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Characterization of biventricular 
alterations in myocardial (reverse) 
remodelling in aortic banding-
induced chronic pressure overload
Daniela Miranda-Silva1, Patrícia Gonçalves-Rodrigues1, João Almeida-Coelho1, 
Nazha Hamdani2, Tânia Lima1, Glória Conceição1, Cláudia Sousa-Mendes1, Cláudia-Moura1, 
Arantxa González   4,5, Javier Díez4,5, Wolfgang A. Linke3, Adelino Leite-Moreira1 & 
Inês Falcão-Pires   1

Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve 
replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. 
However, recent evidence suggests that AVR outcome can be improved if performed earlier. After 
AVR, the process of left ventricle (LV) reverse remodelling (RR) is variable and frequently incomplete. 
In this study, we aimed at detecting mechanism underlying the process of LV RR regarding myocardial 
structural, functional and molecular changes before the onset of HF symptoms. Wistar-Han rats 
were subjected to 7-weeks of ascending aortic-banding followed by a 2-week period of debanding 
to resemble AS-induced LV remodelling and the early events of AVR-induced RR, respectively. This 
resulted in 3 groups: Sham (n = 10), Banding (Ba, n = 15) and Debanding (Deb, n = 10). Concentric 
hypertrophy and diastolic dysfunction (DD) were patent in the Ba group. Aortic-debanding induced RR, 
which promoted LV functional recovery, while cardiac structure did not normalise. Cardiac parameters 
of RV dysfunction, assessed by echocardiography and at the cardiomyocyte level prevailed altered after 
debanding. After debanding, these alterations were accompanied by persistent changes in pathways 
associated to myocardial hypertrophy, fibrosis and LV inflammation. Aortic banding induced pulmonary 
arterial wall thickness to increase and correlates negatively with effort intolerance and positively with 
E/e′ and left atrial area. We described dysregulated pathways in LV and RV remodelling and RR after 
AVR. Importantly we showed important RV-side effects of aortic constriction, highlighting the impact 
that LV-reverse remodelling has on both ventricles.

Ventricular remodelling includes structural and functional changes taking place in the ventricle in response 
to chronic pressure overload. Aortic stenosis (AS) is the most common valvulopathy, whereby a stenotic valve 
increases afterload and imposes additional hemodynamic stress on the left ventricle (LV). LV overload activates 
several molecular and cellular pathways that trigger remodelling through morphological and functional altera-
tions1,2. One of these changes is ventricular hypertrophy, which is perceived as an initial compensatory mech-
anism to normalise increased wall stress. However, over time LV hypertrophy becomes decompensated3 and 
results in diastolic dysfunction (DD), with an increase in LV stiffness, an abnormal filling and relaxation pattern, 
followed by an enlargement of the left atrium and pulmonary congestion4. Myocardial maladaptive remodelling 
is one of the principal pathological markers of cardiovascular disease progression/severity, and its prevention or 
reversal is a desirable strategy. Currently, the most effective treatment to AS is the surgical alleviation of pressure 
overload subsequently to aortic valve replacement (AVR). AVR allows the myocardium to undergo a process 
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named reverse remodelling (RR), which usually results in an improvement of cardiac structure and function. 
However, the process of RR is frequently incomplete, and the underlying mechanisms remain to be clarified as 
patients show an extremely variable myocardial response during RR, ranging from partial to total recovery of 
cardiac function and structure.

Incomplete functional recovery is an indicator of poor prognosis, associated with persisting symptoms and 
increased mortality5. Diastolic dysfunction, associated with impaired active relaxation, is a feature of most AS 
patients. Several studies showed improvement of diastolic function6,7 including active relaxation early after AVR8, 
however, the percentage of patients with moderate to severe DD increases 10-years after AVR9.

In incomplete structural recovery after AVR, AS patients with greater LV mass regression associate posi-
tively with lower rates of rehospitalisation10. Indeed, LV mass regression, which usually does not exceed 31% at 6 
months post-AVR, is assumed to be a favourable marker of LV RR11,12.

RV failure is a frequent complication following LV assist device (LVAD) implantation13, and in AS deteriora-
tion of RV function after AVR has been shown14. Nevertheless, knowledge about RV function and structure in 
this context remains scarce, especially in a modulable experimental context.

Currently, most of the cellular and molecular information regarding RR derives from samples of patients 
undergoing RR after LVAD implantation in which myocardial sample are available before and after unloading 
the heart. However, these “end-line” patients suffer from advanced heart failure (HF) characterised by cham-
ber dilatation and reduced ejection fraction (EF), and therefore they do not represent the typical phenotype of 
AS-induced myocardial remodelling. Thus, we aimed to describe the molecular pathways underlying myocar-
dial remodelling in the presence of DD and preserved EF as well as to highlight the early biventricular changes 
invoked by myocardial RR focusing on cardiomyocytes’ myofilaments, calcium-handling, signalling pathways 
and extracellular matrix. To achieve these goals, we selected a rat model of aortic banding, which is widely used 
to impose chronic pressure overload, therefore mimicking AS-induced remodelling during increased afterload, 
followed by aortic debandingto trigger RR upon overload relief15,16.

Sh (n = 10) Ba (n = 15) Deb (n = 10)

Echocardiography Evaluation

BSA (cm2) 4.873 ± 0.035 4.947 ± 0.080 4.916 ± 0.080

AWd (cm) 0.143 ± 0.006 0.202 ± 0.005αααα 0.168 ± 0.010χχ

LVd (cm) 0.743 ± 0.013 0.696 ± 0.014α 0.769 ± 0.016χχ

PWd (cm) 0.138 ± 0.007 0.206 ± 0.008αααα 0.166 ± 0.008αχχ

AWs (cm) 0.220 ± 0.005 0.306 ± 0.008αααα 0.252 ± 0.012αχχ

LVs (cm) 0.448 ± 0.025 0.383 ± 0.013α 0.467 ± 0.029χχ

PWs (cm) 0.216 ± 0.005 0.307 ± 0.011αααα 0.263 ± 0.010 ααχ

LVMass (g) 0.688 ± 0.035 1.070 ± 0.032αααα 0.908 ± 0.037ααχχ

EDVI (µL.cm−2) 187.119 ± 8.217 165.833 ± 8.434α 205.797 ± 13.445χχ

ESVI (µL.cm−2) 42.437 ± 4.727 29.874 ± 2.797α 50.469 ± 8.388χχ

E/A 1.547 ± 0.074 1.354 ± 0.041α 1.571 ± 0.107χ

E/E′ 13.456 ± 0.694 18.635 ± 0.995αα 14.667 ± 0.702χ

EF (%) 74 ± 4 78 ± 3 74 ± 3

LAA (cm2) 0.314 ± 0.015 0.421 ± 0.021ααα 0.370 ± 0.011α

Ao. Velocity (m.s−1) 1.53 ± 0.19 4.14 ± 0.21αααα 2.3 ± 0.15αχχχχ

Haemodynamic data

LVSP (mmHg) 113.47 ± 3.39 187.64 ± 11.62αααα 123.7 ± 3.82χχχ

LVEDP (mmHg) 4.68 ± 1.13 10.63 ± 1.70αα 5.11 ± 0.79χχ

HR (bpm) 381 ± 15 399 ± 8 410 ± 12

EA (mmHg.µL−1) 0.70 ± 0.08 1.07 ± 0.14αααα 0.90 ± 0.12ααχχ

ESPVR (mmHg.µL−1) 0.47 ± 0.16 1.16 ± 0.35αα 0.44 ± 0.09χ

EDPVR (mmHg.µL−1) 0.014 ± 0.004 0.031 ± 0.008α 0.023 ± 0.05

Tau (ms) 7.57 ± 0.42 9.18 ± 0.55α 7.60 ± 0.34χ

Table 1.  Left Ventricle morphological and functional data. Body surface area; AWd, anterior wall in diastole; 
LVd, left ventricle cavity in diastole; PWd, posterior wall in diastole; AWs, anterior wall in systole; LVs, left 
ventricle cavity in systole; PWs, posterior wall in systole; LVMass, left ventricle mass; EDVI, end-diastolic 
volume index; ESVI, end- systolic volume index; HR, heart rate; E′, wave velocity of tissue Doppler at the lateral 
mitral annulus; E, peak of pulse Doppler wave of early mitral flow velocity; A, peak of pulse Doppler wave of 
late mitral flow velocity; E/A, ratio between peak E and A waves; E/E′ ratio between E and E′ waves; TEI index, 
myocardial performance index; EF, ejection fraction; LAA, left atrium area; Ao. Velocity, aortic velocities; 
LVSP, left ventricular systolic pressure; LVEDP, left ventricle end-diastolic pressure; HR, heart rate; ESPVR, 
end-systolic pressure volume relationship; EDPVR, end-diastolic pressure-volume relationship; Tau, constant 
of relaxation. Values are mean ± SEM. One Way-ANOVA, Ba/Deb vs Sh: αp < 0.05; ααp < 0.01; αααp < 0.001; 
Deb vs Ba: χp < 0.05; χχp < 0.01, χχχp < 0.001.
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Results
Left ventricle cardiac structure and functional characterisation.  Echocardiography of banded 
animals revealed ventricular concentric hypertrophy, based on thicker LV wall and decreased LV dimen-
sions (Table 1). In response to LV overload, hypertrophy was associated with increased systolic and diastolic 

Figure 1.  Effect of pressure overload on left ventricular hypertrophy, fibrosis, LV passive tension and 
extracellular matrix remodelling. (A) Cardiomyocytes area evaluated by histology; Western blot relative 
quantification of: (B) ratio of phosphorylated to total AKT; (C) ratio of phosphorylated to total mTOR; (D) ratio 
of phosphorylated to total glycogen synthase kinase 3 beta (GSK3β); (E) cardiomyocytes passive tension; (F) 
ratio of S26 phosphorylation to total Titin PEVK segment; (G) ratio of pPKCα to total PKCα phosphorylation; 
(H) myocardial fibrosis; (I) mRNA expression of procollagen type-I; (J) mRNA expression of procollagen type-
III; (K) lysyl oxidase; (L) mRNA expression of Transforming growth factor beta, (M) Interleukin-6; (N) ratio of 
phospho to total Signal transducer and activator of transcription 3; (O) representative images of cardiomyocyte 
hypertrophy and myocardial fibrosis; (P) representative western blot lanes. For representative purposes the 
image was cropped and edited; (Q) representative membrane protein loading. n = 7 for each group. Values are 
mean ± SEM, Two-way ANOVA for passive tension, One-way ANOVA for the remaining data. Ba/Deb vs Sh: 
αp < 0.05; ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχp < 0.01.
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LV pressures as well as with augmented arterial elastance. Diastolic dysfunction was evident by the significant 
decrease of E/A, increased E/E´, LVEDP, Tau, EDPVR and left atrial dilatation. Regarding systolic function, Ba 
animals presented preserved EF and increased contractility (ESPVR, Table 1).

The debanding group showed an overall imrpovement in haemodynamic parameters (LVSP, LVEDP, ESPVR, 
EDPVR and Tau) and partial regression of hypertrophy as confirmed by thinner LV wall and decreased LV mass 
compared to banding rats. Some of these variables did not normalise completely, persisting significantly different 
from the sham group (Table 1). In the debanding rats, EDPVR decreased to intermediate values between banding 
and sham group. Aortic velocity was attenuated after aortic constriction relief andcorrelates with some LV and RV 
systolic and diastolic parameters (Fig. S2).

Left ventricle cardiomyocytes hypertrophy, passive tension and extracellular matrix remodel-
ling.  Cardiomyocyte area increased in the Ba relative to the sham group and was attenuated in the Deb group 
(Fig. 1A,O). Accordingly, we observed an overactivation of pro-hypertrophic pathways as assessed by an increase 
of p-AKT/AKT, p-GSK3β/GSK3β and a trend of p-mTOR/mTOR to increase (Fig. 1B–D). In Deb rats, except for 
GSK3β which further increased, the activation of these hypertrophic pathways normalied (Fig. 1B–D,P).

Figure 2.  Effect of pressure overload on LV cardiomyocytes and calcium handling. (A) Cardiomyocytes active 
tension; (B) myofilaments calcium sensitivity; (C) Hill-coefficient; (D) the rate of tension redevelopment (Ktr); 
protein quantification of: (E) sarcoplasmic/endoplasmic reticulum Ca2+ATPase 2a (SERCA2a); (F) ratio of 
SERCA2a to phospholamban; (G) sodium-calcium exchanger; (H) ratio of phosphorylated to total Ca2+/
calmodulin-dependent protein kinase (CAMKii); mRNA expression of calcium-binding protein A1 (S100A1); 
(J) representative western blot lanes. For representative purposes the image was cropped and edited; (K) 
representative membrane protein loading. Values are mean ± SEM. One Way-ANOVA: Ba/Deb vs Sh: αp < 0.05; 
ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχp < 0.01, χχχp < 0.001.
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When compared to sham, Ba rats displayed increased LV cardiomyocyte stiffness, as shown by a steeper pas-
sive tension versus sarcomere length (SL) relation (Fig. 1E). This stiffness was accompanied by an increase of titin 
phosphorylation at PEVK segments and PKCα phosphorylation (Fig. 1F,G). In the Deb group, cardiomyocyte 
stiffness was partially reversed since we observed a reduction of passive tension (at higher SL) and, accordingly, a 
decrease of PKCα and PEVK segment phosphorylation.

Myocardial fibrosis induced by aortic banding did not decrease after debanding (Fig. 1H), despite the nor-
malisation of procollagen type I and type III and Lox expression (Fig. 1I–K). Regarding the proinflammatory and 
profibrotic pathway IL-6-STAT3 and Tgf-β we observed that, when compared to sham, banding animals showed 
an increase of Tgf-β in parallel with a slight, non-significant, increase of IL-6 and STAT3 activation (Fig. 1L–N). 
Interestingly, overload relief triggered a significant upregulation of IL-6-and STAT3 activation, despite the slight 
reduction in Tgf-β (Fig. 1L–N).

Considering the persistent LV cardiomyocyte hypertrophy and LV fibrosis, the over-activation of GSK3β, STAT3 
and higher levels of IL-6 in the Deb group, we aimed at exploring the diversity of myocardial RR among the Deb 
group. Therefore, we divided Deb animals into two subgroups according to the content of fibrosis and LV mass regres-
sion (<30% LV mass reduction and >15% of fibrosis = Deb 1; >30% LV mass reduction and <15% of fibrosis = Deb 
2). Interestingly, we found that, animals that presented a worse pattern of LV RR (Deb 1) displayed increased levels of 
STAT3 and GSK3β activation as well as overexpression of IL-6, TGF-β, Galectin and TIMP2 (Fig. S3).

Left ventricle cardiomyocyte force measurements and diastolic calcium homeosta-
sis.  Cardiomyocytes from the Ba group presented increased active tension, calcium sensitivity (pC50), myo-
filament cooperativity (nHill) and a reduction of the rate constant of force redevelopment (Ktr, (Fig. 2A–D) 
compared to the sham group. In Deb animals, while nHill fully recovered, active tension and pCa50 decreased 
but did not normalise, while Ktr remained decreased (Fig. 2A–D). Regarding the expression of proteins associated 
with diastolic calcium homeostasis, banding animals presented reduced levels of SERCA2a and SERCA2a/PLB 
ratio and augmented NCX content. Inversely, phosphorylated CAMKii was significantly increased (Fig. 2E–H). 
In Deb rats, SERCA2a expression normalised but the same was not observed for SERCA2a/PLB (Fig. 2E,F). 
Additionally, we found CAMKii to be less active, as assessed by its decreased phosphorylation levels, and upreg-
ulation of S100a1 after pressure-overload relief (Fig. 2H,I).

RV structure and function.  In Ba rats, right atrium dimensions increased while echocardiographic mark-
ers of systolic function, such as TAPSE and S′, decreased (Table 2). Regarding diastole, the velocity of E′ as well 
as E/A ratio decreased (Table 2). After afterload relief, some of these variables did not normalise completely, 
persisting significantly different from the sham group (Table 2). Together these data evidenced some degree of 
right-ventricle impairment triggered by aortic constriction.

Lung weight increased in Ba animals evidencing pulmonary congestion. Effort intolerance was evidenced by 
lower VO2max in rats with pressure-overload but normalised after afterload relief. Interestingly VO2max corre-
lates negatively with important LV functional and structural parameters, such as LV mass, LAA and E/e′ (Fig. S4).

In Deb rats, VO2max, E and S′ wave decreased to intermediate values between banding and sham group (Table 2).

Right cardiomyocyte hypertrophy and fibrosis.  In the RV, while chronic pressure-overload induced 
a decrease of transcription factor (FOXO1) and mTOR, P38 activation and AKT were not significantly altered 
(Fig. 3A–D), but the latter was overactivated by pressure-overload relief (Fig. 3B). While the anti-hypertrophic 
activity of GSK3β induced by banding was slightly attenuated after debanding (Fig. 3E), ERK phosphorylation 
remained higher compared to sham (Fig. 3F). Myostatin and muRF1, were downregulated in banding, but the 
former was slightly increased in debanding (Fig. 3G,H).

Banding group showed increased RV cardiomyocyte area and fibrosis (Fig. 3I,J). These values decreased in 
debanding compared to banding but did not normalise to sham values.

Sh (n = 7) Ba (n = 10) Deb (n = 8)

RAA (cm2) 0.207 ± 0.006 0.246 ± 0.009αα 0.254 ± 0.009αα

TAPSE (cm) 0.306 ± 0.009 0.230 ± 0.013ααα 0.257 ± 0.008α

S′ (ms) 0.065 ± 0.003 0.0499 ± 0.004αα 0.057 ± 0.003

E′ (ms) 0.064 ± 0.007 0.044 ± 0.005α 0.041 ± 0.003α

E (ms) 0.37 ± 0.02 0.42 ± 0.04 0.39 ± 0.03

A (ms) 0.40 ± 0.02 0.63 ± 0.05αα 0.58 ± 0.06α

E/A 0.95 ± 0.05 0.58 ± 0.06αααα 0.68 ± 0.05αα

Lungs/BW (g.Kg−1) 4.300 ± 0.117 4.821 ± 0.168α 4.316 ± 0.101χ

VO2max (ml.min−1.kg0.75) 33.3 ± 1.0 29.2 ± 0.7αα 31.3 ± 0.8

Table 2.  Right ventricle morphological and functional data. RV, Right ventricle; RAA, Right atrium area; 
TAPSE, tricuspid annular plane systolic excursion; S′, Peak systolic annular velocity; E′, wave velocity of tissue 
Doppler at the lateral tricuspid annulus; E, peak of pulse Doppler wave of early tricuspid flow velocity; A, peak 
of pulse Doppler wave of late tricuspid flow velocity; E/A, ratio between peak E and A waves; BW, body weight; 
VO2max maximum rate of oxygen consumption. Values are mean ± SEM. One Way-ANOVA, Ba/Deb vs Sh: 
αp < 0.05; ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχp < 0.01, χχχp < 0.001.
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Right ventricle cardiomyocyte force measurements and calcium homeostasis.  When compared 
to sham, Ba rats displayed increased RV cardiomyocyte stiffness (as shown by a steeper passive tension versus SL 
relation) and decreased Ktr (Fig. 4A,E).

Figure 3.  Effect of pressure overload on RV hypertrophy and fibrosis. (A) Foxo transcription factor 1; (B) 
ratio of phosphorylated to total protein kinase B or AKT; (C) ratio of phosphorylated to total P38 mitogen-
activated protein kinase; (D) ratio of phosphorylated to total mammalian target of rapamycin (mTOR); (E) 
ratio of phosphorylated to total glycogen synthase kinase 3 beta (GSK3β); (F) ratio of phosphorylated to 
total extracellular signal–regulated kinase (ERK); (G) Myostatin; (H) Muscle-specific RING finger protein-1 
(MuRF1); (I) representative western blot lanes (for representative purposes the image was cropped and edited) 
representative membrane protein loading. n = 5 for each group. Values are mean ± SEM, One-way ANOVA. Ba/
Deb vs Sh: αp < 0.05; ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχχp < 0.001.

https://doi.org/10.1038/s41598-019-39581-9


7Scientific Reports |          (2019) 9:2956  | https://doi.org/10.1038/s41598-019-39581-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Aortic constriction relief slightly increased Ktr towards normalisation and induced a trend to cardiomyocytes’ 
active tension to decrease when compared to sham group (Fig. 4B).

Regarding the expression of proteins associated with calcium homeostasis, Ba animals presented reduced con-
tent of NCX and Junctophilin (Fig. 4J,K). After debanding SERCA2a and Junctophilin levels increased (Fig. 4F,K) 
while NCX remained lower compared to sham (Fig. 4B).

Pulmonary arteries thickness.  The thickness of pulmonary arteries induced by aortic constriction nor-
malized completely after debanding. Interestingly, the thickness of the pulmonary arteries correlates negatively 
with exercise capacity and positively with E/e′ and indexed LAA (Fig. 5G,H,I).

Discussion
The underlying mechanisms associated with incomplete myocardial RR need to be clarified to successfully 
potentiate myocardial recovery after AVR with a special emphasis on RV involvement. Banding rats resemble AS 
patients by presenting LV concentric hypertrophy, DD (alterations of the pattern of ventricular filling and myocar-
dial relaxation), pulmonary congestion and effort intolerance. Besides LV alteration, aortic constriction-induced 
several RV abnormalities.

Two weeks after overload relief, reduction of aortic velocity trigger reverse remodelling and cardiac func-
tion amelioration (more evident on left heart). On the LV, myocardial hypertrophy, fibrosis and atrium area 
enlargement remained altered after pressure-overload relief. In addition to sustained LV fibrosis, the incomplete 
reversion of titin PEVK phosphorylation contributed to the persistent myocardial stiffness in debanding rats. The 
improvement of relaxation during RR is probably related to the reduced CAMKii activity, and increased Serca2a 
and S100a1 expression that potentially restrains calcium leak by the ryanodine receptor (RyR) and improves cal-
cium reuptake by the sarcoplasmic reticulum (SR). Importantly, this model presents significant RV abnormalities. 
Some of these abnormalities do not revert during RR, such as hypertrophy, fibrosis, right-atria enlargement and 
systolic and diastolic markers of cardiac dysfunction. At the cell level, and similarly to the LV, RV cardiomyocytes 
from banding rats were stiffer and showed a reduced rate of force redevelopment (Ktr). This manuscript provides 
novel insights on LV and RV changes secondary to chronic pressure overload and highlights the involvement of 
both ventricles in chronic pressure overload conditions imposed on the LV, such as in the case of aortic stenosis.

Diastolic dysfunction is frequently found in AS patients with normal systolic performance. In severe AS with 
preserved EF, symptomatic patients show impaired diastolic function and atrial dilatation17. Therefore, we aimed 
to detect early changes that might represent important time points for therapeutic interventions aiming to reverse 
the progression of the disease. Traditionally AVR has been recommended only after the onset of HF symptoms 
and a mean gradient higher than 40 mmHg18. However, recent evidence suggests that AVR outcome can be 
improved if performed earlier, as soon as diastolic function starts to decline19,20. Thus, in our aortic-banding 
model (Fig. 6), we monitored and studied myocardial remodelling as soon as LV DD and LV concentric hyper-
trophy became evident at echocardiographic level (Fig. S1). The mechanisms by which pressure-overload induces 
LV hypertrophy are, among others, increased AKT, mTOR, and GSK3β phosphorylation21. In our study, activa-
tion of AKT pro-hypertrophic signalling predicts the left ventricular adaptive response aiming to normalise wall 
stress and compensate for the increased afterload. Myocardial stiffness and impaired relaxation are hallmarks of 
DD and usually result from LV concentric hypertrophy induced by pressure overload17,22. Myocardial stiffness is 
strongly determined by alterations in the extracellular matrix, such as myocardial fibrosis, and by changes in car-
diomyocyte myofilamentary proteins, mainly titin, a major contributor to cardiomyocyte passive tension. In Ba 
rats, increased collagen deposition, the over-expression of the main enzyme responsible for collagen cross-linking 
(i.e. LOX), and the hyperphosphorylation of Titin S26-PEVK segment contributed to increased LV myocardial 
stiffness by augmenting myocardial fibrosis, collagen cross-linking and cardiomyocyte passive tension, respec-
tively. The LV delayed relaxation in Ba rats can be attributed to the reduction of SERCA2a/PLB, hindering Ca2+ 
reuptake to the SR.

In the hypertrophic and hypercontractile myocardium of Ba rats, active tension, calcium sensitivity and coop-
erativity increased while Ktr decreased. Myocardial hypercontractility occurs in parallel with changes in myofil-
amentary proteins that increase force generation at a given calcium concentration23–25. Furthermore, it has been 
postulated that alterations in myofilamentary proteins are important for the development of familial hypertrophic 
cardiomyopathy26.

Importantly, in agreement with a previous study27, when the RV is overloaded, it develops several abnormali-
ties, such as hypertrophy and deterioration of systolic and diastolic function. Similar results were recently obtained 
in patients who underwent AVR, and no significant change in RV function was observed28. Calcium overload and 
impaired ventricular relaxation can promote pulmonary congestion29 as observed in our banding animals and 
strengthening our positive correlation data between arterial wall thickness and some important parameters of dias-
tolic dysfunction, namely E/e′ and LAA. Therefore, pulmonary vascular remodelling can be a consequence of the 
sustained increase in pulmonary venous pressure30. From the epidemiologic-standpoint, pulmonary hypertension 
is frequently present in AS patients and the underlying reason may be attributed to DD31. Interestingly in our band-
ing rats, pulmonary arterial wall thickness correlates negatively with VO2 max and positively with DD, showing 
an interplay between these parameters. In the AS clinical scenario, pulmonary hypertension and DD can affect the 
quality of life of these patients by limiting their functional capacity, mainly during exercise32,33.

Aortic constriction triggered RV cardiomyocyte hypertrophy and downregulation or inactivity of 
anti-hypertrophic proteins such as muRF1, myostatin and GSK3β and activation of the pro-hypertrophic ERK. 
Despite the unquestionable involvement of these proteins on hypertrophic response to afterload, the activation of 
the well-recognised pro-hypertrophic agent, mTOR, decreased, AKT was unaltered, and the transcription factor 
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1 (FOXO1) decreased in the RV of Ba rats. Thus, in RV cardiomyocytes’ hypertrophy is probably mediated by 
activation of GSK3β, ERK, muRF1, myostatin and FOXO1.

In addition to RV myofilamentary passive tension in the banding group, myocardial fibrosis further contrib-
uted to RV stiffness. Similar to LV, RV cardiomyocytes showed a reduction in the rate of tension development 
with no significant changes in active tension.

Notwithstanding the myocardial remodelling changes imposed by chronic pressure overload, our main goal 
was to describe the changes during RR. This is quite pertinent since only a few studies describe the changes 
induced by aortic debanding at an early stage of the disease15,16,34–36 and most of the available information on RR 
derives from LVAD studies. However, RR-induced by LVAD is imposed on a totally different phenotype char-
acterised by dilated hypertrophy and systolic dysfunction37–46. This is markedly contrasting to the concentric 
hypertrophy and DD patent in our animal model that was designed to resemble AVR-induced RR and to assess 
the early events of myocardial RR.

Clinically, the classical parameters to evaluate the success of RR are EF, LV end-diastolic and end-systolic 
volumes, LV mass and, more recently, diastolic function47. After debanding, the pressure relief allowed the myo-
cardium to remodel as denoted by the partial recovery of LV mass, normalisation of LV volumes and ameliora-
tion of LV diastolic dysfunction. Although, RV abnormalities induced by LV pressure overload prevail during 
myocardium RR, independently of pulmonary edema reduction. This data shows that after aortic pressure relief, 
the RV takes longer than the LV to recover. Recent studies has shown RV function deterioration after aortic valve 
replacement14. The mechanism that underlies RV dysfunction post-surgery were not addressed nor discussed 
in the existing literature. Herein, we were able to describe major changes at cardiomyocyte, myofilaments and 
calcium levels, adding relevant information to the state of the art.

Figure 4.  Effect of pressure overload on RV cardiomyocytes and calcium handling. (A) cardiomyocytes passive 
tension; (B) cardiomyocytes active tension; (C) myofilaments calcium sensitivity; (D) Hill-coefficient; (E) 
the rate of tension redevelopment (Ktr); Protein quantification of: (F) sarcoplasmic/endoplasmic reticulum 
Ca2+ATPase 2a (SERCA2a); (G) ratio of phospholamban phosphorylated (p-PLB) to total (PLB); (H) ratio 
of SERCA2a to phospholamban; (I) sodium-calcium exchanger (NCX); (I) Junctophilin; (L) representative 
western blot lanes (for representative purposes the image was cropped and edited) representative membrane 
protein loading. n = 5 for each group. Values are mean ± SEM, One-way ANOVA. Ba/Deb vs Sh: αp < 0.05; 
ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχχp < 0.001.
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Figure 5.  Effect of pressure overload on lung arteries thickness. (A–C) Pulmonary arterial thickness (D) 
representative images of histological lungs. Correlations between arterial wall thickness and: (E) maximum 
rate of oxygen consumption (VO2max); (F) ratio between: (E), peak of pulse Doppler wave of early mitral flow 
velocity and E′, wave velocity of tissue Doppler at the lateral mitral annulus; (E/e′) and (G) Indexed left ventricle 
area (LAAind). n = 8 for each group. Values are mean ± SEM, One-way ANOVA Ba/Deb vs Sh: αp < 0.05; 
ααp < 0.01; αααp < 0.001; Deb vs Ba: χp < 0.05; χχχp < 0.001.

Figure 6.  Experimental protocol design.
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We expected that, due to the early nature of our intervention, Deb animals would normalise hypertrophy by 
reducing AKT pro-hypertrophic signalling pathway, namely phosphorylation of GSK3β and mTOR. However, 
despite the reduction of AKT and mTOR activation, LV mass and GSK3β phosphorylation remained increased in 
Deb rats compared to Sham, rats. Since the anti-hypertrophic effects of GSK3β can be blocked by kinases other 
than AKT or CAMKii48,49, we speculated that these kinases (not assessed in our study) might have contributed for 
the persistent GSK3β activation after overload relief.

During RR, RV cardiomyocytes’ hypertrophy and fibrosis remained high. The downregulation or decreased 
activity of anti-hypertrophic proteins such as myostatin, GSK3β or FOXO1 could underlie the persistent hyper-
trophy. Nevertheless, mTOR activation remained decrease and AKT and ERK increased compared to sham, high-
lighting the complex interaction between pro- and anti-hypertrophic pathways.

In addition to LV hypertrophy, myocardial stiffness represents an important postoperative clinical marker to 
determine the RR outcomes after AVR as it strongly associates with DD50. Of note, after AVR, the survival rate is 
lower in patients with severe fibrosis47. Myocardial fibrosis results from an excessive collagen deposition due to an 
imbalance in its turnover, and to increased collagen cross-linking51,52. Although in our study collagen deposition 
was not modified after overload relief in none of the ventricles, we recognise that a longer period could be neces-
sary to report a significant decrease of myocardial fibrosis. On the other hand, the interplay between fibrosis and 
inflammation can regulate extracellular matrix remodelling. In fact, IL-6-induced STAT3 activation can promote 
fibrosis, at least indirectly, by enhancing TGF-β signalling27 or TIMP-1 expression53. Thus, the activation of the 
IL6-STAT3 proinflammatory and profibrotic pathways could contribute to the maintenance of myocardial fibrosis 
in Deb rats. Notwithstanding, rats that showed a worse pattern of reverse remodelling present increased activa-
tion of proinflammatory and profibrotic pathways (e.g. IL-6-STAT3, TGF-β, etc).

Apart from the extracellular matrix contribution, titin and other myofilamentary proteins also impact myo-
cardial stiffness. Indeed, relatively few information is available about titin changes in the context of AVR-induced 
LV RR54. In LV from debanding group, we observed a non-significant attenuation of passive tension that was, 
at least in part, consequence of S26-PEVK segment phosphorylation, decreasing PEVK persistence length, and 
increasing titin-based passive force55. Intriguingly, when compared to Sh rats, PKCα normalised and CAMKii is 
still upregulated. PKCα and CAMKii have opposite effects on titin passive tension, while the former increases, 
the latter decreases stiffness55–58. Thus, we propose that the balance of both kinases could contribute to the titin 
based-passive tension in Deb group. Indeed, titin-derived stiffness results from a fine balance between kinases 
activity in over 2000 residues that compose the PEVK and others titin-segments, whose numerous potential 
phosphorylation sites still await validation55,56,58,59.

Regarding myofilamentary changes during RR, we have shown that calcium sensitivity decreased, the myocar-
dium contractility was reduced, and myofilaments active tension and cooperativity was attenuated. In parallel, Ktr 
sustained decrease meaning that the rate of crossbridges recycling was still reduced, maybe due to a shift towards 
β-myosin heavy chain, which impairs cross-bridge cycling12. Indeed, Bjørnstad et al. demonstrated the upregula-
tion of β-myosin heavy chain to persist after mice aortic debanding16. In our study, if the decrease of Ktr is detri-
mental or beneficial in LV remodelling or LV RR is still unknown. However, the translation/clinical importance 
of this finding is relative since humans express predominantly the β-myosin heavy chain isoform in ventricular 
myocytes as opposed to the α-myosin heavy chain isoform that predominates in rodents60.

Finally, another important contributor for DD in AS is myocardial active relaxation associated with 
calcium-handling. Two-weeks of RR triggered myocardial relaxation to recover to sham values possibly a con-
sequence of the decrease in CaMKii phosphorylation or the up-regulation of calcium-binding protein S100A1. 
These changes can prevent diastolic SR calcium release and calcium leak24,29 and thus contribute to the improved 
relaxation observed during RR.

Limitations.  This study aimed to provide an overview of the major biventricular changes taking place during 
myocardial reverse remodelling. Thus, this study represents an initial approach to describe important signalling 
pathways related to cardiomyocytes’ myofilaments, calcium-handling, hypertrophic and inflammatory signalling 
pathways as well as to the extracellular matrix in an early stage of AS progression. Thus, its nature is essentially 
descriptive, opening novel perspectives for the scientific and medical community to carry out future studies, for 
instance, focusing on the in vitro modulation of myofilamentary proteins function or targeting right ventricular 
changes.

Conclusion
T﻿his work describes several mechanisms underlying cardiac remodeling and RR and highlights that this model 
nicely recreates important phenotypic features (myocardial hypertrophy and extracellular matrix remodelling, 
calcium handling and myofilaments’ changes) of chronic pressure overload and its relief, respectively. These rats 
demonstrate LV concentric hypertrophy and DD, RV dysfunction, remodeling of pulmonary arteries and, impor-
tantly, exercise intolerance. After debanding, the normalisation of cardiac function was not paralleled by the 
reversion of alterations in cardiac structure, myocardial fibrosis and inflammation. Importantly, banding-induced 
changes in RV function and structure persisted after debanding, despite the complete reversal of pulmonary vas-
cular remodelling, demonstrating a possible masked effect of RV dysfunction.

Methods
Experimental animal model.  Ascending Aortic Banding and Debanding.  Young male Wistar rats (±50 g) 
were anasthetized by inhalation of 8% sevoflurane, orotracheally intubated and mechanically ventilated (TOPO 
Small Animal Ventilator, Kent Scientific Inc). Anaesthesia was maintained with sevoflurane (2.5–3%). The 
animals were placed in right-lateral decubitus on a heating pad. After a small incision between the 2nd and 3rd 
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intercostal space aortic banding was surgically made with a 22-gauge blunt needle placed parallel to the aorta. A 
ligature (5–0; polypropylene) was firmly tied around both, and the needle was subsequently removed (Banding 
group, Ba, n = 15). In the sham group, the suture was kept loose (Sh, n = 10). The thorax was closed and the 
animal allowed to recovered with proper analgesia (Buprenorphine, 0.05 mg.Kg−1, twice daily). The cardiac func-
tion and structure were followed by echocardiography. When LV mass was ≥25%, and DD was observed (8–9 
weeks) (Fig. 6), a second surgery was made in 10 of the Ba animals to remove the suture, debanding group (Deb, 
n = 10). Animals were sacrificed 2 weeks later. Experiments were performed according to the Guide for the Care 
and Use of Laboratory Animals published by the NIH (NIH Publication no. 85–23, revised 2011) and with the 
Portuguese law of animal welfare (DL 129/92, DL 197/96; P 1131/97). The project was approved by the ethical 
committee of the Faculty of Medicine of the University of Porto and the Portuguese Foundation for Science and 
Technology and certified by the Portuguese National Authority for Animal Health (PTDC/ DTP-FTO/0130/2012; 
0421/000/000/2013).

Exercise tolerance, Echocardiographic and haemodynamic evaluation.  Aerobic capacity was eval-
uated on a treadmill chamber coupled to a gas analyser (LE8700C and LE405, Panlab Harvard Apparatus®). The 
treadmill was tilted to 10°. The adaptation was carried out at a speed of 15 cm.s−1 for 3 minutes. The maximum 
stress test started at a speed of 30 cm.s−1, with increments of 5 cm.s−1 every minute until the animals reached 
maximal aerobic capacity (VO2max).

For assessing in vivo cardiac function, rats were anaesthetized as mentioned above. A linear 15 MHz probe 
(Sequoia 15L8W) was used for the echocardiographic studies. M-mode was used to determine systolic and dias-
tolic wall thickness and cavity dimensions. Ejection fraction, fractional shortening and LV mass were calculated 
as previously described61.

Mitral flow velocity tracings were obtained with pulsed-wave Doppler, peak systolic tissue velocity and E′ 
were measured with tissue Doppler. Atrial dimensions and TAPSE were measured in the four-chamber view. 
Acquisitions were made using an echocardiograph (Siemens Acuson Sequoia C512). Recordings were averaged 
from three consecutive heartbeats.

For the haemodynamic evaluation, femoral vein was catheterized for fluid administration, and a left lat-
eral thoracotomy exposed the heart allowing for the insertion of a catheter into the LV (SPR-847. 1.4 F, Millar 
instruments. Baseline and inferior vena cava occlusion recordings were obtained with ventilation suspended at 
end-expiration. Data was continuously acquired (MPVS 300, Millar Instruments) at 1000 Hz (ML880 PowerLab 
16/30, Millar Instruments) and analysed off-line by PVAN software (Millar Instruments). Parallel conductance 
was computed after hypertonic saline bolus. In the end, while anesthetised, the animals were sacrificed by exsan-
guination, the tissues were collected, weighed and properly stored for molecular and functional studies.

Histology.  The right ventricle (RV), LV and lungs were fixed in formalin, dehydrated in ethanol, cleared in 
xylol and impregnated in paraffin. Five-micrometer slides were dewaxed, rehydrated, and stained with

Haematoxylin-Eosin (HE), to assess cardiomyocyte area, or Picrosirius Red, to assess myocardial fibrosis, and 
finally mounted with Entellan®. An optic microscope (Leitz Wetzlar – Dialux 20, Wetzlar, Germany), equipped 
with a photographic camera (Olympus XC30, Tokyo, Japan) was used to visualise and photograph the histolog-
ical preparations. The area of 60 cardiomyocytes per animal was measured using Cell^B software (Olympus). 
To calculate the area of fibrosis eight fields per animal were photographed and analysed with Image-Pro Pus 6 
software (Media Cybernetics, Rockville, USA). To assess pulmonary arteries remodelling, HE staining was used, 
and artery medial wall thickness (WT) was expressed as follows: %WT = [(Medial wall thickness × 2)/Arterial 
external diameter] × 100. Analysis was performed in a blind mode. We attributed a code to each sample and the 
correspondence to the experimental group was done after analysis of the results.

Force measurements in isolated cardiomyocytes.  After defrosted in 2.5 mL of calcium-free relaxing 
solution LV samples were mechanically disrupted, and the cardiomyocyte suspension incubated with 0.5% Triton 
X-100 for 5 minutes at room temperature to permeabilize the membranes. To remove the detergent, the cells 
were washed with relax solution and centrifuged (1500 rpm, 1 min, 4 °C) 4 to 5 times. Force measurements were 
performed as described previously24 using a force transducer from Aurora Scientific Inc. (Model 403A) and a 
length controller (Model 315C-I). Briefly, a passive tension-length relation was done stretching the cell until a SL 
of 2.2 µm. Maximal activation at pCa 4.5 was used to calculate maximal calcium-activated isometric force (Total 
tension, Tt) and the slack test (the cell was shortened for 1 ms to 80% of its original length) allowed to measure the 
rate of force-redevelopment (Ktr). A relaxing solution pCa 9.0 was used to determine passive tension (Tp). In the 
end, the cell was activated (pCa = 4.5) to access the cardiomyocyte functional stability and integrity. Lastly, the 
dimensions of the cell were measured, and the force values were normalized to the cardiomyocyte cross-sectional 
area. Data acquisition was made by ASI 600 A program with a sampling frequency of 2 KHz.

Protein analysis by Western Blot.  Tissue was homogenized in RIPA buffer (150 mM NaCl, 1.0% 
IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0; Sigma-Aldrich, R0278,) and pro-
tein concentration was determined based on the method of Bradford (Bio-Rad Protein Assay, 500–0006). Twenty 
micrograms (20 μg) of protein of each sample was prepared with Laemmli buffer (1 M Tris-HCl pH 6.8, 10% SDS, 
20% glycerol, 0.004% bromophenol blue, 20% 2-mercaptoethanol) randomly loaded and separated by SDS-PAGE 
(Mini-PROTEAN Tetra Cell, Bio-Rad). After transferring to a nitrocellulose membrane (Bio-Rad 1620115 and 
1620112) and blocking with 5% BSA (w/v; A2058, Sigma-Aldrich) in TBS-0.5%Tween (Tris-buffered saline-Tween 
20) the membranes were cut and incubated with primary antibodies overnight at 4 °C. NCX (Santa Cruz,sc-32881), 
AKT (Cell Signalling, 9272), p-AKT (Cell Signalling, 9271), Junctophilin-2 (Santa Cruz, sc-377086), 
TIMP-1 (abcam ab38978), TIMP-2 (abcam ab1828), Galectin-3 (abcam, ab2785), MMP-2 (abcam 37150),  
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MMP-9 (abcam ab38898), mTOR (Cell Signalling, 2972), p-mTOR (Cell Signalling, 2971), GSK3β (Cell 
Signalling, 9315), p-GSK3β (Cell Signalling, 9331), PKC (Abcam, ab32376) and p-PKC (abcam ab23513); IL-6 
(Cell Signalling, 12153) Stat3 (Cell Signalling, 9132) p-Stat3 (Cell Signalling, 9131) SERCA2a (Cell Signalling, 
4388); PLB (Thermo-Fisher, MA3–922), p-PLB (cell signalling, 8496) Camkii (SantaCruz, SC-5306) and 
p-Camkii (SantaCruz, SC-32289). Finally, membranes were incubated for an hour at room temperature with 
secondary antibodies (IRDye 800CW and IRDye 680LT, LI-COR). The signal was detected by an image acqui-
sition system (Odyssey Infrared Imaging System LI-COR Biosciences at 700 or 800 nm) and the image acquired 
prior to signal saturation. The signal was normalised to total protein density (ponceauS (Sigma-Aldrich P7170) 
as previously described62.

For titin analyses, cardiac muscle tissue was homogenized in modified Laemmli buffer63 and 1.8% agarose 
gels were used to separate the proteins by vertical SDS–agarose electrophoresis (run at 15 mA per gel for 15 h) 
(Minigel-Twin, Biometra). To determined titin isoforms the gels were stained with Coomassie brilliant blue. 
For titin Western blotting (WB) LV samples were run on 1.8% agarose gels and transferred to PVDF mem-
brane (Millipore, Immobilon®-FL Cat. No. IPFL00010 PVDF-membrane by semi-dry Western blot technique 
using the Biorad turbo blot system (1.5 A for 25 min with 20 V). The blots were stained with Ponceau S solution 
(Sigma-Aldrich P7170) to visualise total transferred protein. The blots were then probed with rabbit polyclonal 
antibodies against titin’s pS26 (GenScript, 1:1000) and pS170 (Genscript, 1:250). Bands were visualised using the 
LAS-4000 Image Reader (Fuji Science Imaging Systems, Stamford, Connecticut). Densitometry was performed 
using Multi Gauge version 3.2 software (Fuji Science Imaging Systems).

Real-time quantitative Polymerase Chain Reaction (RT-qPCR).  For gene expression analyses, RNA 
was extracted with TriPure (Roche). RT-PCR was performed with total RNA, followed by real-time PCR analyses 
using the SYBR Green method in a StepOne Plus, Applied Biosystems. For the animal studies, results are relative 
to the mean obtained for the SHAM group (set as arbitrary units) and normalised for 18S. Specific PCR primer 
pairs for the studied genes were 18S, Procollagen-type-I alpha1 and Type-III aplha1, lysyl oxidase (Lox), transform-
ing growth factor beta (Tgf-β) and calcium-binding protein A1 (S100a1).

Statistical analysis.  Results are expressed as mean ± SEM. Statistical analysis was performed using 
GraphPad Prism software. Shapiro-Wilk was used to assess a parametric distribution. Comparisons were per-
formed by one or two-Way ANOVA and appropriate post-hoc tests were used. The probability values < 0.05 were 
considered significant.
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