 72 h post-fertilization (hpf) were exposed to different
concentrations of the target complexes and mortality was assessed for 48 h of treatment.
Thus, the incubation of a total of 30 embryos per compound concentration was carried in
6-well plates (5 embryos per well) in zebrafish embryo medium (14 mM NaCl, 0.5 mM KCl,
0.02 mM Na2HPO4, 0.04 mM KH2PO4, 1.36 mM CaCl2, 2.13 mM MgSO4, 4.34 mM NaHCO3,
prepared in 100 mL dH2O). Concentrations used for each compound varied between 0.1
and 10 µM, as described below. The incubation medium was daily renewed. Control
DMSO concentration was used as the highest concentration of each gold (III) compound.

3.4.3. In Vitro Activity of Gold Complexes against the Hepatic Stage of P. berghei Infection

The in vitro liver stage activity of gold complexes was assessed against P. berghei-
infected Huh7 cells, as previously described [47,82]. Briefly, Huh7 cells were cultured in
RPMI-1640 medium supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) peni-
cillin/streptomycin, 1% (v/v) glutamine, 1% (v/v) non-essential amino acids and 10 mM
HEPES. On the day prior to infection, Huh7 cells were seeded in 96-well plates at a density
of approximately 3.1 × 104 cell/cm2 and incubated at 37 ◦C, 5% CO2. Stock solutions of the
complexes were initially prepared in DMSO and serially diluted in infection medium, i.e.,
culture medium supplemented with gentamicin (50 µg/mL) and fungizone (0.8 µg/mL),
to obtain the test concentrations. As a control, DMSO was diluted in infection medium to a
percentage that equals that of the highest compound concentrations tested. These dilutions
were added to the cells in triplicates and incubated for 1 h at 37 ◦C, 5% CO2, after which
1 × 104 luciferase-expressing P. berghei sporozoites were added to each well. Plates were
centrifuged at 1800× g for 5 min at room temperature and incubated for the duration of the
assay. At 46 h post-infection (hpi), the impact of each compound concentration on cell via-
bility was assessed by the Alamar Blue (Invitrogen, Buckinghamshire, UK) assay, according
to the manufacturer’s recommendations. Infection was next assessed by bioluminescence,
employing the Firefly Luciferase Assay Kit 2.0 (Biotium, Fremont, CA, USA), according
to the manufacturer’s recommendations. For IC50 determination, nonlinear regression
analysis was employed to fit the normalized results of the dose–response curves, using
GraphPad Prism 8 (GraphPad software, La Jolla, CA, USA).

3.4.4. In Vitro Activity of Gold Complexes against the Blood Stage of P. falciparum Infection

Ring-stage synchronized cultures of Pf NF54 at 2.5% hematocrit and at approxi-
mately 1% parasitemia were incubated with gold complexes or DMSO (vehicle control)
in 96 well-plates, for 48 h, at 37 ◦C in a 5% CO2 and 5% O2 atmosphere. Stock solutions
of Chloroquine (positive control), [P][AuSEt(=S)] and [P][AuSEt(=Se)] were prepared in
DMSO. Working solutions were prepared from the stock solutions in complete malaria
culture medium (CMCM), which consists of RPMI 1640 supplemented with 25 mM HEPES,
2.4 mM L-glutamine, 50 µg/mL gentamicin, 0.5% w/v Albumax, 11 mM glucose, 1.47 mM
hypoxanthine and 37.3 mM NaHCO3. For each measurement, 5 µL of the culture (approx-
imately 800,000 cells) was stained with the DNA-specific dye SYBR green I at 1×. After
20 min of incubation, in the dark, the stained sample was analyzed by flow cytometry.
For each flow cytometric measurement, approximately 100,000 events were analyzed. All
samples were analyzed in triplicate and two independent experiments were performed.

3.4.5. Bacterial and Fungal Strains

The bacterial strains Escherichia coli ATCC25922 and Staphylococcus aureus Newman
were used in this work and maintained in Lennox Broth (LB) solid medium, composed
of 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl and 20 g/L agar. The fungal strains
Candida albicans SC5134 and C. glabrata CBS138 were used in this work and maintained in
YPD solid medium, composed of 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract and
15 g/L agar. The strains were isolated from human infections [83–86].
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3.4.6. Antimicrobial Activity

The antimicrobial activity of the complexes towards the bacterial and fungal strains
was assessed by the determination of the Minimal Inhibitory Concentration (MIC) of each
complex towards the indicated microbial strains, based on standard methods, and as previ-
ously described [47,87,88]. Briefly, stock solutions of the complexes were prepared in 100%
DMSO at final concentrations of 10 mg/mL (complexes [N][AuSPr(=S)], [P][AuSePr(=S)],
[N][AuSeiPr(=S)] and [N][AuSMe(=S)]), 5 mg/mL (complexes [P][AuSEt(=S)], [P][AuSEt(=Se)],
[P][AuSPr(=Se)], [N][AuSeEt(=S)]Y1, [P][AuSeEt(=Se)], [P][AuSEt(=O)], [N][AuSEt(=S)],
[N][AuSEt(=C(CN)2)], [P][AuSBu(=S)] and Auranofin) or 2.5 mg/mL (complexes [P][AuSeiPr(=S)]
and [N][AuSeEt(=Se)]), depending on the solubility of each complex. Serial 1:2 dilutions
of stock solutions were prepared for each complex in Mueller–Hinton (MH) broth (Fluka
Analytical) or RPMI-1640 medium (Sigma) supplemented with 20 g/L glucose and buffered
with 0.165 M morpholinepropanesulphonic acid (RPMIG) to pH 7.0. Solutions prepared
with MH were used for testing bacteria, while those prepared with RPMIG were used for
testing fungi. For antibacterial activity assays, the final concentrations ranged from 250
to 0.24 µg/mL (when stock solution final concentration was 10 mg/mL), 125 µg/mL to
0.12 µg/mL (when stock solution final concentration was 5 mg/mL) and 62.5 to 0.06 µg/mL
(when stock solution final concentration was 2.5 mg/mL). For antifungal assays, the final
concentrations ranged from 125 µg/mL to 0.12 µg/mL (when stock solution final con-
centration was 10 mg/mL), 62.5 to 0.06 µg/mL (when stock solution final concentration
was 5 mg/mL) and 31.25 to 0.03 µg/mL (when stock solution final concentration was
2.5 mg/mL). Then, 100 µL aliquots of adequately diluted bacterial suspensions of S. aureus
Newman or E. coli ATCC 25922 were mixed with the MH serially diluted complexes aliquots
to obtain 5 × 105 CFU/mL. In the case of fungi, cultures were diluted to obtain a final
optical density of 0.025, measured at 530 nm (OD530). Bacterial suspensions were prepared
from cultures grown for 5 h in MH broth at 37 ◦C and 250 rev·min−1 and adequately
diluted with fresh MH medium, while fungal suspensions were prepared from overnight
cultures grown in YPD broth at 30 ◦C and 250 rev.min−1 and diluted in buffered RPMIG.
After 22 h of incubation at 37 ◦C (bacteria) or 24 h at 35 ◦C (fungi), the wells’ content was
resuspended by pipetting and the OD640 (bacteria) or OD530 (fungi) were measured in a
SPECTROstar Nano microplate reader (BMG Labtech).

At least three independent experiments were performed in duplicate for each complex
under study. MIC values were estimated after fitting the OD mean values measured for
bacteria and fungi after 24 h of incubation, using a modified Gompertz equation and the
GraphPad Prism software (version 6.07) [89]. Positive (no complex) and negative controls
(no inoculum) were performed for each experiment. The effect of 5% (V/V) DMSO on
microbial growth was also assessed.

3.4.7. Anti-HIV Assays

The HIV-1 SG3.1 subtype B strain was obtained by transfection of HEK293T cells
with pSG3.1 plasmid using jetPrime transfection reagent (Polyplus-tranfection SA, Illkirch,
France) according to the manufacturer’s instructions. The 50% tissue culture infectious
dose (TCID50) of the virus was determined in a single-round viral infectivity assay using
a luciferase reporter gene assay [90] in TZM-bl cells and calculated using the statistical
method of Reed and Muench [91].

The antiviral activity of Auranofin, [P][AuSEt(=S)] and [P][AuSBu(=S)] compounds
was determined in a single-round viral infectivity assay using TZM-bl reporter cells, as
previously described [90]. Briefly, TZM-bl cells were infected with 200 TCID50 of SG3.1 in
the presence of serial-fold dilutions of the compounds in growth medium, supplemented
with DEAE-dextran. After 48 h of infection, luciferase expression was quantified with
Pierce Firefly Luc One-Step Glow Assay Kit (ThermoFisher Scientific, Rockford, IL, USA)
according to the manufacturer’s instructions.

At least two independent experiments were performed for each antiviral activity
analysis. The assay was set up in triplicate wells. Virus controls and cell controls were used.
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3.5. Mechanistic Studies for Relevant Complexes
3.5.1. DNA

The potential interaction of the complexes with DNA was evaluated through the
assessment of the electrophoretic mobility of supercoiled φX174 DNA, using a previously
described method [46]. To that end, a mixture was prepared containing 200 ng of su-
percoiled φX174 DNA (Promega) in 10 mM of phosphate buffer (pH 7.2) and increasing
concentrations of Cisplatin, as a positive control, or the metal complexes (in a total vol-
ume of 20 µL). The mixture was incubated for 24 h at 37 ◦C, in the dark. As controls,
samples having non-incubated plasmid and plasmid incubated with DMSO were also
prepared. Then, all samples were prepared for electrophoresis through the addition of 2 µL
of 10× DNA loading buffer (Applichem) and loading on an 0.8% agarose gel in TBE buffer
(Thermo Fisher Scientific, Waltham, MA, USA). The gel was run at 90 V for approximately
3 h, stained using a 3× GelRed® (Biotium) solution in H2O, and the bands visualized using
an AlphaImagerEP (Alpha Innotech) under UV light.

3.5.2. Thioredoxin (TrxR) Inhibition Study

The thioredoxin (TrxR) inhibition assays were performed using a commercial kit from
Sigma-Aldrich, introducing minor modifications for a 96-well plate format. The assay is
based on the reduction of DTNB (5,5′ dithiobis(2-nitrobenzoic acid)) into TNB (5-thio-2-
nitrobenzoic acid) with the concomitant oxidation of NADPH, in a reaction catalyzed by
TrxR [92]. The complexes were dissolved in DMSO to prepare serial concentrations in the
range of 0.1 nM–2 µM. The reaction mixture (200 µL total volume) contained 11 µL assay
buffer (phosphate buffer, pH 7.0 and 50 mM EDTA), 180 µL working buffer (phosphate
buffer and 0.25 mM NADPH), 1 µL complexes’ solutions, 2 µL enzyme solution and 6 µL
DTNB (0.1 M in DMSO). A blank sample (no enzyme) and a positive control (no complexes)
were included in the assays. The formation of TNB was monitored at 412 nm with a plate
spectrophotometer (Power Wave Xs, Bio-Tek).

3.5.3. HSA-Binding Experiments
Sample Preparation for Spectrofluorometric Experiments

Stock solutions of HSA were prepared by dissolving HSA in 10 mM Hepes buffer,
pH 7.4. The protein concentration was determined spectrophotometrically using the molar
absorption coefficient of 36,500 M−1 cm−1 at 280 nm [93]. The complexes [P][AuSEt(=S)],
[P][AuSEt(=Se)], [P][AuSeiPr(=S)] and [P][AuSBu(=S)] were first prepared at 1 mM concen-
tration in DMSO due to the limited solubility of the complexes in aqueous media. A series
of complex–protein solutions were prepared by adding different concentrations of gold
complexes solutions to the protein solution previously prepared. After preparation of the
batch complex–protein solutions, the final concentration of DMSO was 1%. For fluorescence
acquisition, the final HSA concentration was 2.5 mM and the gold concentrations were 0,
0.6, 1.3, 1.9, 2.5, 3.1, 3.8, 4.4 and 5 mM. The mixtures were stirred to ensure the formation
of a homogeneous solution and then kept in an incubator at 37 ◦C for 24 h in the dark to
stabilize and enhance the interaction time. The reference solutions without protein were
prepared following the procedures described above.

Fluorescence Spectroscopic Measurements

Steady-state fluorescence measurements were performed with a Fluorolog Model-3.22
spectrofluorimeter from Horiba Jobin Yvon at 25 ◦C. All the experiments were performed
in Hellma® semi-micro fluorescence cuvettes (Suprasil® quartz, path-length 10 × 4 mm,
chamber volume 1.4 µL) with the 10 mm path length for the excitation of the sample. The
excitation and emission bandwidths were fixed at 4.0 nm, and the excitation wavelength
was 295 nm to excite selectively the tryptophan 214 residue, the emission spectra were
recorded from 305 to 550 nm. Buffer solutions of gold complexes in corresponding concen-
trations were used as reference for the measured fluorescence spectra of protein–complex
mixtures. The fluorescence intensities were corrected for the absorption of the exciting
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light and reabsorption of the emitted light to decrease the inner filter effect [94,95] using
UV–visible absorption data recorded for each sample on a Jasco V-660 spectrophotometer in
the range of 260 to 800 nm with 1 mm path quartz cells. More details and all the equations
can be found in the SI.

4. Conclusions

In the present study, sixteen structurally related monoanionic gold(III) bis(dithiolene/
diselenolene) complexes were synthesized and characterized by standard analytical tech-
niques. These gold(III) complexes with dithiolene ligands are redox-active molecules which
are known as excellent precursors of molecular materials exhibiting conducting properties.
Within this study we explored the prospective pharmacological use of these gold complexes,
namely as anticancer, antiplasmodial, antibacterial, antifungal and anti-HIV agents. These
complexes feature square planar geometries, such as Cisplatin. Based on the molecular
structure, a similar mechanism of action, e.g., interaction with DNA, would be expected
for these complexes. Reports on the biological activity of similar gold(III) complexes are
relatively scarce in the literature. Moreover, these complexes are monoanionic, which in
theory do not favor their uptake into cells due to the negatively charged plasma membrane.
In this regard, studies on the mechanism of uptake of prospective metal drugs are relatively
rare and, similar to Cisplatin, the uptake usually occurs by more than one mechanism.

Cisplatin and Auranofin were included in this study as positive controls. The mode
of action of Cisplatin relies on the binding to nuclear DNA, interfering with normal tran-
scription and/or DNA replication mechanisms. Several targets have been proposed to be
involved in the action of Cisplatin. In fact, before reaching the target DNA, many other
cellular biomolecules such as sulfur-containing glutathione and metallothionein can be
targeted and deactivated. The main mechanism of action of Auranofin is through the
inhibition of redox enzymes such as TrxR. The overexpression of TrxR is associated with
aggressive tumor progression and poor survival in patients with several types of cancers.
The thiol group in Auranofin structure has a high affinity to bind thiol and selenol groups
of proteins, thus forming stable and irreversible adducts. Redox enzymes such as TrxR
are essential to many cellular processes, particularly in maintaining the intracellular levels
of reactive oxygen species (ROS) to prevent the resulting DNA damage. An alternative
mechanism of action of Auranofin is through the inhibition of the ubiquitin–proteasome
system in cancer cells, which are involved in cell cycle regulation, protein degradation,
gene expression and DNA repair.

Most of the gold complexes herein exhibited strong anticancer activities similar to
Auranofin. However, regarding the antiplasmodial, antibacterial and antifungal activities,
most of the complexes displayed selective activities, i.e., those that present outstanding
cytotoxic activities also display high antiplasmodial activities, which contrasts with their
antibacterial and antifungal properties. Complexes´ features, in particular the counter-ion
and the nature of the exocyclic atom or group of atoms, seemed to be relevant for their
biological activities. Similar to Auranofin, the complexes failed to interact with ΦX174
supercoiled DNA, indicating that DNA is not their cellular target. In contrast, complexes
were able to interact with TrxR and inhibit its activity, although to a lesser extent than
Auranofin. HSA could be a possible vehicle of transport for these gold complexes due to
their strong affinities for the protein. This result constitutes an interesting finding, as the
therapeutic value of a prospective drug is dependent on its availability at the target site.
The mode of binding to albumin is central to understanding the pharmacokinetic profile
and has a major influence on the therapeutic efficacy.

In this contribution, the main findings are the influence of the counter-ions on the
biological properties of these complexes: (i) the complexes with a phosphonium ([P])
counter-ion in general favor the anticancer and antiplasmodial activity; (ii) the complexes
with an ammonium ([N]) counter-ion favor the antibacterial/fungi activities; and (iii) the
complexes with [P] counter-ion exhibited low toxicity in the zebrafish embryo model.
Another feature is the nature of the exocyclic chalcogen atom, e.g., the exocyclic sulfur
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replacement by = C(CN)2 increases the cytotoxic activity and the steric hindrance generated
by the side chain, from Pr to iPr, decreases the anticancer activity. Although this study uses
a relatively modest set of compounds for a SARs approach revealing relationships between
structural properties and biological activities, it represents the basis for the development of
potent pharmaceutical agents.

In summary, our results show that these complexes are potentially valuable drug
candidates and suitable for further pharmacological testing, in particular those that show
very low toxicity in zebrafish embryos. Similar to cancer cells, parasites need to maintain
cellular redox balance and rely on redox enzymes such as TrxR to control the levels of
ROS in the cytosol and mitochondria. Considering the similarities between the basic
biological aspects of cancer and parasites and the fact that some compounds developed for
cancer treatment could also be able to target parasitic enzymes such as Auranofin, our gold
complexes could be explored for the benefit of both conditions, placing these compounds
on the cutting edge of new research approaches in medicinal chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23137146/s1. Crystallographic data for structural analysis
have been deposited with the Cambridge Crystallographic Data Centre, CCDC 2085936-2085941
for complexes [P][AuSBu(=S)], [P][AuSePr(=S)], [P][AuSeiPr(=S)], [P][AuSPr(=Se)], [P][AuSEt(=Se)]
and [P][AuSEt(=C(CN)2)]. Copies of this information may be obtained free of charge from The
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