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A B S T R A C T

Viruses depend on their host's cellular structure to survive. Most of them do not have tRNAs, their translation
relies on hosts' tRNA pools. Over the course of evolution, viruses needed to optimally exploit cellular processes of
their host. Thus, codon usage of a virus should coevolve with its host to efficiently and rapidly replicate. Some
viruses can invade a broad spectrum of hosts (BSTVs), while others can invade a narrow spectrum only (NSTVs).
Consequently, we test the hypothesis that similarity of codon usage preference and the degree of matching
between BSTVs and their hosts will be lower than that of NSTVs, which only need to coevolve with few hosts. We
compare the patterns of codon usage in 255 virus genomes to test this hypothesis. Our results show that NSTVs
have a higher degree of matching to their hosts' tRNA pools than BSTVs. Further, analysis of the effective number
of codons (ENC) infers that codon usage bias of NSTVs is relatively stronger than that of BSTVs. Thus, codon
usage of NSTVs tends to better match their host than that of BSTVs. This supports the hypothesis that viruses
adapt to the expression system of their host(s).

1. Introduction

Viruses are pure parasites. They depend on their hosts' cellular
structure and metabolism to replicate and assemble, i.e., survive. Most
of their genomes do not encode tRNAs, thus their translation of viral
proteins relies on the hosts' tRNA pools (Kumar et al. 2016). A suc-
cessful infection requires that viruses possess the ability to enter the
host cell, and efficiently produce new viruses. The degenerate genetic
code unequally uses synonymous codons, which code for the same
amino acid (Cristina et al. 2016; Kanaya et al. 2001; Shackelton et al.
2006; Tsai et al. 2007). The redundancy of the genetic code provides
the opportunity to shape the efficiency and accuracy of protein pro-
duction, while maintaining the same amino acid sequence (Chaney and
Clark 2015; Plotkin and Kudla 2011; Stoletzki and Eyre-Walker 2007).
Considering that the translation of viral proteins relies on the host's
pool of tRNAs, codon usage of a virus must coevolve with its host to
efficiently use host resources. It is expected that higher similarity of
codon usage pattern will better facilitate their replication.

The extent of codon usage among viruses and their hosts has been
suggested to affect viral survival, fitness, and evasion from host's im-
mune system (Burns et al. 2006; Costafreda et al. 2014; Mueller et al.
2006). Because the virus relies on the host's cellular machinery for its
replication, codon usage bias was suggested to play a role in the

adaptation of a virus to its host. Codon usage bias is common in viruses
(Butt et al. 2014; Castells et al. 2017; Cristina et al. 2016; He et al.
2017; Li et al. 2017; Moratorio et al. 2013; Singh et al. 2016; Su et al.
2017; Xu et al. 2017; Zang et al. 2017; Zhao et al. 2016). Efficient re-
plication seemingly requires that a virus and host have similar codon
usage patterns to share a tRNA pool. Co-evolution between a certain
RNA virus and its susceptible hosts at codon usages have been observed
in many viruses (Franzo et al. 2017; Rahman et al. 2017; Simón et al.
2017).

Some viruses have a broad ranges of hosts (BSTVs), such as arbo-
virus. These can infect mammals, birds, and insects. Other viruses have
narrow host ranges (NSTVs), which can infect a limited number of hosts
only. Because BSTVs must fit to multiple hosts and their diverse tRNA
pools and their codon usage has a relationship with their host, a tra-
deoff exists regarding the extent of codon usage. BSTVs must fit to their
diverse hosts and, thus, the extent of matching for codon usage would
be lower than that of NSTVs, which must fit few, similar hosts. To test
this hypothesis, we analyze 255 viruses from 20 genera of positive-
sense single-stranded RNA (+ssRNA) viruses (e.g., Flavivirus,
Alphavirus, Coronavirus, Torovirus, Arterivirus, Rubivirus, Pestivirus,
Hepacivirus, Alphamesonivirus). Viruses that can infect vertebrates and
invertebrates, such as most of the Flavivirus and Alphavirus, were clas-
sified as BSTVs, while other viruses that can infect either vertebrate or
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invertebrate were classified as NSTVs.

2. Materials and methods

2.1. Data collection and preliminary analyses

The complete genome sequences of 255 virus strains from the 20
genera of +ssRNA viruses were obtained from the GenBank database
(http://www.ncbi.nlm.nih.gov). The information of host range was
determined from NCBI (https://www.ncbi.nlm.nih.gov/taxonomy/)
and the Ninth Report of the International Committee on Taxonomy of
Viruses (ViralZone Database: http://viralzone.expasy.org/). Accession
numbers and other detailed information of these viruses, such as strain
names, isolate hosts and host ranges were also retrieved
(Supplementary Table 1).

Estimates of codon usage, the relative synonymous codon usage
(RSCU) (Sharp and Li 1986), and the effective number of codons (ENC)
(Wright 1990), were calculated using CodonW (available at http://
sourceforge.net/projects/codonw). In this study, Aedes, Culex and Ix-
odes represented the main arthropod hosts, and Gallus, Homo and Mus
the three major groups of vertebrates. Coding sequences of the hosts
were obtained from the Ensembl database (available at: http://www.
ensembl.org) (Yates et al. 2016). Copy number of tRNAs for transmis-
sion vectors and hosts were obtained from GtRNAdb (http://gtrnadb.
ucsc.edu/).

2.2. Estimating the adaptability of viruses to their hosts' tRNA pools

Optimizing codon usage of viruses according to that of highly ex-
pressed host genes has been proved to increase the production of viral
proteins (Chithambaram et al. 2014; Ngumbela et al. 2008) or trans-
genic genes (Koresawa et al. 2000). The degree of similarity for overall
codon usage between viruses and their hosts' tRNA pools was estimated
with a parameter based on optimized codon usage and the extent of
matching between viral ORF's codon usage bias and their hosts' tRNA
pools. ORFs were optimized on the basis of tRNA copy number char-
acteristics of their hosts' expression system. Online optimization soft-
ware (http://genomes.urv.es/OPTIMIZER/) (Puigbo et al. 2007) was
utilized. The matching degree (MD) was calculated as follows:

=MD M
N

where M was defined as the number of the different bases before and
after optimized sequence, and N was the total length of open reading
frame. This value could have ranged from zero to 1.

To better quantify the effect of the overall codon usage of the host
on the formation of the overall codon usage of the virus, the similarity
index D(A,B) reported by the previous study was introduced into our
work (Zhou et al. 2013). The D(A,B) represented the potential effect of
the overall codon usage of the host on that of virus. This value poten-
tially ranged from zero to 1.0.

3. Results

3.1. The matching degree of +ssRNA viruses to their hosts' tRNA pools

MD values were calculated for viral ORFs. Unfortunately, some
viruses lacked data of tRNA copy numbers, and coding sequence of their
hosts. Therefore, only 255 viruses (+ssRNA) were used in this analysis.
The 101 strains of arboviruses that belonged to BSTVs were optimized
according to their hosts' tRNA pool expression systems (host: ar-
thropods, mammals, Gallus gallus). MD values (mean ± SD) were
0.7388 ± 0.0121, 0.7383 ± 0.0083, and 0.7427 ± 0.0045 in the
three hosts, respectively (Supplementary Table 2). The MD values of
154 NSTVs strains had a mean of 0.7617 ± 0.0168 (Supplementary
Table 3). Wilcoxon & Mann-Whitney U test obtained statistically sig-
nificant higher MD values in NSTVs than BSTVs (Z=−9.99,
p < 0.001; Z=−10.25, p < 0.001; Z=−5.59, p < 0.001, respec-
tively. Fig. 1a).

Among the different genera of arbovirus (Fig. 1b), the extent of
matching for Flavivirus to their hosts' tRNA pools was higher than that
of Alphavirus. In addition, among the 18 genera of NSTVs, the MD va-
lues of Togaviridae (rubivirus) were the highest, followed by Picrona-
viridae (Aphthovirus, Cardiovirus, Casavirus, Enterovirus, Hepatovirus,
Kobuvirus), Mesoniviridae (Alphamesonivirus), Caliciviridae (Lagovirus,
Norovirus, Sapovirus, Vesivirus), Arterviridae (Artervirus), Astroviridae
(Astrovirus), Coronaviridae (Coronavirus, Torovirus), and the last was
Flaviridae (Pestivirus, Hepacivirus).

Fig. 1. Matching degree (MD) of viruses to their hosts' tRNA pools.
(a) Group 1 represents MD of BSTVs to arthropod's tRNA pool. Group 2 shows the MD of BSTVs to mammal's tRNA pool. Group 3 is the MD of BSTVs to Gallus gallus's
tRNA pool. Group 4 shows the MD of NSTVs to their hosts' tRNA pools. (b) The MD of 20 virus genera (+ssRNA) to their hosts' tRNA pools.
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3.2. Similarity of overall codon usage between +ssRNA viruses and their
hosts

Similarity index values D(A,B) were obtained for each strain in re-
lation to its host(s) (Supplementary Tables 2 and 3). As shown in
Fig. 2a, the indices of the fourth group (NSTVs vs hosts) were higher
than those of the groups 1, 2, and 3 (BSTVs vs arthropods, BSTVs vs
mammals, BSTVs vs Gallus gallus).

To quantify the degree of similarity of the overall codon usage
pattern between 20 different virus genera and their hosts, the similarity
index D(A,B) was calculated to all strains (Fig. 2b). The MD and D(A,B)
values showed a similar trend in that values of NSTVs were the highest.

Finally ENC's values were calculated for the 255 strains to gain in-
sights into codon usage bias. All viruses had ENC values> 40, except
Human coronavirus HKU1 (ENC=35.66), Human coronavirus NL63
(ENC=36.77), Rubella virus (ENC=38.45), Human hepatitis A virus
(ENC=39.23), Canine kobuvirus 1 (ENC=39.38), Aichi virus
(ENC=39.52), Simian hepatitis A virus (ENC=39.91), and Kobuvirus
dog/AN211D/USA/2009 (ENC=39.92). The codon preferences of
NSTVs were stronger than for the BSTVs (Fig. 3).

4. Discussion

The degeneracy of the genetic code implies that several triplets can
code for the same amino acid. The use of synonymous codons in gene
coding regions dos not occur randomly, and codon usage bias is very
common in viruses (Butt et al. 2014; Cristina et al. 2016; He et al. 2017;
Moratorio et al. 2013; Singh et al. 2016). Codon usage is among the
determinant factors that influence gene expression levels (Chaney and
Clark 2015; Zhou et al. 2016). Because viruses do not have tRNAs, and
rely on host cell machinery for replication, co-evolution between a
certain RNA virus and its susceptible hosts at codon usages have been
observed (Franzo et al. 2017; Rahman et al. 2017; Simón et al. 2017).
However, ambiguity remains in the co-evolution patterns of different
viruses. Some viruses infect a broad range of species (BSTVs), whereas
others infect only a single host (NSTVs). Viruses have very diverse
hosts, and different hosts have very diverse tRNA pools. The MD and D
(A,B) values of NSTVs are significantly higher than those of the BSTVs

vs. Anopheles gambiae, Homo sapiens, Gallus gallus, and Macaca mulatta
(Figs. 1 and 2). Thus, and as our hypothesis predicts, NSTVs appear to
be more precisely adapted to their hosts' codon usage pattern and tRNA
pools than BSTVs. Each NSTV can infect one host only. Therefore, these
viruses need to fit only one host's tRNA pool. They appear to have
evolved more consistent codon usage patterns with their hosts' ex-
pression systems. In contrast, BSTVs can infect and replicate in mam-
mals, birds, and insects. Thus, adaptation in BSTVs may involve a tra-
deoff between precise and functional matching to fit the diverse tRNA
pools of multiple hosts. This may explain the relatively lower matching
of BSTVs to their hosts.

Enterovirus, Hepacivirus and Arterivirus are NSTVs and their D(A,B)
values are relatively low (Fig. 2b). This indicates a relatively low extent
of similarity in overall codon usage between these viruses and their
host. These viruses may not need to replicate rapidly. Other factors,
such as mutational pressure, may also play a role in determining codon
usage bias (Gu et al. 2004; Rahman et al. 2017; Wang et al. 2011; Wong
et al. 2010).

To quantify the extent of variation in codon usage, the ENc values
were calculated (Wright 1990). Most viruses have ENC values> 40,
which represents weak codon bias. This may be beneficial for efficient
replication of viruses in host cells with potentially distinct codon pre-
ferences. The codon preference of NSTVs is relatively stronger than for
BSTVs (Fig. 3). This is could be due to weak codon preference being
advantageous in the adaptation of BSTVs to multiple host expression
systems.

The ability to enter the host-cell and efficiently replicate itself is
essential for viral infection. Viruses have coevolved many pathways to
transcribe their own genetic material in their hosts (Harwig et al.
2017). Codon usage in BSTVs may involve a tradeoff between precise
and functional matching to fit the diverse tRNA pools of multiple hosts.
As expected, our analysis show that generally NSTVs are more adapted
to their hosts' codon usage pattern and tRNA pools than BSTVs. This
may help the virus to use the host transcript machinery more efficiently
and, therefore, replicate faster.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2018.05.034.

Fig. 2. Similarity of overall codon usage pattern of viruses to their hosts.
(a) Group 1 is the similarity degree between BSTVs and arthropods. Group 2 is the similarity degree between BSTVs and mammals. Group 3 is the similarity degree
between BSTVs and Gallus gallus. Group 4 is the similarity degree between NSTVs and a particular host. (b) The similarity degree of the overall codon usage bias
between 20 virus genera (+ssRNA) and the hosts.
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