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Abstract

Motivation: Recently, it has become feasible to generate large-scale, multi-tissue gene expression data, where
expression profiles are obtained from multiple tissues or organs sampled from dozens to hundreds of individuals.
When traditional clustering methods are applied to this type of data, important information is lost, because they
either require all tissues to be analyzed independently, ignoring dependencies and similarities between tissues, or
to merge tissues in a single, monolithic dataset, ignoring individual characteristics of tissues.

Results: We developed a Bayesian model-based multi-tissue clustering algorithm, revamp, which can incorporate
prior information on physiological tissue similarity, and which results in a set of clusters, each consisting of a core
set of genes conserved across tissues as well as differential sets of genes specific to one or more subsets of tissues.
Using data from seven vascular and metabolic tissues from over 100 individuals in the STockholm Atherosclerosis
Gene Expression (STAGE) study, we demonstrate that multi-tissue clusters inferred by revamp are more enriched
for tissue-dependent protein-protein interactions compared to alternative approaches. We further demonstrate that
revamp results in easily interpretable multi-tissue gene expression associations to key coronary artery disease proc-
esses and clinical phenotypes in the STAGE individuals.
Availability and implementation: Revamp is implemented in the Lemon-Tree software, available at https://github.
com/eb00/lemon-tree
Contact: pau.erola@bristol.ac.uk or tom.michoel@uib.no
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clustering gene expression data into groups of genes sharing the
same expression profile across multiple conditions remains one of
the most important methods for reducing the dimensionality and
complexity of large-scale microarray and RNA-sequencing datasets
(Andreopoulos et al., 2008; D’haeseleer, 2005; van Dam et al.,
2017). Coexpression clusters group functionally related genes to-
gether, and reveal how diverse biological processes and pathways re-
spond to the underlying perturbation of the biological system of
interest. Traditionally, clustering is performed by collecting data
from multiple experimental treatments (Eisen et al., 1998), time
points (Spellman et al., 1998), cell or tissue types (Freeman et al.,
2007), or genetically diverse individuals (Ghazalpour et al., 2006) in
a single data matrix from which meaningful patterns are extracted
using any of a whole range of statistical and algorithmic approaches.

More recently, it has become feasible to probe systems along two or
more of these dimensions simultaneously. In particular, we are inter-
ested in multi-tissue data, where gene expression profiles are
obtained from multiple tissues or organs sampled from dozens
to hundreds of individuals (Foroughi Asl et al., 2015; Franzén et al.,
2016; Fu et al., 2012; Greenawalt et al., 2011; Grundberg
et al., 2012; GTEx Consortium, 2017; Hägg et al., 2009; Keller
et al., 2008). These data can potentially reveal the similarity and dif-
ferences in (co)expression between tissues as well as the tissue-
specific variation in (co)expression across individuals.

However, when traditional clustering methods are applied to
this type of data, important information is lost. For instance, if each
tissue-specific sub-dataset is clustered independently, the resulting
sets of clusters will rarely align, and to compare clusters across tis-
sues, one will be faced with the general problem of determining clus-
ter preservation statistics (Langfelder et al., 2011). If instead the
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data are concatenated ‘horizontally’ in a single gene-by-sample ma-
trix, a common set of clusters will be found, but these will be biased
heavily towards house-keeping processes that are coexpressed in all
tissues. A potentially more promising approach is to concatenate
data ‘vertically’ in a tissue-gene-by-individual matrix, where the
entities being clustered are ‘tissue-genes’, the tissue-specific expres-
sion profiles of genes (Dobrin et al., 2009; Talukdar et al., 2016).
However, in studies with a large number of tissues, the number of
individuals with available data in all tissues is typically very small,
i.e. a large number of samples will have to be discarded to obtain a
tissue-gene-by-individual matrix without missing data.

Dedicated clustering algorithms for multi-tissue expression data
are scarce and mostly based on using the higher-order generalized
singular value decomposition or related matrix decomposition tech-
niques to identify common and differential clusters across multiple
conditions (Li et al., 2011; Ponnapalli et al., 2011; Xiao et al.,
2014). However, these methods either require that all tissues
have the same number of one-to-one matching samples (Ponnapalli
et al., 2011), or that tissue-specific coexpression networks are
reconstructed for each tissue separately as a preliminary step
(Li et al., 2011; Xiao et al., 2014). Bayesian model-based
clustering methods, which model the data as a whole using mixtures
of probability distributions (Fraley and Raftery, 2002; Ickstadt
et al., 2017; Si et al., 2014), are an attractive alternative approach
for clustering multi-tissue data, because they would allow, at least in
principle, to account for different noise levels and sample sizes in
different tissues and to incorporate prior information on the relative
similarity between certain tissues based on their known physiologic-
al function.

Here we present a novel statistical framework and inference al-
gorithm for model-based clustering of multi-tissue gene expression
data, which can incorporate prior information on tissue similarity,
and which results in a set of clusters, each consisting of a core set of
genes conserved across tissues as well as differential sets of genes
specific to one or more subsets of tissues.

2 Materials and methods

2.1 Approach
In model-based clustering, a partitioning of genes into non-
overlapping clusters parametrizes a probabilistic model from which
the expression data is assumed to have been generated, typically in
the form of a mixture distribution where each cluster corresponds to
one mixture component. Using Bayes’ theorem, this can be recast as
a probability distribution on the set of all possible clusterings para-
meterized by the expression data, from which maximum-likelihood
solutions can be obtained using expectation-maximization or Gibbs
sampling.

Our approach to clustering multi-tissue data combines ideas
from existing ordinary (‘single-tissue’) and multi-species model-
based clustering methods. We use the generative model of Qin
(2006) and Joshi et al. (2008) to obtain the posterior probability for
a (single-tissue) clustering given a (single-tissue) dataset. From Roy
et al. (2013) we use the idea that a multi-tissue clustering consists of
a set of linked clusters, where cluster k in one tissue corresponds to
cluster k in any other tissue, and each cluster k contains a core set of
genes, belonging to cluster k in all tissues, and a differential set of
tissue-specific genes, belonging to cluster k in one or more, but not
all, tissues. Like Roy et al. (2013), we assume that the data from one
tissue can influence the clustering in another tissue, albeit via a sim-
pler mechanism as we do not aim to reconstruct any phylogenetic
histories among tissues. In brief, we assume that the posterior prob-
ability distribution of clusterings in tissue t is given by its ordinary
single-tissue distribution given the expression data for tissue t, multi-
plied by a tempered distribution for observing that same clustering
given the expression data for all other tissues t0 6¼ t. The degree of
tempering determines the degree of influence of one tissue on an-
other, and can be used to model known prior relationships between
tissues. For instance, we expect a priori that coexpression clusters

will be more similar between vascular tissues, than between vascular
and metabolic tissues.

2.2 Statistical model for single-tissue clustering
Our method is based on previous single-tissue, model-based cluster-
ing algorithms (Joshi et al., 2008; Qin, 2006). In brief, for an expres-
sion data matrix X 2 R

G�N for G genes and N samples, a clustering
C is defined as a partition of the genes into K non-overlapping sets
Ck. We assume that the data points for the genes in each cluster and
each sample are normally distributed around an unknown mean and
unknown variance/precision. Given a clustering C and a set of means
and precisions ðlkn; sknÞ for each cluster k and sample n, we obtain a
distribution on expression data matrices as

pðXjC; flkn; skngÞ ¼
YK
k¼1

YN
n¼1

Y
g2Ck

pðxgnjlkn; sknÞ:

Assuming a uniform prior on the clusterings C and independent
normal-gamma priors on the normal distribution parameters, we
can use Bayes’ rule to find the marginal posterior probability of
observing a clustering C given data X, upto a normalization
constant:

PðCjXÞ /
YK
k¼1

YN
n¼1

ð ð
pðl; sÞ

Y
g2Ck

pðxgnjl; sÞ dlds: (1)

Note that we use a capital ‘P’ to indicate that this is a discrete distri-
bution. pðl; sÞ ¼ pðljsÞpðsÞ is the normal-gamma prior, with

pðljsÞ ¼ k0s
2p

� �1=2

e�
k0s
2 ðl�l0Þ2 ; pðsÞ ¼ ba0

0

Cða0Þ
sa0�1e�b0s;

a0; b0; k0 > 0 and �1 < l0 < 1 being the parameters of the
normal-gamma prior distribution. We use the values a0 ¼ b0 ¼ k0 ¼
0:1 and l0 ¼ 0:0, resulting in a non-informative prior. The double
integral in (1) can be solved exactly in terms of the sufficient statis-

tics T
ðaÞ
kl ¼

P
i2Ck

PN
n¼1 xa

in (a ¼ 0;1;2) for each cluster, see Joshi

et al. (2008) for details.
For computational purposes, the decomposition of Eq. (1) into

a product of independent factors, one for each cluster and sample,
is important. We write the log-likelihood or Bayesian score accord-
ingly as:

SðCÞ ¼ log PðCjXÞ ¼
XK

k¼1

XN
n¼1

Skn: (2)

2.3 Statistical model for multi-tissue clustering
Next, we assume that expression data X ¼ ½X1 2 R

G�N1 ; . . . ;XT 2
R

G�NT � is available for G genes in T tissues, with Nt samples in each
tissue t 2 f1; . . . ;Tg. We define a multi-tissue clustering as a collec-
tion of single-tissue clusterings C ¼ fC1; . . . ; CTg, and assume that
the probability of observing C given data X is given by

PðCjXÞ ¼ PðC1; . . . ; CT jX1; . . . ;XTÞ

¼ 1

Z

YT
t¼1

(
aPðCtjXtÞ

Y
t0 6¼t

PðCtjXt0Þkt;t0

9=
; ; (3)

where Z is a normalization constant which we henceforth will ig-
nore, each factor PðCtjX0tÞ is a single-tissue posterior probability dis-
tribution defined in Eq. (1), and kt;t0 2 ½0;1� is a set of hyper-
parameters that define the prior tissue similarities; for notational
convenience we define kt;t ¼ 1.

Note that PðCtjXt0 Þ is a discrete distribution measuring how well
clustering Ct is supported by data Xt0 . Raising a discrete distribution
to a power less than 1 has the effect of making the distribution more
uniform. Hence in Eq. (3), we are asking that clustering Ct is sup-
ported predominantly by data Xt from its own tissue, but also, albeit
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to a lesser extent depending on the values of kt;t0 , by data from the
other tissues.

Optimizing Eq. (3) across all multi-tissue clusterings is challeng-
ing. A considerable simplification is obtained if we constrain the
problem to multi-tissue clusterings with the same number of clusters
K in each tissue. Denoting by I t the set of samples/individuals in tis-
sue t and by N ¼

PT
t¼1

Nt the total number of samples, the decompos-
ition in Eq. (2) allows to write:

log PðCjXÞ ¼
XT

t¼1

XT

t0¼1

kt;t0 log PðCtjXt0 Þ

¼
XT

t¼1

XT

t0¼1

kt;t0
XK

k¼1

X
n2I t0

SðtÞkn

¼
XT

t¼1

XK

k¼1

XN
n¼1

cðtÞn S
ðtÞ
kn;

(4)

where we used kt;t ¼ 1, defined cðtÞn � kt;tðnÞ, with t(n) the tissue to
which sample n belongs, and wrote SðtÞkn to denote the Bayesian score
of clustering Ct with respect to sample n.

Two extremal choices for the hyper-parameters are of interest. If
kt;t0 ¼ 1 for all t; t0, then the Bayesian score

SðtÞ ¼
XK

k¼1

XN
n¼1

cðtÞn S
ðtÞ
kn (5)

is the same for each tissue t and identical to Eq. (2) for the concaten-
ated data matrix X ¼ ½X1; . . . ;XT �. Hence this is equivalent to clus-
tering the entire dataset as if it came from a single-tissue
(‘horizontal’ data concatenation). If kt;t0 ¼ 0 for t0 6¼ t, then Eq. (3)
decomposes as a product of independent single-tissue factors. This is
equivalent to clustering each tissue sub-dataset independently.

2.4 Optimization algorithm
To find a local maximum of the Bayesian score in Eq. (4), the fol-
lowing heuristic, greedy optimization algorithm was used:

1. Data standardization: Using appropriately normalized gene ex-

pression data, each gene is standardized to have mean zero and

standard deviation one on the concatenated data X.

2. Determine the number of clusters: K-means clustering is run on

the concatenated data with the number of clusters ranging from

2 to 100. The optimal number K is selected by visual inspection

of an elbow plot.

3. Initialize multi-tissue clustering: Starting from the k-means clus-

tering output at the selected number of clusters, genes are reas-

signed until a local optimum is reached for the single-tissue score

Eq. (2) on the concatenated data X. All Ct are initialized by this

clustering.

4. Optimize multi-tissue clustering: For each tissue t, optimize Ct

by finding a local maximum for the Bayesian score Eq. (5) using

single-gene reassignments; only gene reassignments improving

the score by a minimum threshold � are considered.

Note that even in the case kt;t0 ¼ 0 for t0 6¼ t, which removes all
tissue dependencies in the Bayesian score (4), this algorithm still
results in a multi-tissue clustering with linked clusters, due to each
tissue being initialized by the same clustering and converging to a
local optimum.

2.5 Implementation
The statistical model and optimization algorithm have been imple-
mented in Java, as an extension of the ‘task’ revamp in the Lemon-
Tree software (Bonnet et al., 2015; Erola et al., 2019), available at
https://github.com/eb00/lemon-tree.

2.6 The Stockholm Atherosclerosis Gene

Expression dataset
In the STockholm Atherosclerosis Gene Expression (STAGE) study,
612 tissue samples from 121 individuals were obtained during cor-
onary artery bypass grafting surgery from the atherosclerotic arterial
wall (AAW, n¼73), internal mammary artery (IMA, n¼88), liver
(n¼87), skeletal muscle (SM, n¼89), subcutaneous fat (SF, n¼72)
and visceral fat (VF, n¼98) of well-characterized CAD patients;
fasting whole blood (WB) was obtained for isolation of DNA
(n¼109) and RNA (n¼105) and biochemical analyses. Gene ex-
pression profiles from RNA samples of different tissues were jointly
normalized to enable comparison across tissues (Foroughi Asl et al.,
2015; Hägg et al., 2009; Talukdar et al., 2016). 4956 genes with
variance greater than 1 across all 612 samples were selected for fur-
ther analysis, and subsequently standardized to have mean zero and
standard deviation one, again across all 612 samples.

2.7 Multi-tissue clustering methods for comparison
We ran four multi-tissue clustering methods (see Supplementary Fig. S1):

• Revamp with reassignment threshold � ¼ 0:005 and prior tissue

similarities kt;t0 ¼ qa
t;t0, where qt;t0 is the average correlation coef-

ficient between samples from tissue t and t0 measured in the same

individual and a ¼ 0:25 is a dissipation parameter to scale the

correlation values. Here we suggest to derive the similarity coeffi-

cients using Pearson’s correlation, but other distance measures

could be used.
• Revamp with reassignment threshold � ¼ 0:005 and prior tissue

similarities kt;t0 ¼ 0.
• An alternative method, which treats the expression profile of

each gene g in each tissue t as a separate (gene, tissue) variable

and clusters the resulting (gene, tissue)-by-individual expression

matrix using the single-tissue clustering algorithm (Section 2.2).

This results in a single set of clusters, which are disentangled into

a set of linked clusters, by assigning gene g to cluster m in tissue t

whenever (g, t) belongs to original cluster m. This method was

called ‘vertical data concatenation’ before, and relies on having

expression data from multiple tissues in the same individual. In

STAGE, 21 individuals had data in all 7 tissues.
• Single-tissue clustering on the entire dataset of 612 samples

(called ‘horizontal data concatenation’ before). This results in an

identical clustering across all tissues. It is not a true multi-tissue

clustering method, but is used as an overall benchmark to deter-

mine the relevance of a multi-tissue approach.

2.8 Validation data
To evaluate the biological relevance of each multi-tissue clustering
method, we used the following approach:

• We performed GSEA using first the GOSlim ontology, that gives

a broad overview of the ontology content without the detail of

the specific fine-grained terms (http://www.geneontology.org/

page/go-slim-and-subset-guide), and after on GO terms (http://

www.geneontology.org/page/download-ontology).
• We assigned sets of ‘regulators’ to each of the modules consider-

ing as candidate regulators the tissue-specific sets of genes with

significant eQTLs identified in Foroughi Asl et al. (2015) (2464

AAW, 3209 IMA, 4491 liver, 2534 SM, 2373 SF, 2994 VF and

5691 WB genes).
• We obtained human tissue protein–protein interaction (PPI) net-

works from Barshir et al. (2013). Specifically, we used TissueNet v2

networks consisting of curated experimentally detected PPIs between

proteins expressed in Genotype-Tissue Expression dataset tissues

‘Artery Aorta’, ‘Liver’, ‘Muscle Skeletal’, ‘Adipose Subcutaneous’,
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‘Adipose Visceral’ and ‘Whole Blood’, available for download at

http://netbio.bgu.ac.il/labwebsite/? q¼tissuenet2-download.

2.9 Validation methods
We tested for GO functional enrichment using the task go_annota-
tion in the Lemon-Tree software, and task regulators were used to
identify gene ‘regulators’ using a probabilistic scoring (Joshi et al.,
2009).

To test for enrichment of known PPIs in a given clustering, we
calculated the fold-change enrichment as

FC ¼
Number of co�clustered gene pairs with PPI

Total number of PPI
Total number of co�clustered gene pairs

Total number of gene pairs

:

All clustering methods were run on the seven available STAGE
tissues, and the results for six tissues were used for validation (IMA
did not have a matching tissue in the TissueNet database). To evalu-
ate the clustering of a particular tissue, we used all PPIs for that
tissue. To evaluate the core gene set of a cluster (for cluster m, the
set of genes belonging to m in all tissues), we used the set of PPIs
shared across all tissues.

Because the fold-change value is influenced by the number of
clusters (more clusters results in fewer co-clustered pairs), we used
the same number (k¼12) of clusters for all compared methods
(Section 2.7).

3 Results

3.1 Multi-tissue clustering with revamp produces

mappable clusters with tunable overlap levels
To identify co-expression clusters that reflect biological similarities
and differences across tissues, we analyzed samples from seven tis-
sues from the STAGE study. First we initialized revamp with the
partition obtained from clustering all tissue samples using k-means
with k¼12 clusters for all our analyses, as this value was near
the inflection point of the elbow plots in all tissues (Supplementary
Fig. S2). Then we updated the cluster assignments for each tissue in-
dependently using our Bayesian model-based score that depends on
a set of hyper-parameters kt;t0 , expressing prior beliefs on pairwise
tissue similarities (Section 2.3), using a greedy optimization algo-
rithm that has one free parameter �, the minimum gain in Bayesian
score for reassigning a gene from one cluster to another (Section
2.4). The resulting multi-tissue clustering consists of a set of linked
clusters, where cluster k in one tissue corresponds to cluster k in any
other tissue. Genes that belong to a particular cluster k in all tissues
form a core set of genes with conserved coexpression across tissues,
whereas genes that belong to cluster k in one or more, but not all,
tissues form tissue-specific sets of genes that are differentially coex-
pressed with the core of cluster k.

To test the influence of the method parameters, we systematical-
ly tested a large space of parameter combinations (Supplementary
Fig. S3). Both the reassignment threshold � and tissue similarities kt;t0

ultimately govern the degree of overlap across tissues of the linked
clusters, with small thresholds and near-zero similarities leading to
nearly tissue-independent clusterings, and large thresholds and/or
near-one similarities leading to nearly identical clusterings.
Although � and kt;t0 are to some extent interchangeable (i.e. a smaller
threshold value can be compensated by a uniform increase in simi-
larity values), setting � to a small, non-zero value is recommended to
avoid spurious reassignments due to numerical round-off errors in
the Bayesian score calculation.

When comparing this partitioning with clustering tissues inde-
pendently, the cluster quality is improved (Supplementary Table S1)
and the similarities between tissues are stronger. The functional en-
richment analysis revealed that a larger proportion of functional
enriched categories were shared across two or more tissues
(Supplementary Fig. S4). Moreover, similarity heatmaps showed
that the degree of shared enrichment between tissues in our cluster-
ing was able to reflect the degree of overall expression similarity

(Supplementary Fig. S5). Yet it is noteworthy to mention that multi-
tissue clustering methods, and in particular revamp when using prior
tissue similarities that is optimized based on Eq. (5), may show fuzzy
borders when assessed with traditional validation methods like
silhouette scores (see Supplementary Fig. S6).

3.2 Revamp multi-tissue clustering is more enriched

for tissue protein–protein interactions than

other approaches
To evaluate the performance of revamp, we ran four different multi-
tissue clustering methods (see Methods), testing for each one for the
enrichment of human tissue protein-protein interactions (PPIs) from
the TissueNet database (Barshir et al., 2013) among co-clustered
genes, using six tissues that matched between STAGE and
TissueNet.

On a tissue-by-tissue basis, running revamp with or without
prior tissue similarity values resulted in similar fold-change enrich-
ment values for tissue PPIs (average fold-change over 6 tissues of
1.49 and 1.48, respectively) as running single-tissue clustering on all
samples together (average fold-change 1.50), and considerably
higher enrichment than using vertically concatenated data (average
fold-change 1.22) (Fig. 1). For a baseline reference, we also calcu-
lated enrichment for each tissue clustered individually using the
single-tissue clustering method. Consistent with the assumption that
analyzing data integratively using multi-tissue clustering should im-
prove biological relevance, single-tissue clustering resulted in lower
fold-change values (average fold-change 1.31) (Fig. 1).

We further reasoned that genes assigned consistently to the same
cluster across all tissues (‘core’ cluster genes) should reflect tissue-
independent interactions between these genes. To test this hypoth-
esis, we calculated enrichment of tissue-independent PPIs (i.e. PPIs
present in all six tissue PPI networks) among core cluster genes. For
revamp with prior tissue similarity values, a significant increase in
enrichment for tissue-independent PPIs was observed (fold-change
1.72), whereas for revamp without prior tissue similarities and hori-
zontal data concatenation no difference was observed compared to
all tissue PPIs (fold-changes 1.47 and 1.57, respectively) (Fig. 1).
Vertical data concatenation resulted in very small core gene sets,
containing no known tissue-independent PPIs (see also
Supplementary Table S2).

3.3 Functional predictions by Revamp clusters and

gene regulators associated with CAD
To test whether the clustering algorithm accurately captures the
higher-level biological process represented by each module we first
performed gene ontology enrichment analysis (see top enrichments
in Supplementary Table S3). Network analysis revealed three

Fig. 1. Fold-change enrichment of tissue PPIs in tissue clusters for four multi-tissue

clustering methods and individual single-tissue clustering. RW4—revamp with prior

tissue similarities set according to their overall expression correlation, RA—revamp

with prior tissue similarities set to zero, VERT—vertical data concatenation,

HORIZ—horizontal data concatenation, INDIV—each tissue clustered individual-

ly. Each colored bar shows the fold-change overlap of tissue PPIs in clusters for the

matching tissue; the black bar shows the fold-change overlap of tissue-shared PPIs

in tissue-shared genes of linked clusters. See Section 2 for details. (Color version of

this figure is available at Bioinformatics online.)
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connected components: clusters 5, 9 and 10 were related with im-
mune system response; the lipid metabolic process was enriched in
clusters 4, 6 and 7; and clusters 0 and 8 were associated with cell ad-
hesion and extracellular matrix organization.

Then we ran independently on each tissue the regulator probabilis-
tic scoring task (see Section 2.9) to predict upstream regulatory genes,
considering as candidate regulators the tissue-specific genes with genet-
ic variants in their regulatory regions affecting gene expression (‘cis-
eQTL effects’). The regulatory network of the most significant regula-
tors for the inferred modules is depicted in Figure 2.

The development of atherosclerosis is in large part mediated by the
inflammatory cascade (Crowther, 2005). Our results indicated that
the inflammatory response in AAW may be regulated by PTAFR, a
mediator in platelet aggregation and the inflammatory response (Perisic
et al., 2016; Rastogi et al., 2008). SF and VF were shown to be
regulated by SIGLEC10 and CD247, respectively, genes that have been
previously associated with CAD (Ammirati et al., 2008; Shen et al.,
2013). Other tissues were linked to the previously identified inflamma-
tory regulators BIN2 (Liao et al., 2011), CD2 (Hansson and Libby,
2006), RAC2, that also directs plaque osteogenesis (Ceneri et al., 2017),
and the pro-apoptotic regulator of RAS protein, RASSF5 (Dejeans et al.,
2010).

Lipid metabolism also plays a key role in the development of ath-
eroma plaques. Metabolism-related clusters 6 and 7 were found to
be regulated by AGXT2 and SPP2, in SF and VF respectively.
AGXT2 polymorphisms were identified as risk for CAD in Asian
populations (Yoshino et al., 2014; Zhou et al., 2014), and SPP2 may
contribute to the atheroprotective effects of HDL (Abdel-Latif et al.,
2015). AADAC, that controls the export of sterols (Tiwari et al.,
2007), may also be a regulator in SM. In WB, we found MASP1, a
gene associated with a decreased lectin pathway activity in acute
myocardial infarction patients (Yan et al., 2016).

The atherogenic pathway involves the inflammation of the arter-
ial wall, injury of the intima, lipid infiltration and activation of the
angiogenic signaling, processes that involve a dysfunction in the cell
adhesion (Sun, 2014). Our analysis showed that RAB31, which
induces lipid accumulation in atheroma plaques (Fu et al., 2002),
regulates the morphogenesis-related clusters 3 and 8 in SM. Cluster
3 was also shown to be regulated by CACNA1C in SF, a gene
involved in calcium channels and associated with inherited cardiac
arrhythmia (Kawashiri et al., 2014), and COL18A1 in VF, that may
control angiogenesis and vascular permeability (Moulton et al.,
1999). The expression levels of PCDH7, gene involved in cell adhe-
sion, and TUBA1 were also previously correlated with CAD
(Chittur et al., 2008; Eyster et al., 2011; Sinnaeve et al., 2009).

3.4 Revamp discovers multi-tissue clusters underlying

CAD phenotypes
The systems genetics paradigm says that genetic variants in regula-
tory regions affect nearby gene expression (‘cis-eQTL effects’),
which then causes variation in downstream gene networks
(‘trans-eQTL effects’) and clinical phenotypes. Ultimately, gene-
gene interactions across metabolic and vascular tissues will enable
information flow to the end stage phenotypic changes in CAD. We
therefore used regression analysis to identify associations between
module gene expression and CAD phenotypes (see Talukdar et al.,
2016), as presented in Figure 3.

The aggregated results revealed that AAW and SF are the main
tissues associated with very-low-density lipoprotein (VLDL) and
low-density lipoprotein (LDL) cholesterol levels, while the liver was
the main tissue associated with high-density lipoprotein (HDL) chol-
esterol. Fat has been previously identified as the main contributor of
CAD heritability, and the top regulatory networks in CAD have
shown to be strongly enriched in associations with plasma levels of
HDL, LDL and pro-insulin (Zeng et al., 2019), as it is depicted in
the left part of Figure 3.

Besides that, IMA was found to be associated in cluster 3 with
the thyroid-stimulating hormone, that causes many hemodynamic
effects and influences the structure of the heart and circulatory sys-
tem (Grais and Sowers, 2014), and alcohol consumption in clusters
5 and 9, whose associations with cardiovascular diseases are hetero-
geneous (Bell et al., 2017).

On the other hand, the results showed that the phenotypes
related to anthropometric measurements are mostly associated with
SM, liver and IMA, and with less significance with WB and AAW,
but not with SF and VF. If we focus on clusters related to body
weight, as a typical example of a trait regulated by, and affecting
multiple tissues, we can find gene regulators such as PTAFR (in
AAW) and CD2 (in IMA) which have been described to affect food
intake and body weight, apart from the inflammatory response
(Are Hanssen et al., 2004; Li and McIntyre, 2015). In SM, RAC31
may influence on the body weight by mediating the insulin-
stimulated glucose uptake (Lyons et al., 1999). Last, also the candi-
date regulators BIN2 and RAC2 have been associated with obesity
and metabolic syndrome (Aguilera et al., 2013; Zhang et al., 2005).

4 Conclusion

Herein we proposed a Bayesian model-based multi-tissue clustering
algorithm, revamp, which incorporates prior information on

Fig. 2. Module regulatory network for all seven tissues. Regulators are presented as squares and clusters as circles with size proportional to the number of genes in the cluster.

Only the regulators with a score greater than 20 in the regulators task are represented, and we named those with a score above 60. Edges are colored per tissue as per Figure 3,

and their width is proportional to the regulator score. (Color version of this figure is available at Bioinformatics online.)

Model-based clustering of multi-tissue gene expression data 1811



physiological tissue similarity, and which results in a set of clusters con-
sisting of a core set of genes conserved across tissues as well as differen-
tial sets of genes specific to one or more subsets of tissues. Using data
from seven vascular and metabolic tissues from the STAGE study, we
demonstrated that our method resulted in multi-tissue clusters with
higher enrichment of tissue-specific protein-protein interactions than
comparable clustering algorithms. Moreover, the multi-tissue clusters
highlighted the ability of revamp to link together regulatory genes, bio-
logical processes and clinical patient characteristics in a meaningful
way across multiple tissues, and we believe this makes it an attractive
and statistically sound method for analyzing multi-tissue gene expres-
sion datatsets in general. Revamp is implemented and freely available
in the Lemon-Tree software at https://github.com/eb00/lemon-tree.
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