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ABSTRACT
Background  The satisfactory prognostic indicator of 
gastric cancer (GC) patients after surgery is still lacking. 
Perioperative plasma extracellular vesicular programmed 
cell death ligand-1 (ePD-L1) has been demonstrated as a 
potential prognosis biomarker in many types of cancers. 
The prognostic value of postoperative plasma ePD-L1 has 
not been characterized.
Methods  We evaluated the prognostic value of 
preoperative, postoperative and change in plasma ePD-L1, 
as well as plasma soluble PD-L1, in short-term survival of 
GC patients after surgery. The Kaplan-Meier survival model 
and Cox proportional hazards models for both univariate 
and multivariate analyzes were used. And the comparison 
between postoperative ePD-L1 and conventional serum 
biomarkers (carcinoembryonic antigen (CEA), cancer 
antigen 19–9 (CA19-9) and CA72-4) in prognostic of GC 
patients was made.
Results  The prognostic value of postoperative ePD-L1 
is superior to that of preoperative ePD-L1 on GC patients 
after resection, and also superior to that of conventional 
serum biomarkers (CEA, CA19-9 and CA72-4). The 
levels of postoperative ePD-L1 and ePD-L1 change are 
independent prognostic factors for overall survival and 
recurrence free survival of GC patients. High plasma level 
of postoperative ePD-L1 correlates significantly with poor 
survival, while high change in ePD-L1 level brings the 
significant survival benefit.
Conclusions  The level of plasma postoperative ePD-L1 
could be considered as a candidate prognostic biomarker 
of GC patients after resection.

INTRODUCTION
Gastric cancer (GC) is one of the most 
frequent cancers worldwide, and the preva-
lence is especially high in East Asia.1 Currently, 
the standard treatment for GC, surgical resec-
tion with or without perioperative chemo-
therapy and postoperative chemotherapy, has 
improved the long-term survival outcomes.2–4 
However, many GC patients experience 
recurrence, and GC is the second-leading 
cause of cancer-related deaths.1 5 Clinically, 
the standard serum biomarkers for GC, such 

as carcinoembryonic antigen (CEA), cancer 
antigen 72–4 (CA72-4) and cancer antigen 
19–9 CA19-9 (CA19-9), lack sufficient discrim-
ination to distinguish patients with good or 
poor prognosis.6–8 In addition to pathological 
TNM (TumorNode Metastasis) staging, there 
still lack satisfactory prognostic indicators of 
GC patients after surgery, which is critically 
important in determine optimal postopera-
tive strategies.

The use of immune checkpoint protein 
inhibitors in cancer therapies has proven to 
be a revolutionary breakthrough in recent 
years.9–12 As an important immune checkpoint 
pathway, the interaction of programmed cell 
death-1 (PD-1) on T-cells with its ligand, 
programmed cell death ligand-1 (PD-L1) on 
immune and tumor cells, limits antigen-driven 
T cell activation.10 13 PD-L1 is a membrane 
bound ligand that is up-regulated in almost 
all types of tumors and associated with poor 
prognosis.11 14 The PD-1/PD-L1 inhibitors 
have also been emerging as a novel treatment 
strategy for advanced GC.15 16 Subsequently, 
extracellular PD-L1 (ePD-L1), including 
soluble PD-L1 (sPD-L1)17–19 and extracellular 
vesicular (EV) ePD-L1,20 21 has been char-
acterized and was proved to be associated 
with anti-PD-L1/PD-1 therapy in different 
solid tumors.22 23 In particular, preoperative 
plasma ePD-L1 of various malignancies has 
been reported to have immunosuppressive 
activity and associated with tumor progres-
sion.24 25 In GC, preoperative plasma ePD-L1 
level has also been reported to be associated 
with tumor prognosis in a study with a small 
number of patients.26 However, to our knowl-
edge, the prognostic value of postoperative 
plasma PD-L1, especially ePD-L1, has not 
been reported. Considering that tumor tissue 
is the main source of plasma PD-L1, the level 
of postoperative plasma PD-L1 might reflect 
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the presence and area of residual or metastatic tumor 
lesions, and hence associated with patients’ prognosis.

The objective of this study was to investigate the 
impact of preoperative and postoperative plasma PD-L1 
(including sPD-L1 and ePD-L1) on short-term survival 
rate and cancer recurrence in GC patients who accept 
surgical resection. These results will be helpful in deter-
mine optimal postoperative strategies for patients with 
cancer.

METHODS
Patients and sampling
This study enrolled the GC patients who accepted resec-
tion between October 2018 and April 2019 at Shanxi 
Provincial Cancer Hospital (Taiyuan, China). Exclusion 
criteria were: cases with preoperative treatment (n=18), 
cases with previous gastric surgery (n=6), cases with 
previous or present tumors other than GC (n=7), cases 
with infection or inflammatory disease within 30 days 
(n=11), cases with palliative surgery only (n=13), cases 
who were lost to follow-up (n=8). In total, 313 patients 
were included in this study. The patients’ demographic, 
laboratory (including serum levels of CEA, CA19-9 and 
CA72-4, all were measured using Elecsys-electrochemical 
Immune Assays), imaging, pathological, surgical data 
were collected and reviewed through hospital registry 
systems by two academic gastroenterologists. All patients 
were followed up for at least 18 months since operation. 
Peripheral blood specimens were collected 0–7 days 
before and 7–10 days after surgical operation, and centri-
fuged at 1000×g for 10 min at room temperature. Plasma 
was collected and subjected to a second centrifugation of 
15 min 2500×g at room temperature to obtain platelet-
free plasma which was stored in aliquots at −70°C. All 
subjects had provided written informed consent.

Isolation and characterization of EVs
EVs were isolated using the Total Exosome Isolation Kit 
(from plasma) (ThermoFisher Scientific) as described 
previously.25 In brief, plasma samples were centrifuged 
at 2500×g for 10 min at room temperature, the super-
natant was diluted 1:1 in PBS (phosphate buffer saline), 
and then 0.2 vol of Exosome Precipitation Reagent (from 
plasma) was added. After incubated at room temperature 
for 10 min, the mixture was centrifuged at 10 000×g for 5 
min at room temperature. The resulting pellet was resus-
pended into 50 μL of PBS.

The EV morphology was examined using transmission 
electron microscope. Isolated EVs were fixed and were 
loaded on a 300 mesh copper grid. EVs were stained with 
2% phosphotungstic acid for 1–2 min and dried under 
an electric incandescent lamp for 10 min. Data were 
acquired using a transmission electron microscope (JEOL 
JEM-2100) at an accelerating voltage of 160 KV. The 
number and size of EVs were examined through nanopar-
ticle tracking analysis (NTA). A NanoSight NS300 with a 

405 nm laser instrument (Malvern Instruments, UK) was 
used.

The EVs and ePD-L1 were also characterized through 
immunofluorescence staining. The platelet-free plasma 
was centrifuged at 2500×g for 10 min at room tempera-
ture, the supernatant was stained with the FITC-anti-CD63 
(10 µg/mL) and PerCP-anti-PD-L1 (10 µg/mL) for 2 
hours at room temperature. The stained EVs were puri-
fied using Total Exosome Isolation Kit (from plasma) and 
smeared on glass slide. A laser-scanning confocal micro-
scope (TCS SP8 STED, Leica, magnification 63×10) was 
used to visualize the stained EVs. The number of CD63 or 
PD-L1 positive EVs was analyzed through ImageJ software 
(National Institutes of Health, USA).

ELISA assay
Plasma soluble or EV PD-L1 levels were determined by 
Human B7H1/PD-L1 ELISA Kit (RayBioetch) according 
to the manufacturer’s instructions, as our previous 
description.25 The EVs derived from the plasma were 
resuspended in the same volume of PBS as the plasma 
they were originally derived from. For samples lower than 
the minimum detectable concentration of PD-L1, a re-ex-
amination was performed using a quantity five times (for 
EVs) or two times (for plasma) of the standard dose. For 
the sample which was still lower than the detect limitation 
(5 pg/mL) after re-examination, its concentration was 
defined as 5 pg/mL. The concentration of sPD-L1 was 
calculated by subtracting the concentration of ePD-L1 
from that of plasma total PD-L1 (tPD-L1).

Statistics
The primary endpoint of this study was the association 
between prognosis and the preoperative, postoperative 
and the change of plasma levels of ePD-L1, sPD-L1 and 
tPD-L1. The PD-L1 change (value of postoperative PD-L1 
reduction compared with preoperative level) was calcu-
lated by subtracting the concentration of postoperative 
PD-L1 from that of preoperative PD-L1. TNM staging was 
performed according to the eighth edition of the Union 
for International Cancer Control TNM classification.27 
Concomitant disease refers to chronic diseases that do 
not meet the exclusion criteria, such as hypertension, 
diabetes. Gastrectomy, lymph node dissection and adju-
vant chemotherapy were carried out according to Japa-
nese Gastric Cancer Treatment Guidelines 2018 (fifth 
edition).4 Postoperative complications were defined as 
intra-abdominal infectious complications of grade II or 
higher according to the Clavien-Dindo classification.28 
Overall survival (OS) was defined as the time from surgery 
to death from any cause. Recurrence-free survival (RFS) 
was defined as the time from surgery to either the first 
recurrence or death from any cause.

Continuous variables are presented as median (first 
to third quartile). Differences between groups were 
compared using the Fisher’s exact test for categorical 
variables and the Wilcoxon rank-sum test for continuous 
variables. RFS and OS curves were estimated using the 
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Kaplan-Meier method, and survival differences were 
compared using the log-rank test. Cox proportional 
hazards models were used for both univariate and multi-
variate analyzes, and results are expressed as HR and 95% 
CI. A two-sided p<0.05 was considered statistically signifi-
cant. Statistical analyses were performed with SPSS V.24.0 
.

RESULTS
Demographic and clinical characteristics by plasma PD-L1 
levels
A total of 313 GC patients were enrolled in this study. The 
plasma PD-L1 was subgrouped into EV PD-L1 (ePD-L1) 
and (EV excluded)sPD-L1. The plasma tPD-L1 was also 
included in this study. Plasma EVs were isolated using the 
Total Exosome Isolation Kit (from plasma) and verified by 
transmission electron microscopy (online supplemental 
figure 1A) and NTA (online supplemental figure 1B). 
The expression of PD-L1 on plasma EVs was identified by 
confocal microscopy imaging by randomly selected two 
patients with low (online supplemental figure 1C) and 
high (online supplemental figure 1D) content of ePD-L1. 
The percentage of PD-L1 positive vesicles in CD63 posi-
tive vesicles was calculated and the results consistent with 
those from ELISA assay (online supplemental figure 1E).

Table  1 lists the demographic and clinical character-
istics by the preoperative, postoperative and change in 
ePD-L1 levels. The high preoperative ePD-L1 group 
included more patients with higher T stage, higher N 
stage, higher total TNM stage, large amount of intraop-
erative blood loss and postoperative complications than 
the low preoperative ePD-L1 group. The high postoper-
ative ePD-L1 group included more patients with higher 
T stage, higher N stage, higher M stage and higher total 
TNM stage than the low postoperative ePD-L1 group. The 
group with high ePD-L1 change included more patients 
with undifferentiated histological type, higher T stage, 
higher N stage, total gastrectomy, longer operation time, 
lymphadenectomy and postoperative complications than 
the group with low ePD-L1 change.

Online supplemental table 1 lists the demographic 
and clinical characteristics by the preoperative, postop-
erative and change in sPD-L1 levels. The high preopera-
tive sPD-L1 group included more patients with higher T 
stage, fewer patients with concomitant disease and lymph-
adenectomy than the low preoperative sPD-L1 group. The 
high postoperative sPD-L1 group included more patients 
with higher N stage and adjuvant chemotherapy than the 
low postoperative sPD-L1 group. The group with high 
sPD-L1 change included fewer patients with concomitant 
disease, large amount of intraoperative blood loss and 
adjuvant chemotherapy than the group with low sPD-L1 
change.

Online supplemental table 2 lists the demographic and 
clinical characteristics by the preoperative, postopera-
tive and change in tPD-L1 levels. The high preoperative 
tPD-L1 group included more patients with higher T stage, 

higher N stage and postoperative complications than the 
low preoperative tPD-L1 group. The high postoperative 
tPD-L1 group included more patients with lower body 
mass index (BMI), higher T stage, higher N stage and 
higher total TNM stage than the low postoperative tPD-L1 
group. The group with high tPD-L1 change included 
more patients with male sex, younger age, higher T stage, 
higher total TNM stage, longer operation time and fewer 
patients with concomitant disease than the group with 
low tPD-L1 change.

Kaplan-Meier survival analysis
At the follow-up duration of 18 months for the censored 
cases, 78 (24.9%) patients died and 92 (29.4%) patients 
developed a recurrence or death event. The OS was 
significantly worse in patients with high preoperative 
ePD-L1 (p<0.001), high postoperative ePD-L1 (p<0.001), 
high preoperative tPD-L1 (p<0.001) and high post-
operative tPD-L1 (p<0.001) than in those groups with 
corresponding low value (figure 1). The cut-off value of 
each index was defined as corresponding median value 
(table  1, online supplemental tables 1 and 2). There 
was no significant difference in OS between the patients 
with high and low value of preoperative, postoperative 
or change in sPD-L1. Similarly, the RFS was also signifi-
cantly worse in the group with high preoperative ePD-L1 
(p<0.001), high postoperative ePD-L1 (p<0.001), high 
preoperative tPD-L1 (p<0.001) and high postopera-
tive tPD-L1 (p<0.001) than in those groups with corre-
sponding low value (figure  2). In addition, the high 
preoperative sPD-L1 group had worse RFS than the low 
preoperative sPD-L1 group (p=0.034).

Univariate and multivariate Cox proportional hazards 
regression analyses
In the univariate analysis (table 2), patients’ BMI, undiffer-
entiated type, Borrmann typing, pathological T, N, M and 
total TNM stage, concomitant disease and lymphadenec-
tomy were significant associated factors for both OS and 
RFS. Adjuvant chemotherapy was associated with OS but 
not associated with RFS (p=0.094). And hence, these 
factors, as well as patients’ age and sex, were included 
into the multivariate regression analysis as confounding 
factors. The pathological T, N and M stage were replaced 
by total TNM stage to avoid over analysis. In addition to 
these nine confounding factors, the preoperative, post-
operative and change in PD-L1s were included into the 
final Cox multivariate regression analysis model in turn, 
to assess their independent prognostic value for OS and 
RFS. The multivariate analyzes identified postoperative 
ePD-L1 (HR 1.136, 95% CI 1.098 to 1.174, p<0.001), 
ePD-L1 change (HR 0.914, 95% CI 0.878 to 0.951, 
p<0.001), postoperative tPD-L1 (HR 1.086, 95% CI 1.059 
to 1.113, p<0.001) and tPD-L1 change (HR 0.978, 95% CI 
0.959 to 0.997, p=0.023) as the independent prognostic 
factors for OS (figure  3A). Results of the multivariate 
analyses for RFS demonstrated that postoperative ePD-L1 
(HR 1.137, 95% CI 1.103 to 1.172, p<0.001), ePD-L1 
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change (HR 0.921, 95% CI 0.890 to 0.954, p<0.001), 
postoperative tPD-L1 (HR 1.085, 95% CI 1.061 to 1.110, 
p<0.001) and tPD-L1 change (HR 0.982, 95% CI 0.965 to 
0.999, p=0.037) were the independent prognostic factors 
(figure  3B). By contrast, the preoperative ePD-L1 and 
preoperative tPD-L1, as well as preoperative, postopera-
tive and change in sPD-L1, were not independent prog-
nostic factors for both OS and RFS. The complete results 
of the multivariate COX regression analysis for OS and 
RFS were shown in online supplemental tables 3–8.

Comparison of prognostic efficiency between postoperative 
ePD-L1 and conventional serum biomarkers
We selected the most powerful indicator of our research 
objectives (postoperative ePD-L1) to compare the survival 
performance with three conventional serum biomarkers 
(preoperative CEA, CA19-9 and CA72-4) in a subgroup 
of our study cohort (n=291, data of the other 22 patients 
were not available). Due to the different unit standards, 
all four indicators were converted into binary variables. 
The cut-off value of ePD-L1 was defined as the median 
value (8.75 pg/mL). The cut-off values of CEA, CA19-9 
and CA72-4 were defined as 5 ng/mL, 27 U/mL and 5.3 
U/mL, respectively (according to a similar study9). In 
Kaplan-Meier survival analysis (figure  4), all four indi-
cators demonstrated with significant distinguish abilities 
in both OS and RFS. However, the postoperative ePD-L1 
had the best ability to distinguish the better or worse OS 
and RFS (both p<0.001). In Cox proportional hazards 
regression analysis (figure  5 and online supplemental 
table 9), all four indicators showed significant HR for 
OS and RFS in univariate analyses. However, the prog-
nostic value of serum CEA on OS was not significant in 
multivariate analysis, after adjusted for the nine variables 
mentioned above. The postoperative ePD-L1 demon-
strated the highest prognostic value for both OS and RFS, 
either in univariate or in multivariate analysis. The HR 
(95% CI) and p value of these four indicators were: 6.097 
(2.945 to 12.624),<0.001 (OS of ePD-L1); 3.745 (2.169 to 
6.467), <0.001 (RFS of ePD-L1); 1.792 (0.951 to 3.377), 
0.007 (OS of CEA); 1.800 (1.002 to 3.232), 0.049 (RFS of 
CEA); 2.113 (1.109 to 4.025), 0.023 (OS of CA19-9); 2.236 
(1.222 to 4.091), 0.009 (RFS of CA19-9); 1.764 (1.001 to 
3.109), 0.049 (OS of CA72-4) and 2.035 (1.227 to 3.375), 
0.006 (RFS of CA72-4).

DISCUSSION
The present study evaluated the relationships of different 
forms of plasma PD-L1s with short-term (18 months) 
prognosis of GC patients who underwent surgical resec-
tion. Our results demonstrate that levels of postoperative 
ePD-L1, postoperative tPD-L1, ePD-L1 change and tPD-L1 
change are independent prognostic factors for OS and 
RFS of GC patients. High plasma levels of postoperative 
ePD-L1 and postoperative tPD-L1 correlate significantly 
with poor OS and RFS, while high change in ePD-L1 and 
tPD-L1 levels bring the significant benefit to OS and RFS. 
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By comparison, postoperative ePD-L1 exhibits higher 
prognostic value for OS and RFS not only than other 
forms of plasma PD-L1, but also than the conventional 
serum biomarkers (CEA, CA19-9 and CA72-4). The levels 
of preoperative ePD-L1 and preoperative tPD-L1 are 
significant prognostic factors in univariate analyzes but 
not in multivariate analyzes, indicating their prognostic 
potencies are not independent of clinical characteristics, 

such as patients’ BMI, histological type, Borrmann typing, 
pathological stage, concomitent disease, lymphadenec-
tomy and adjuvant chemotherapy, which are also signif-
icant prognostic factors for OS and RFS. Similarly, the 
level of plasma sPD-L1 is not an independent prognostic 
factor for OS and RFS of GC patients. To our knowledge, 
this is the first report on the relationship of postoperative 
plasma ePD-L1 with tumor prognosis.

Figure 1  Kaplan-Meier curves estimate for overall survival (n=313). The cut-off value of each index was defined as 
corresponding median value. ePD-L1, plasma extracellular vesicular programmed cell death ligand-1; sPD-L1, plasma soluble 
PD-L1; tPD-L1, plasma total PD-L1.
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PD-L1 is expressed on the cell surface and is up-regu-
lated in almost all types of tumors.13 14 As an important 
immune checkpoint ligand, tumor PD-L1 binds the PD-1 
receptor on CD8 +T cells, leading to immunosuppres-
sive tumor microenviroment.13 29 Tumor PD-L1 expres-
sion has been explored as a predictive biomarker for 
tumors of different types.14 30 With the great development 
of immune checkpoint inhibitors in cancer therapies, 

PD-1/PD-L1 inhibitors have been emerging as a novel 
treatment strategy for advanced GC.15 16 However, not 
all PD-L1 positive patients respond well to PD-1/PD-L1 
inhibitors. And in previous GC studies, contradictory 
results had been reported that PD-L1 was associated with 
both good31 and poor32 prognosis. The reason for these 
contradictory findings is uncertain, but could in part 
be attributed to the different levels of ePD-L1. Recent 

Figure 2  Kaplan-Meier curves estimate for recurrence-free survival (n=313). The cut-off value of each index was defined as 
corresponding median value. ePD-L1, plasma extracellular vesicular programmed cell death ligand-1; sPD-L1, plasma soluble 
PD-L1; tPD-L1, plasma total PD-L1.
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reports demonstrated that serum sPD-1 and PD-L1 levels 
were independent prognostic factors susceptible to anti-
PD-L1/PD-1 therapy in different solid tumors.22 23 More 
recently, PD-L1 has been found expressed on the surface 
of EVs33 and tumor cell-derived EVs have contributed to 
immunosuppression through membrane PD-L1.23 24 Our 
recent report demonstrated that value of plasma ePD-L1 
is better than sPD-L1 in the prognosis of cancer patients.25 
This may be due to the cell membrane expression of ePD-
L1, which preserves more of its immunosuppressive func-
tion on T cells than sPD-L1. A recent study reported the 

same results as ours that plasma ePD-L1 significantly asso-
ciated with prognosis than sPD-L1 in GC patients.26 The 
present study also demonstrates that ePD-L1 is a more 
powerful marker than sPD-L1 and tPD-L1 in survival 
prognosis of GC patients after resection.

Our previous report demonstrated that the level of 
plasma ePD-L1 was significantly correlated with tumor 
PD-L1 expression,25 indicating that the tumor tissue is 
the major origin of plasma ePD-L1. And hence in patients 
with cancer, with the resection of tumor tissue, the plasma 
level of ePD-L1 will change significantly after surgery. 

Figure 3  Results of multivariate COX proportional hazards regression analyzes for overall survival (OS) and recurrence-free 
survival (RFS). Data were adjusted for patients’ age, sex, BMI, undifferentiated type, Borrmann typing, pathological total TNM 
stage, concomitant disease, lymphadenectomy and adjuvant chemotherapy. n=313. BMI, body mass index; ePD-L1, plasma 
extracellular vesicular programmed cell death ligand-1; sPD-L1, plasma soluble PD-L1; tPD-L1, plasma total PD-L1.
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Therefore, the level of postoperative plasma ePD-L1 can 
reflect the residual or metastatic tumor tissue more than 
the preoperative level. While the presence and area of 
residual or metastatic tumor lesions is an important indi-
cator in patients’ treatment and prognosis after surgery. 
However, the prognostic value of postoperative plasma 
PD-L1 has not been reported to our knowledge. From the 
results of the present study, we can conclude that, after 
adjusting for chief clinical characteristics, the postoper-
ative ePD-L1 maintained the significant correlation with 
patients’ survival, while the preoperative ePD-L1 not. The 
level of ePD-L1 change (value of postoperative reduc-
tion), which reflecting the resection of tumor tissue, also 
significantly correlated with patients’ survival, but the 
correlation was smaller than that of postoperative ePD-L1.

The residual and metastatic tumor foci are important 
prognostic factors for postoperative tumor patients. 
Indeed, our study also shown that the patients with 
reported tumor residue after surgery had worse survival 
outcomes than those without (data not shown). The detec-
tion of residual foci after GC surgery is mainly based on 
the general observation during the operation and histo-
logical analysis of the edge of excised tissue. Therefore, 
an extremely small residual tumor can be easily ignored.34 
In addition, it is almost impossible to detect a minimal 
potential metastasis, as it is reported that the small cancer 
metastasis often occurs very early, but it is difficult to be 
detected.35 And hence, for the patients without positive 

report of residual or metastatic tumor after surgery, a 
marker that can indicate the potential residual or meta-
static tumor is much needed. In this sense, postoperative 
plasma ePD-L1 may be an appropriate choice.

This study has several limitations. First, we enrolled a 
relatively small number of patients at a single Chinese 
institution. To reduce the selection bias as much as 
possible, the collection of patients was consecutive 
between October 2018 and April 2019. A multicenter 
study with more patients enrolled will be required. 
Second, the observation period of patients is relatively 
short. The present study observed the death and recur-
rence events in the first 18 months after surgery of GC 
patients. According to the results of several large clin-
ical studies,36–38 the mortality in the first 18 months after 
section of GC patients accounted for about half of the 
long-term (5–10 years) mortality. Therefore, the death 
events in the first 18 months after surgery can objec-
tively reflect the short-term survival rate, and can to some 
extent reflect the long-term survival status of GC patients. 
A long-term follow-up study is needed to assess plasma 
PD-L1-related late survival prognosis.

In summary, the current results validate a previous 
report on the association between plasma PD-L1 and 
prognosis of GC patients.26 More importantly, we demon-
strate for the first time that high postoperative ePD-L1 
level associates with a significantly increased risk of 
death, and a high drop in ePD-L1 level associates with a 

Figure 4  Comparison of Kaplan-Meier curves estimate for OS and RFS between postoperative ePD-L1 and conventional 
serum biomarkers (carcinoembryonic antigen (CEA), cancer antigen 19–9 (CA19-9) and CA72-4) (n=291). The cut-off value 
of ePD-L1, CEA, CA19-9 and CA72-4 were 8.75 pg/mL, 5 ng/mL, 27 U/mL and 5.3 U/mL, respectively. ePD-L1, extracellular 
vesicular programmed cell death ligand-1; RFS, recurrence-free survival; OS, overall survival.
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significantly decreased risk of death in GC patients after 
resection. Our results demonstrate the emerging roles of 
plasma postoperative ePD-L1 as a prognostic biomarker 
of tumor patients after resection, which is even superior 
to conventional serum biomarkers (CEA, CA19-9 and 
CA72-4) in prognostic of GC patients.
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