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The human gut microbiome develops during the first years of life, followed by a relatively stable adult microbiome. Day care
attendance is a drastic change that exposes children to a large group of peers in a diverse environment for prolonged periods, at
this critical time of microbial development, and therefore has the potential to affect microbial composition. We characterize the
effect of day care on the gut microbial development throughout a single school year in 61 children from 4 different day care
facilities, and in additional 24 age-matched home care children (n = 268 samples, median age of entering the study was

12 months). We show that day care attendance is a significant and impactful factor in shaping the microbial composition of the
growing child, the specific daycare facility and class influence the gut microbiome, and each child becomes more similar to others
in their day care. Furthermore, in comparison to home care children, day care children have a different gut microbial composition,
with enrichment of taxa more frequently observed in older populations. Our results provide evidence that daycare may be an
external factor that contributes to gut microbiome maturation and make-up in early childhood.
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INTRODUCTION

Early childhood is an important period where different interven-
tions can affect behavioral and biological factors, supporting a
child’s growth. Early childhood is also a pivotal time for the
development of the gut microbial composition and the host
immune system. During this time, the gut microbial composition
displays the highest intra- and inter-individual variability'-3.
Microbial maturation likely facilitates host immune maturation®®,
In germ-free animals, in the absence of the microbiota, there is a
deleterious effect on the immune system® and on brain
development”. Behavioral and cognitive developments take place
parallel to microbial maturation in the first years of life. Previous
studies have demonstrated a short-term beneficial impact of
preschool participation on early cognitive skills®, and some long-
term effects on health, educational attainment, and earnings®'".
A recent study has also connected the taxonomic and functional
composition of the gut microbiome with behavior during early
school-aged children’s development'?.

Previous studies demonstrate that the gut microbiome compo-
sition is established within the first 3 years of life, where it is
predominantly shaped by environmental factors, and not by
genetics'>'%. Studies have focused on the first year of life,
showing that mode of delivery and breastfeeding impact the
microbial composition. Children in this age group are mostly
exposed to their family, but, once they grow and start attending
day care, they become exposed to additional environmental
factors as well as new children and adult caregivers, all of which
may have a significant effect on their microbial composition. Few
previous studies looked at the microbiota in relation to daycare
attendance. One study included 9 infants, and tested the effect of
feeding on the infant microbiome and also showed that day care
attending infants harbor higher microbial diversity compared to
non-daycare attending infants'>. A second study compared 98
home vs. day care infants at the age of 3 months, but failed to

identify differences after a 4 week follow-up'®. A third study
collected stool samples over the course of a year aiming to
characterize stability, inter- and intra-individual variability and
resilience to antibiotic use and illness, but did not compare those
results to a home care group'”. In our current work, we followed a
cohort of children (n=61) attending four different day care
facilities for their first time, aiming to evaluate the effect of day
care attendance on the microbial composition throughout a day
care year (up to 5 samples per child). We compared those to an
additional cohort of 24 age-matched children in home care. Using
this dataset, we show that day care attendance is a significant
factor impacting microbial composition and maturation.

RESULTS
Characteristics of cohort

We prospectively collected stool samples and metadata from 61
children in 4 different day care facilities (day care A, B, C, D) from
the same geographical region (Fig. 1a and Table 1). In Day care B
and C there were 2 classes within each facility, with some of the
caregivers working in both classes. Samples and metadata were
collected within the first 2 weeks after each child started
consistent day care attendance (sample/time point 1), and after
2,4, 7, and 10 months (time points 2-5) during the course of the
year. In addition, we collected samples from 24 age-matched
home care children (Table 1). Home care children did not attend
day care before or during the study sampling. All four day care
facilities had internal variable home-made cooking (including
dairy products, fruits, vegetables, chicken, pasta, and rice). Median
age of entering the study was 12 months and the groups included
49%/58% males in daycare/homecare respectively. Median
numbers of subjects in the household were 4 and most were
delivered vaginally (86% in the day care and 83% in the
home care). The minority of the children were never breast fed
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Fig. 1 Longitudinal cohort of 61 children starting day care, and additional age-match home care children. a Each row corresponds to an
enrolled child with longitudinal fecal sampling. Stool samples were collected within the first 2 weeks after each child started persistent day
care attendance (sample or time point 1), and after 2 months (time point 2), 4 (time point 3), 7 (time point 4), and 10 months (time point 5)
during the same school year. b Unweighted UniFrac PCoA plots colored by age, mode of delivery, and day care or home care of the
268 samples included in our study. ¢ A heatmap representing 116 amplicon sequence variants (ASVs) that showed significant correlation with
age in day care children using the first sample obtained within the first 2 weeks after each child started persistent day care attendance
(Spearman correlation r> 0.3, dsFDR < 0.1). Each row represents a different ASV and each column a different sample. Samples are ordered by
age, ASVs ordered by the effect size, color bar on the right indicates ASVs taxonomy class. Source data are provided as a Source Data file.
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Table 1. Cohort demographics and characteristics.
N Day care® N Home care
n==61 n=24
Age month Median (IQR)? 61 11.1(9,19.6) 24 12.6 (8.7 16.7)
Male (n, %) 61 30 (49%) 24 14 (58%)
Number of persons in 49 4 (3,4) 24 4 (3,5)
household Median (IQR)
Breast feeding
Never breast fed 38 4 (11%) 23 6 (26%)
Still some breastfeeding 38 24 (63%) 15 8 (53%)
during sampling’
Mode of delivery
Vaginal delivery 49 42 (86%) 24 20 (83%)
Cesarian delivery 49 7 (14%) 24 4 (16%)
Antibiotic within 3 days after 34 1 (3%) 23 3 (13%)
delivery
Antibiotic during delivery 34 1 (3%) 23 4 (17%)
2Age and breastfeeding when entering the study.
PNormally distributed continuous variable (age) was compared using two-
sample t-test. Non-continuous variables were compared using x2 test
between groups. Group were not significantly different (p > 0.05) in the
variable indicated.

(11% in those attending day care and 26% at home care), there
were 63% in the day care group and 53% of the home care group
that were still breast fed, and all children were already taking
complementary solids. Altogether, day care and home groups did
not vary significantly in demographics and characteristics features
tested (Table 1).

Age is a dominant factor in gut microbial maturation

We performed V4 16S rRNA amplicon sequencing, constructed
amplicon sequence variants (ASVs) profiles for all 268 samples,
and characterized ASVs relative abundance patterns. An
unweighted UniFrac based Principal Coordinates Analysis (PCoA)
was performed to visually explore the similarity and variation
between samples’ microbial composition (Fig. 1b). As previously
shown?, age is a dominant confounder of the microbial
composition not only in the first, but also in the second and third
years of life, as older kids cluster more toward the right of the
PCoA plot (Fig. 1b), with PC1 values highly correlated with age
[Spearman’s rank correlation rho using one random sample per
child =0.72, p-value < 1.5e-14, and repeating the analyses using
100 random iterations resulted in rho values ranging from 0.64 to
0.78 (mean p =0.72, sd = 0.027) and p values ranging from 9.09e-
19 to 3.40e-11 (mean p-value = 6.75e-13, sd =3.73e-12)]. PCoA
results colored by mode of delivery or by day care facility are
shown in Fig. 1b. ASVs that are significantly positively or
negatively correlated with age in day care children using only
the first sample per child are shown in Fig. 1c (Spearman r> 0.3,
dsFDR<0.1, Supplementary Data Source). These results further
highlighted the known effect of age on the gut microbial
maturation, and emphasize the need for age adjustment, as used
throughout in our downstream analyses.

Day care facility and class are significant contributors to gut
microbial composition

In order to evaluate the contribution of day care facility to the gut
microbial community, a naive approach would be to compare
beta diversity distances between participants from same vs.
different day care facilities. However, since there are differences in
the age distributions between the different day care facilities
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tested, this can lead to confounding effects due to age-related
microbiome changes. To overcome the confounding effect of age,
we limited the beta diversity distance analysis only to age-
matched pairs of children (defined as those within a one month
different in age). Figure 2a shows the Binary Jaccard distance
distribution for age-matched pairs of children participating in the
same (orange) or different (blue) day care facilities [as described in
methods and using equation (1)]. This comparison was performed
separately for each of the sampling time points, and therefore
contains a single sample for each participating child. Age-matched
pairs from the same day care were significantly more similar
(showed significantly lower distance) in comparison to age-
matched pairs from two different day care facilities. This effect was
noted only from the second sampling onward to the third, fourth,
and fifth sampling (Mann-Whitney test p < 0.001). No significant
difference was noted in the first sampling point, which was taken
just as the child entered day care. These results emphasize that
from the second sampling onward children from the same day
care become more similar in their microbial composition, implying
that the specific day care that the child participated in contributed
to the overall microbial composition of that specific child. The
Jaccard metric is based on presence/absence and does not take
into account the relative abundances of the bacteria, and we
opted to use it specifically to look for the appearance/
disappearance of bacterial ASVs following day care attendance.
However, a similar behavior is observed when using Bray-Curtis
distances which shows that results are robust, independent of the
distance metric chosen (Supplementary Fig. 1), and when using 10
random 4000 reads/sample rarefication (Supplementary Fig. 2).

To quantify the contribution of different factors affecting the
gut microbial composition, we used a PERMANOVA test (Fig. 2b
and Supplementary Data Source). PERMANOVA was applied in
parallel on all longitudinal samples while controlling age, gender
and subject (see Methods section), and also by analyzing each
sampling point separately (including only one sample per child) to
more rigorously control for subject’s contribution, after controlling
for age and gender. When considering all samples, intra-personal
composition explained the greatest amount of variance (44%),
followed by age (11%), and day care class and day care facility (6%
and 4%). Other factors showing modest but significant (p < 0.01)
contributions were gender, time form entering day care, attending
day care vs. being home cared, whether the mother or child
received antibiotic during and within 3 days of delivery, and
breastfeeding together with formula and/or solids. When con-
sidering each sampling time point separately and hence only one
samples per subject, day care facility, class, and age remained the
major significant contributors associated with the microbiome
profiles, unlike breastfeeding (ever or currently) and mode of
delivery that were not significant. Interestingly, in sample 4 and 5
both day care class and day care facility contribution were similar
to that of age (9-13%), and being in home care or day care
contributed 3-4% of the microbial variance. These results indicate
that the specific day care class is an impactful factor in child
microbial compositional makeup. This was consistent also when
using 50 random 4000 reads/sample rarefication (Supplementary
Fig. 3). To capture day care class-specific microbial ASVs and
taxonomy we used the Maaslin2 (Multivariate Association with
Linear Models) pipeline after controlling for subject, gender, and
age. Overall, 16 unique ASVs were significantly associated with
day care class, with g-value < 0.05 (ASVs numbers and sequences
are indicated in Supplementary Data Source). Example for the
distributions of these specific ASVs taxa are shown (Fig. 2¢, d).
Those include Veillonella (ASV1147) which is present in day care C
class 1 (Day care C1, Maaslin2 g =0.006), Dorea longicatena
(ASV708) in Day care C class 2 (day care C2, Maaslin2 g = 0.004),
and Ruminococcus (ASV544) in day care B class 2 (day care B2,
Maaslin2 g = 0.015).
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Day care children have a different microbial composition than
home care children with enrichment of taxa more frequently
seen in older populations

To define a more general contribution of attending day care and
to capture the differences in microbial composition between day
care and home care children, we looked at the community level
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(alpha-diversity) and at specific ASVs taxa. Supplementary Fig. 4a
shows the intra-personal diversity (number of ASVs, as a measure
of alpha-diversity) plotted as a function of age, and colored by day
care and sampling time point (blue) or home care (red). Overall
alpha-diversity increased with age (Pearson correlation r=0.65,
p-value = 2.2e-30 for day care children, r=0.67 p-value = 0.0003
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Fig. 2 Specific day care is a significant contributor to gut microbial composition in early childhood. a Binary Jaccard distance was
calculated between pairs of age-matched children (born within up to 1 month apart). Distances are shown for age-matched children pairs
participating in the same day care (orange) or a different day care facility (blue), showing that from the second sampling onward, age-
matched pairs from the same day care share more of their microbiome in comparison to pairs from different day care facilities. P-values for
differences between same and different day care pairs were calculated using a two-sided Mann-Whitney test. b PERMANOVA shows that inter-
individual variation explains most (44%) of the variation when using longitudinal sampling, followed by age (11%), day care class (6%), and
day care facility (4%) (left most column). The effect of day care facility and class is further noted when examining each sampling point
separately, where the variation explained by day care class increases to 12% in the fourth and fifth sampling point. Stars show statistical
significance (¥*P < 0.01). Variance is estimated for each feature independently, while accounting for age, gender, and subject when needed (see
Methods section). Total n is shown in brackets. ¢ Age against relative abundance of 4 ASVs significantly associated with day care class in the
maaslin2 analysis (see Methods section). Barnesiellaceae appeared in 4 of the 7 children in day care C class 2, and in none of the other
children. Longicatena also appeared in 4 of the 7 children in day care C class 2, and in none of the other children (not the same 4 children as
Barnesiellaceae). Veillonella appeared in 12 of the 14 children in day care C class 1, and in additional 2 children from day care B class 1. Lastly,
Ruminococcus appeared in 4 of the 12 children in day care B class 1, and in 4 of the 6 children in day care B class 2, and in none of the other
day cares. d A cohort figure showing all children from specific day care classes over age, similar to Fig. 1a. Samples positive to Veillonella

(ASV1147, Supplementary Data Source) are marked in a black circle. Source data are provided as a Source Data file.

for home care children) in all children as was previously shown in
other cohorts'™. Alpha-diversity (the number of species) in the
two groups displayed a similar positive dependence on age with
slope of 3.4 for day care and 2.1 for home care using linear
regression for the number of species as a function of age for the
two groups (p-value =0.07 for rejecting the null hypothesis of
similar slopes for the two groups using a non-parametric single-
sided test with 1000 random permutation of day care or home
care labels, Supplementary Fig. 4). Home care children tended to
have a lower mean diversity across all age groups when including
only one sample per child in each age group (Supplementary Fig.
4b, Mann-Whitney p-values 0.2, 0.06, 0.04, 0.04 for the 5-9, 10-14,
20-24, and 25-29 months age groups respectively). Acknowl-
edging the limitation in the numbers of children in the home care
group after subgrouping, there did not seem to be systematic
differences in delivery mode, number of household members, and
breastfeeding between home care and day care children in all
subgroups tested beside lower rate of breastfeeding in the
25-29 months home care children; home care children in this age
group (n=3) were never breast fed vs. 86% of the days care
children that were breastfed.

To further evaluate the microbiome ability to discriminate
between children at home care and in day care, we used a
supervised Random Forests (RF) classifier using a group of age-
matched children (one sample from each child) including 24
children from home care (median age 12.4 months IQR 8.7, 16.7)
and 24 children from day care (median age 11.4, IQR 8.9, 16.9). In
this analysis, we manually selected samples best matching in age
(up to one month apart), gender, mode of delivery, breastfeeding
and number of persons in the household (Supplementary Table 1),
in order to equalize the group sizes used for the random forest
classifier and control for potential confounders. A Receiver
operating characteristic (ROC) area under the curve (AUC) of
0.88 was obtained (Fig. 3a, b, and the top ASVs taxa used for the
classification are shown in Supplementary Fig. 5 and in
Supplementary Data Source). To further ensure that this is not
the result of a bias in the age-matched sample selection, we
performed another random forest analysis, using the 24 home
care children and 100 random subsets of 24 age-matched daycare
children out of the available age-matched samples. This analysis
resulted in AUC values ranging from 0.69 to 0.92, with a median of
0.81. Together, these results indicate that day care children have
different microbial composition in comparison to home care
children.

Differentially abundant ASVs (between day care and home care)
were identified using a non-parametric rank mean test as
implemented in Calour'® with dsFDR multiple hypothesis correc-
tion (FDR<0.1). To account for age, and to avoid multiple
sampling from the same participant, we again used aged-match
pairs. Each home care child was matched with day care children
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that are up to 1 month apart in age, and only one sample per child
was included. This resulted in 60 samples from children in day
care, which were age matched to the 24 home care samples
(median age of 12 and 12.4 months for day care and home care
respectively, Supplementary Fig. 6). Differentially abundant ASVs
were then detected using a permutation-based non-parametric
rank-mean test paired on the matched group (i.e., pairing on the
home care participant and all age-matched day care participants),
with FDR controlled to 0.1. There were 8 resulting ASVs that were
significantly higher in the home care group and 7 that
were significantly higher in the day care group (Fig. 3¢, taxonomy
and specific sequences of those ASVs are in Supplementary Data
Source). Increased abundance in home care children were noted
for taxa from Bifidobacteriaceae (g =0.04) families of the
Actinobacteria phyla, Lactobacillaceae (g =0.05) and Staphylo-
coccaceae (g =0.05) of the Firmicutes phyla, and Pasteurellaceae
(g =0.04) of the Proteobacteria family. Increased abundance in
day care children were noted for Prevotellaceae family and
Prevotella genus of the Bacteroidetes phyla (g=0.04), and
Lachnospiraceae (g =10.05) and Ruminococcaceae (q=0.04) of
the Firmicutes phyla.

The presence of Bifidobacteriaceae and Lactobacillaceae were
previously more related with younger children and infants,
whereas Prevotellaceae is more seen in older children and
adults'®, we therefore tested if these 15 ASVs that differ between
day care and home care were also linked with age-dependent
maturation in other studies. We used two publicly available
datasets with V4 16S amplicon sequencing, spanning four
different countries from different geographic regions that
included children in similar and older age groups (PRJEB20773%°)
and children and adults (PRINA2903807"). Each of these studies
was processed using the same pipeline used in the current study,
to enable direct ASV comparison. Age-related ASVs in each of
these studies were identified by testing for significantly positively
or negatively correlated with age in each of the three countries
(Estonia and Finland with higher and Russia with lower
autoimmune prevalence) in PRJNA2903802' or differentially
abundant in adults vs. children in India in PRJEB20773%°. We then
tested how many of the ASVs differentiating between home care
and day care in our current study were also observed as age-
related ASVs in each of these comparisons across 4 different
countries. Figure 3d shows the overlap between the ASVs
observed in our study as higher in day care (green circles) or
home care (red circles), and ASVs associated with old or young age
in these additional studies (blue circles in left and right columns
respectively). More than half of the ASVs observed as higher in day
care children in our current study were associated with older age
in the additional studies tested (left column), whereas none were
associated with younger age (right column) (x> p<0.05).
Conversely, ASVs observed as higher in home care children in
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Fig. 3 Day care children show a distinct and more mature microbial composition in comparison to age-matched home care children.
a ROC curve of random forest result, differentiating between 24 home care and 24 age-matched day care samples, with an AUC of 0.88.
b Random forest out of bag (OOB) score for day care and home care samples with a Youden point threshold of 0.51 (see Methods). True
positive (TP), true negative (TN), false positive (FP) and false negative (FN) classification results are colored. ¢ A heatmap showing ASVs with
significant differential abundance between home care and age-matched day care children samples (paired rank-mean test with dsFDR < 0.1
multiple hypothesis correction, see methods). Each row represents a different ASV (7 ASVs more abundant in day care and 8 more abundant in
home care) and each column a different sample. Samples within each day care facility are ordered by age, ASVs are ordered by the effect size,
and color bar on the right indicates ASVs taxonomy class. d Venn diagram showing overlap between the 7 day care and 8 home care
associated ASVs from panel ¢ (green and red circles respectively) with age younger/older age associated ASVs (blue circle in right and left
columns respectively) identified from other cohorts [PRINA290380%°], PRJEB20773'°] - see Methods section for additional details),
empbhasizing significant larger overlap of home care enriched ASVs with younger subjects (x> p < 0.05) in contrast to day care enriched ASVs
that show a more substantial overlap with older subjects. Source data are provided as a Source Data file.

our current study showed a larger overlap with ASVs associated DISCUSSION

with younger age (right column) compared to ASVs associated  The longitudinal nature of our cohort allowed us to characterize
with older age or adults (left column). We therefore concluded the dynamics of the microbial composition in early child

that day care children not only have distinct microbial composi-  hood, taking into account day care as a small ecosystem. Unlike
tion but those bacterial ASVs seen in day care children were also studies that focused on the first year of the child’s life and
reported in older children and adults, rather than in younger indicated strong contribution for mode of delivery and breast-
children. feeding, we focus and highlight the dynamics taking place in the
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Fig. 4 Cartoon highlighting the results implicating that day care environment is a significant factor impacting microbial dynamics in the
second and third year of life. The specific day care facility is shaping the growing child’s microbial composition, with each child becoming
distinct and more similar to his classmates. Furthermore, when comparing to home care children, day care children have distinct and more
mature microbial composition with enrichment of taxa more frequently seen in older populations.

second and third year of life. In this period, we show a relative
minor contribution for mode and delivery and breastfeeding on
the microbial variation, and a much stronger contribution of
specific day care and class on the microbial variation. We further
show that children attending day care have a distinct microbial
composition, with enrichment of taxa more frequently seen in
older populations, compared to that seen in age-matched children
that have not yet started day care, and those variation can be
correctly classified using the RF machine learning classifier (Fig. 4
cartoon highlights those findings).

Three published studies have also examined the effect of day
care attendance on the child microbiome to some extent'>""’, The
first'®, primarily looked at the effect of diet in nine children, while
indicating also an increase in alpha diversity in the samples
following day care attendance. However, this study lacked
controls for age-matched non-day care participants, and therefore
cannot differentiate between the effect of day care attendance
and the effect of aging, which is also linked to increased alpha
diversity. Here, we augmented those results comparing the
participants to age-matched children from other day care facilities
and home schooling. We further show that specific ASVs bacteria
are detected in a specific day care class, and are hardly detected in
the other day cares or classes (Fig. 2¢, d). Additionally, by
comparing to other infant studies, we show that the bacteria
associated with day care attendance are associated with older age.
The second study’S, focused on children who entered day care at
3 months of age and followed them for only 4 weeks. This study
failed to show a significant contribution of day care attendance or
a significant difference from home care children. Differences
between the experiment design of this study and our current
study include the younger age of the children (3 months vs.
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median of 12 month), the relative short period of follow-up
(4 weeks vs. 10 months), and the relative limited period the
children attended day care [about 2 days a week, as opposed to a
full week (6 days a week)]. As a result of these differences in the
experimental design, the different conclusions reached may be
due to a faster microbial population change in infancy, leading to
a reduced general impact of daycare attendance compared to
other environmental factors such as breastfeeding and close
contact with the mother. Additionally, it is possible that older
children in daycare move more independently, touch more
objects, and are in closer contact with other children than young
infants in daycare. The third study'’, had a different design, as it
looked at inter- and intra-individual variability and resilience to
antibiotic and illness in the microbiota of daycare children aged
1-6 years, without comparison to home care or other day care
groups. We therefore believe that while the idea of the effect of
day care attendance on the microbiome has been studied before,
our study adds a significant and important contribution in
identifying early influences on the gut microbial system in
humans. Limitations in our study include the relative small
number of participants, lack of data regarding additional factors
such as household pets, more detailed diet exposures, children’s
health status, household characteristics (e.g. parenting stress,
quality of care), which may also contribute to gut microbial
composition. Additionally, the current study design did not enable
testing the minimum number of hours needed to significantly
impact the microbiota, the first sample was obtained during the
first days of day care rather than prior to day care initiation, and
there could be other unmeasured factors influencing whether
parents choose homecare vs daycare and that those may
influence the child’s gut microbiome. Moreover, early life
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antibiotics have been shown to effect microbial composition at a
later point in time'®?2, We noted a marginal trend toward higher
antibiotics use during or after delivery in the home care group.
While PERMANOVA analyses show significant but limited con-
tribution of antibiotics use around birth (1.3%) vs. the 6%
contribution of the day care class to the microbial variation, it is
possible that antibiotics also contributes to some of the effect
seen between day care and home care. Future studies with larger
cohort sizes may be able to more robustly address those and
additional factors.

Day care participation exposes children to a large group of
peers for a prolonged period of time during the day (8 h a day,
5-6 days a week on average). The fact that children from the same
day care share more of their microbiota, and the strong effect of a
specific day care facility and class on the microbial community
emphasize the importance of such environmental intervention on
the growing child microbial composition in early childhood.
Interestingly, the frequency of day care attendance during early
childhood?* and population mixing of children?* were inversely
associated with childhood diabetes, and increasing the number of
children in the day care setting was significantly associated with
increasing protection from diabetes. These findings suggest that
early exposure may play a role in the development of immune-
regulatory mechanisms which protect against diabetes. Follow-up
longitudinal studies are warranted to examine if and how specific
patterns of the gut microbial maturation and day care attendance
in healthy children are linked with future health and disease
states, as well as immunologic and allergic outcomes®.

In this context, the “hygiene hypothesis” was built on the
observation that young siblings in large families were less likely to
have atopic diseases than older siblings or children from small
families?52”. The interpretation for this observation was that those
kids suffered from more infections in early childhood, interpreta-
tion that was later disputed when large cohorts have found no
association between the number of viral infections and allergic
disease?®. On the other hand, growing up in a farm and with pets
reduces the likelihood of developing asthma??, allergies, and
inflammatory bowel disease (IBD)3%3. It is possible that growing
up in a more diverse microbial ecosystem during early childhood
helps train the immune system not to overreact to triggers. This
was recently shown to be the case, where farm-like indoor
microbiota in non-farm homes protected children from asthma
development32, Day care in that sense is linked to both increase
risk for infections® but also based on our study to a more mature
and diverse microbial ecosystem, thereby potentially contributing
additional explanation to the “hygiene hypothesis”. Interestingly,
Haemophilus genera from Pasteurellaceae family have been
associated with an increased risk for asthma, when abundant in
home dust or colonizing the airways early in life>4, and it was also
more abundant in the gut of home care children in comparison to
day care children.

In summary, the gut microbiome is shaped predominantly by
environmental factors, while genetics explain <10% of the
variation'>'*, and it plays a crucial role in immune development
and function*®, as well as in host metabolic state*®. The First 3
years of life (early childhood) display the highest intra- and inter-
individual gut microbiome variability', and it is therefore
thought to be the most influential time for the gut microbiome
maturation. We show that day care attendance is impactful and
significant in shaping the microbial composition in early child-
hood. The specific day care facility and class influence the gut
microbiome, and each child becomes more similar to others in
their day care. Furthermore, day care children have a different gut
microbial composition in comparison to home care children, with
enrichment of taxa more frequently observed in older popula-
tions. While the idea of the effect of day care attendance on the
microbiome has been studied before, our study adds a significant
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and important contribution in identifying early influences on the
gut microbial system in a pivotal time of microbial dynamics.

METHODS
Study population and sampling

This prospective observational cohort included 61 children who first
started attending day care for their first time in the 2018-2019 school year
(September 2018 to July 2019). Four different day care facilities (day care A
to D) were included, all are located within 10 kilometers from the lab. Stool
samples and questioners were collected within the first 2 weeks after the
child started consistent day care attendance (sample or time point 1), and
after two, four, seven, and ten months (time points 2-5) during the course
of a year (Fig. 1a). 24 additional age-matched children in home care
settings were also included, those did not attended day care before or
during the study sampling. Children in the four day care facilities live in the
same geographic region in close proximity to the lab, and did not show
significant differences in social economic status (tracked by the number of
rooms in the household and parental education) and by model of delivery
and breast feeding (Supplementary Table 2). All four day care facilities had
internal home-made cooking, which served age-adjusted food with diverse
ingredients including dairy products, fruits, vegetables, chicken, pasta, and
rice. In Day care B and C there were 2 classes within each facility, with
some of the caregivers working in both classes. We aimed to include
children that entered day care for the first time, and were under 3 years old
when entering day care. Parents and day care personal were instructed to
keep and label diapers with stool content that were changed during the
mornings of the specified collection days. Sampling of the stool at the lab
was done instantly and samples were immediately frozen —80C until
further analyses. All day care samples were handled and processed
similarly and together and the home care samples were processed with
the last day care sampling. We included negative controls (extraction and
PCR blanks) that were prepared similarly and together with the rest of the
samples. We excluded samples when subjects were on antibiotics within
6 weeks of stool collection. We have complied with all relevant ethical
regulations for work with human participants. Ethical approval for the
study was granted by the Sheba Research Ethics Committee. Written,
informed consent was obtained.

16S rRNA gene amplicon sequencing and analyses

DNA extraction and PCR amplification of the variable region 4 (V4) of the
16S rRNA gene using lllumina adapted universal primers 515 F/806 R was
conducted using the direct PCR protocol [Extract-N-Amp Plant PCR kit
(Sigma-Aldrich, Inc)]*¢38, PCRs were conducted and amplicons were
pooled in equimolar concentrations into a composite sample that was size
selected (300-500 bp) using agarose gel to reduce non-specific products
from host DNA. Sequencing was performed on the lllumina MiSeq platform
with the addition of 15% PhiX, and generating paired-end reads of 175b in
length in each direction.

Reads were processed in a data curation pipeline implemented in QIIME
2 version 2019.4°°40, Reads were demultiplexed according to sample
specific barcodes. Quality control was performed by truncating reads after
three consecutive Phred scores lower than 20. Reads with ambiguous base
calls or shorter than 150bp after quality truncation were discarded.
Amplicon sequence variants (ASVs) detection was performed using
Deblur* and duplicate samples from different runs were joined, resulting
in 268 samples with median of 20K reads/sampe (IQR 13-27K). ASV
taxonomic classification was assigned using a naive Bayes fitted classifier,
trained on the August 2013 Greengenes database, and on SILVA release
138 database*? for 99% identity 150 bp long reads**. Unweighted UniFrac
was used as a measure of between sample B-diversity**, using a
phylogenetic tree generated by SATé-enabled phylogenetic placement
(SEPP)*>. All samples were rarefied to 4000 reads for a and B diversity
analysis, to avoid read number effects. The resulting distance matrix was
used to perform a principal coordinates analysis (PCoA). heatmaps were
generated using Calour version 2018.10.1 with default parameters'®,

PERMANOVA: Quantifications of variance were calculated using PERMA-
NOVA with the adonis2 function in the R package Vegan (vegan:
Community Ecology Package. R package version 2.5-6. https://CRAN.R-
project.org/package=vegan)*®, on the rarefied Unweighted UniFrac
distance values. The total variance explained by each variable was
calculated while accounting for age and gender in the model (except for
when looking at the contribution of age and gender, when only age or
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gender can be controlled for), and for subject using adonis strata in the
longitudinal analysis. The per time point analysis included only one sample
per patient, and therefore accounted only for age and gender.

Random forest analysis of home care and day care samples: ASVs of 24
home care and 24 manually matched day care samples were used, to avoid
group size bias. The matching of day care samples was performed while
accounting for age (up to 1 month of difference in age), mode of delivery,
breastfeeding and the number of persons in the household (Supplemen-
tary Table 1). In addition, to further ensure that our results are not the
results of a bias, we chose 100 random subsets of 24 daycare children out
of the 60 available age-matched samples, and used them in a random
forest analysis compared to our 24 home care children. The random forest
analysis was performed in R package randomForest*’. This class probability
was used to calculate the AUC*. Score threshold was calculated using
Youden index.

Statistical analyses

Age correlated ASVs: Using only samples from the first sampling (i.e. within
2 weeks of entering day care, and hence with only one sample per
participant), we identified ASVs significantly positively or negatively
correlated with age by using a permutation-based spearman rank
correlation with dsFDR multiple hypothesis correction (FDR<0.1)* as
implemented in Calour.

Effect of day care facility using age-matched pairs: For each sampling
point (1 to 5), each day care child sample was matched to samples of other
day care children that are aged up to 1 month apart, and including only
one sample per child. These samples were further divided into “same” and
“different” day care groups based on the day care facility the two children
attended. Binary-Jaccard distance was then calculated for all pairs within
each group using equation (1) below:
|8; 5|

Dij=1
H ‘B;UBJ|

where D; ; denotes the Binary-Jaccard distance, and B; B; denote the
bacteria present in samples i, j respectively.

For each sampling period, significance of the difference between the
“same” and “different” day care distance distributions was calculated using
the non-parametric Mann-Whitney test (as implemented in scipy
version 1.5).

Home care and day care associated ASVs: differentially abundant ASVs
(between day care and home care) were identified using a paired feature-
wise non-parametric rank mean test as implemented in Calour'® with
dsFDR multiple hypothesis correction (FDR<0.1)*. For each feature
(bacteria), the relative abundance across all samples is first ranked. The
mean of the ranks for the bacteria in each group is then calculated, and the
p-value is calculated by comparing to random permutations of the group
labels, that are performed only within samples of similar pairing field
values. Finally, dsFDR multiple hypothesis correction is applied for the p-
values resulting from all the features. To account for age, and to avoid
multiple sampling from the same participant, we created a set of age-
matched day care children samples for each of the home care sample, with
an age difference up to one month, and using only a single sample from
each day care participant (Supplementary Fig. 6). The process was as
follows: starting with the pool of all day care children samples, in each
iteration go over all home care children, and for each home care child
select the latest time point for day care child's sample with an age
difference less than 1 month. Then remove all day care samples of that
child whose sample was already selected. This repeats until no more
matching day care sample are found. The result of this age-matching is, for
each home care child, a set of day care samples with an age up to 1 month
from the home care child were captured. This process also removed the
dependence between same child samples. This resulted in 60 samples
from children in day care, which were age matched to the 24 home care
samples (median age of 12 and 12.4 months for day care and home care
respectively, Supplementary Fig. 6). A paired test was then used with
grouping on the home care participant for whom the matching was
performed (i.e., each group contained a single home care sample and the
corresponding age-matched day care samples).

Identification of age associated ASVs in additional studies: per-sample
FASTA reads files were downloaded from the SRA for two additional
studies (2°2") that included child microbiome samples sequenced using
the V4 region (accession numbers PRJEB20773 and PRIJNA290380
respectively). Sequences were processed using the same pipeline
described for the current dataset. For PRJEB20773%° we identified
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age-associated ASVs by comparing study samples of adults (n =40) and
infants (n =84, 6-12 months with mean age 8 month and median
7.2 months) not receiving antibiotics, using the non-parametric rank mean
test as implemented in Calour with dsFDR multiple hypothesis correction
(FDR<0.1). The second study, PRINA290380°', included samples of
children aged 0-1200 days (4 years) spanning three countries (Estonia,
Russia, and Finland). For each country, we identified age-associated ASVs
by testing for ASVs significantly correlated or anti-correlated with age
using the Spearman rank-correlation with dsFDR correction (FDR < 0.1)
implemented in Calour.

Alpha-diversity analysis: All samples were rarefied to 4000 reads for a
and B diversity analysis. Number of observed ASVs was used as the alpha-
diversity metric for home care and day care comparison. Samples were
stratified to 5-month age bins, and in cases where the age bin contained
more than one sample from the same participant, these samples were
joined to a single sample (using mean frequency). Non-parametric
Mann-Whitney test was then used for comparison between the home
care and day care groups at each age bin independently.

Multivariate Association with Linear Models to test for day care class-
specific ASVs: Differentially abundant ASVs between day care classes were
tested using MaAsLin2 (Multivariate Association with Linear Models) R
package version 1.0.0 (https://huttenhower.sph.harvard.edu/maaslin/) with
an FDR of 0.05, controlling for age and gender, and for patient ID as a
random effect™°.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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