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Age and environment-related differences in gait in healthy
adults using wearables
Matthew D. Czech 1, Dimitrios Psaltos1, Hao Zhang1, Tomasz Adamusiak 1, Monica Calicchio1, Amey Kelekar1, Andrew Messere1,
Koene R. A. Van Dijk 1, Vesper Ramos1, Charmaine Demanuele1, Xuemei Cai 1, Mar Santamaria1, Shyamal Patel1 and
F. Isik Karahanoglu 1✉

Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and
physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world
environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional
assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-
day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of
gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments
and in real-world environments in a group of healthy younger (n= 33, 18–40 years) and older (n= 32, 65–85 years) adults. We
observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system
during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed.
We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas
gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days
of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group
differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have
the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of
functional ability.

npj Digital Medicine           (2020) 3:127 ; https://doi.org/10.1038/s41746-020-00334-y

INTRODUCTION
Gait is the primary means of mobility for most individuals and
many conditions directly or indirectly have an impact on gait. Gait
speed is considered an informative and reliable clinical measure in
a wide range of disease populations; it is often referred to as the
sixth vital sign1,2. Previous studies have shown that lower gait
speed is associated with cognitive decline, falls, and mortality3,4,
and is an important indicator of health and function in ageing and
disease5. Conventional gait assessment is performed in the
laboratory or clinic, using a combination of observational scales
(e.g., functional gait assessment) and performance tests (e.g.,
6 min walk test), where individuals perform prescribed walking
tests under observation. These types of assessments may not be
able to provide a reliable estimate of real-world gait because (1)
they are administered episodically, (2) can be subjective in nature,
and (3) gait can be altered under observation (Hawthorne
effect)6,7.
Advances in wearable technology have enabled the measure-

ment of gait using inertial sensors in free-living conditions8. Using
ground truth references, such as instrumented mats and motion
capture systems, researchers have validated novel gait measure-
ment approaches that rely on a small number of battery-efficient
inertial sensors9,10. Comparative analysis has revealed that while
these methods generally perform well, there are considerations,
such as study population and device location that can influence
the reliability of measurements11,12. Therefore, the validity of such
methods needs to be rigorously assessed in different populations
to establish their performance characteristics. In addition to

assessing the accuracy with which they can measure spatial and
temporal aspects of gait, it is also necessary to evaluate the
sensitivity of measures derived during daily life for detecting
clinically meaningful changes. Shah et al. showed that measures of
quantity were able to better discriminate between patients with
multiple sclerosis and controls, whereas measures of quality were
more discriminative for patients with Parkinson’s disease (PD) and
controls13.
There is a growing body of research showing that gait

assessments performed under controlled conditions (e.g., in the
laboratory or clinic) are unable to capture the variability observed
during daily life (e.g., in the home and community)14–17.
Specifically, gait speed derived from data captured under
continuous free-living conditions is slower than gait speed
measured in the clinic in frail elderly or community-dwelling
older adults14. It has been hypothesized that continuous, at-home
monitoring provides a richer and more comprehensive view of an
individuals experience with the disease18,19. In fact, Del Din et al.
showed that distinguishing PD patients and healthy volunteers
using gait characteristics was improved in free-living conditions20.
In addition to the prospect of enhanced sensitivity of measure-
ments, at-home monitoring has the potential to improve patient
engagement in clinical research studies by reducing the need for
frequent visits to the clinic, enabling more patients to participate,
and reducing the burden on patients and caregivers. For these
reasons, at-home measurements are gaining traction as valid
clinical endpoints from regulatory agencies. For example, the
European Medicines Agency recently approved 95th percentile
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stride velocity measured using a valid and suitable wearable
device, as an acceptable secondary endpoint in pivotal or
exploratory clinical studies for Duchenne muscular dystrophy21.
Despite growing evidence that at-home monitoring provides a

more comprehensive assessment of gait, several hurdles need to
be addressed to enable broader clinical adoption. Further clinical
research that adopts and validates standardized sensor-based
methods in various populations under free-living conditions is
needed to translate research findings and novel methods into
practice22. In addition, questions remain regarding the proces-
sing and interpretation of at-home data23. An open question is
the optimal monitoring duration necessary for reliable char-
acterization of gait under free-living conditions. Obtaining data
from multiple days and investigating day-to-day variability of at-
home measures is necessary, in order to assess the minimum
required acquisition period and obtain reliable real-world
estimates. However, additional days of monitoring results in
increased patient burden and might reduce compliance in
clinical trials, especially for patients suffering from particularly
debilitating diseases. The required number of at-home monitor-
ing days still remains arbitrary and can be affected by multiple
factors, such as the type of disease, treatment, age, geographical
location, and socioeconomic status. In fact, previous studies have
used data captured during monitoring durations that ranged
from one day to several weeks for their analysis20,24–27. Several
studies have also investigated day-to-day variability of at-home
measures27–33. These studies have reported a minimum of three
to six days of measurements required to obtain reliable estimates
of physical activity, energy expenditure, and heart rate. However,
the monitoring duration necessary for deriving a reliable
estimate of gait speed under free-living conditions is not well
understood. We are aware of only one recent study that reported
a minimum monitoring duration of 3 days for reliable estimation
of gait speed in slow-walking older adults with sarcopenia17.
Herein, we present our work on assessment of gait in healthy

younger (18–40 years) and older (65–85 years) adults in both the
laboratory and home setting, using a single lumbar-worn wearable
accelerometer. We aim to (1) assess the validity of measurements
derived using the lumbar-worn wearable device by comparing
them with those provided by a system that use multiple wearable
devices (APDM) and an instrumented mat (GAITRite), (2) test the
sensitivity of the median and 95th percentile gait speed derived
from in-lab walk test and continuous at-home monitoring data to
detect age-related group differences, and (3) propose a minimal
at-home monitoring period for estimating gait speed reliably.

RESULTS
Gait speed can be derived accurately from single lumbar-worn
accelerometer
During in-lab assessments, participants walked three 4-m laps on
an instrumented mat (GAITRite) at their typical walking speed.
While performing the task, participants wore six devices (Opal and
APDM), which were located at the sternum, lumbar, and bilaterally
on the wrists and feet. We assessed the accuracy and reliability of
gait features derived using (1) the APDM (six-sensor set) method34

and (2) the GaitPy (single lumbar-mounted sensor) method35, by
comparing them with gait features provided by GAITRite
(considered here as the gold standard). Figure 1 depicts the
agreement of gait speed derived from APDM and GaitPy, with
respect to the GAITRite through correlation and the Bland–Altman
plots. The intraclass correlation coefficient (ICC) between gait
speed derived using the three methods showed moderate
agreement (ICC= 0.66, lower and upper bounds= [0.27–0.83]).
While GaitPy had higher variability than APDM measurements
(GAITRite vs GaitPy ICC= 0.49, lower and upper bounds=
[−0.07–0.77], after mean bias correction ICC= 0.72, lower and

upper bounds= [0.63–0.79]), both APDM and GaitPy had good
agreement with GAITRite. The distributions of both APDM- and
GaitPy-derived gait speeds were homoscedastic with consistent
mean biases with respect to GAITRite (GAITRite− APDM= 0.07m/s
(5%), GAITRite− GaitPy= 0.17m/s (13%)).

In-lab gait speed did not distinguish between age groups
In order to test if gait speed differs between the younger and
older age groups (younger group, n= 33, age= 29.2 ± 4.6 years;
older group, n= 32, age= 72.3 ± 5.8 years, full demographics in
Table 1), we first performed group analysis on the in-lab gait
speed. The overall repeated measures regression model included
methods (GAITRite/APDM/GaitPy), age group (younger/older), visit
(visit1/visit2), sex (F/M), height, and muscle mass as independent
variables (fixed effects) and subject (random effect). The average
gait speed estimated by different methods was significantly
different (main effect of method: χ2= 199, p < 10−16; Fig. 2a).
Pairwise comparisons further showed that both APDM (six-sensor)
and GaitPy (single lumbar sensor) underestimated in-lab gait
speed compared to GAITRite (p values of all pairwise comparisons
<10−6). There was no main effect of age group (χ2= 0.28, p= 0.6).
When pairwise comparisons of the age group differences were
tested, none of the methods were able to differentiate between
younger and older groups (Fig. 2b). There were a trending main
effect of visit (χ2= 3.79, p= 0.051), significant age group by sex
interaction (χ2= 5.43, p= 0.02), and age group by sex and by
method interaction (χ2= 14.67, p < 10−3). No other variables or
covariates had significant effects on gait speed.

At-home gait speed differed significantly between age groups
Participants were asked to continuously wear an accelerometer
(GeneActiv) attached to the lumbar region with an elastic belt for
a period of approximately one week (range= [6–15] days, mean ±
SD= 8.72 ± 1.88 days; younger group= 8.61 ± 1.73 days; older
group= 8.84 ± 2.05 days. There were no group differences
between the number of walking bouts of younger and older
groups during the at-home monitoring period (p= 0.8). We then
performed group analysis on at-home gait speed of the two age
groups. The linear mixed-effects model showed significant age
group differences for both median gait speed (χ2= 12.54, p=
0.006) and the 95th percentile gait speed (F= 22.59, p= 10−5)
between the younger and older groups Fig. 3a, b, respectively).
The older group walked significantly slower than the younger
group. There was a significant effect of day type (weekday/
weekend, χ2= 42.08, p < 10−5) as well as a group by day type
interaction for median gait speed (χ2= 13.38, p= 0.002), indicat-
ing that the age group difference was larger during weekdays
than weekends. The pairwise comparisons showed significant age
group differences for weekdays (χ2= 21.81, p < 10−4), but not for
weekends (χ2= 3.23, p= 0.33). There were no other effects of
covariates or interactions.

Weak association between at-home and in-lab gait speed
We evaluated the agreement between in-lab and at-home gait
speed, both estimated from the lumbar sensor using the GaitPy
method35. Separate regression analyses were used to test if the
median and the 95th percentile gait speed at home predicted the
in-lab gait speed. Although both the median and 95th percentile
gait speed at home significantly predicted the in-lab gait speed,
they only explained ~20% of the variance with significant
intercept (median: adjusted R2= 0.18, F(1,62)= 14.77, β= 0.57,
p < 10−3, 95th percentile: adjusted R2= 0.25, F(1,62)= 21.45, β=
0.47, p < 10−5). Correlation analysis showed only a moderate
relationship between at-home and in-clinic gait speed metrics
(Spearman’s rho= 0.35 and 0.42, Fig. 4).
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Data from three days at home are sufficient for estimating gait
speed
We investigated the minimum amount of data (in terms of steps
or days) required from at-home monitoring, in order to reliably
estimate gait speed. Median ICC was used to assess agreement
between gait speed estimated using subsets of data (bootstrap
with replacement across various days of monitoring) and gait
speed estimated using full data set (i.e., all available days).
Compared to the full data, the agreement between two days or
more, and full data were excellent (ICC > 0.75) for both median
(ICC= 0.85, [0.65–0.93]) and 95th percentile gait speed (ICC= 0.89,
[0.66–0.95], Fig. 5a, b). The improvement on ICC values becomes
minimal starting from three days with ICC > 0.75 for all bootstraps.
Moreover, good agreement was observed for both median and
95th percentile gait speed for 5000 steps, and excellent agreement
was observed for both median and 95th percentile gait speed,
when participants walked 15,000 or more successive steps, though
there was substantial variance, especially for median gait speed
(Fig. 5c, d). The improvement in 95th percentile gait speed
becomes minimal starting from 20,000 steps.
Based on these findings, we investigated the impact of

monitoring duration on detecting differences between the two

age groups based on at-home measures of gait speed. We applied
a t-statistic bootstrapping method36 to create various subsets of
days, and compared them to the entire data set collected outside
the lab. Similar to the results above, differences between median
gait speed for the two age groups were significant with data from
only two at-home days (all at-home data vs two days: p ≥ 0.05,
Table 2). Moreover, for 95th percentile gait speed, distinguish-
ability between younger and older groups for 1 day of data were
comparable to full data set obtained outside the lab (all at-home
data vs 1 day: p > 0.05, Table 2).

DISCUSSION
In this cross-sectional study involving healthy adults divided into
two age groups (younger [18–40 years], older [65–85 years]), we
derived gait speed from participants during in-lab gait tasks, as
well as from approximately nine days of continuous at-home
monitoring. We aimed to (1) validate and evaluate the perfor-
mance of a method for measuring gait relying on a single lumbar-
worn accelerometer (GaitPy) with respect to a reference method
relying on six devices (APDM), and an instrumented mat (GAITRite)
as the gold standard device in-lab; (2) test the ability of gait speed
estimated in lab and at home to distinguish between the two age

Fig. 1 Gait speed validation based on in-lab 4-m gait task. a Comparison of gait speed estimated using a six-sensor system (APDM) and an
instrumented gait mat (GAITRite). The gait speeds derived from two systems were highly correlated (Pearson’s r= 0.98, left). Bland–Altman
plots (right) showed minimal mean difference (mean difference= 0.07, blue solid line; LoA= [−003, 0.13], red solid lines; corresponding
confidence intervals are in dashed lines). b Comparison of gait speed estimated using a single lumbar-worn sensor (GaitPy) and an
instrumented gait mat (GAITRite). The gait speeds derived from two systems were also highly correlated (Pearson’s r= 0.72, left).
Bland–Altman plots (right) showed mean difference (mean difference= 0.17, blue solid line; LoA= [−0.09, 0.43] red solid lines; corresponding
confidence intervals are represented by dashed lines). Both APDM and GaitPy had consistent bias compared to GAITRite and underestimated
gait speed. LoA limits of agreement.
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groups; (3) determine the amount of at-home data required to
reliably estimate the median and 95th percentile gait speed, and
(4) evaluate the sensitivity of gait speed measured at home for
detecting age-related differences in a healthy population.
Assessing the validity of sensor-based methods for estimating

gait speed in a controlled setting (e.g., laboratory or clinic) is
essential for understanding its performance characteristics. The
algorithm we implemented in GaitPy for estimating gait speed
using a single lumbar-worn sensor has been shown to be
comparable to gait measures derived using bilaterally worn
ankle-mounted devices, and has previously been successfully
applied in a variety of disease populations, including PD,
Huntington’s disease, and stroke patients, both in-lab and at-
home11,12,37,38. Compared to shin or foot sensors, a single lumbar-
worn sensor enables relatively easy removal and reapplication
during certain periods of the day, including bathing and sleeping.
In addition, the lumbar position is a convenient location for
measuring bilateral asymmetries of gait which may be important
in certain disease populations, including PD. In this study, we
confirmed the validity of a lumbar-worn sensor and observed that
in-lab gait speed estimated using data from a single lumbar-worn
sensor (GaitPy) showed good agreement with an instrumented
mat (GAITRite). We further observed a consistent bias for both
GaitPy (13%) and APDM (5%, reference six-device system)
compared to the instrumented mat. However, GaitPy-derived gait

Fig. 2 In-lab gait speed did not show any age group differences. a Gait speed estimated using different methods differed (χ2= 199, p <
10−16). Both APDM and GaitPy underestimated gait speed during in-lab gait task compared to GAITRite (p < 10−6), which is used as the gold
standard. b Gait speed estimated using any of the three methods did not differ between the two age groups (younger group, n= 33, age=
29.2 ± 4.6, 17F; older group, n= 32, age= 72.3 ± 5.8, 16F; main age group effect: χ2= 0.28, p= 0.6). Box and whiskers plots show the median
and interquartile range, the lines extend to the smallest/largest value within 1.5 times interquartile range below/above the 25th/75th
percentile, and the dots represent each individual data value.

Table 1. Participant demographics.

Younger Older p Value

Number of participants 33 32

Sex (F/M) 17/18 16/18 1

Age (years) 29.2 ± 4.6 72.3 ± 8.8

[23–39] [65–85]

BMI (kg/m2) 23.4 ± 2.6 24.5 ± 2.6 0.9

[19–29] [19–29]

Education 13 College 3 High school 0.14

20 Postgrad 7 College

22 Postgrad

Ethnicity 25 White 30 White 0.07

6 Asian 1 Asian

2 Other 1 Other

In total, 65 participants were included in the study, which was conducted
at the Pfizer Innovation Research Laboratory (PfIRe Lab), MA. The younger
and older age groups were equibalanced in terms of sex and BMI. The
younger group included one American Indian or Alaska Native, and one
Native Hawaiian or Pacific Islander; the older group included one Black or
African American participant, which were included in the “other” category.
BMI body mass index.

Fig. 3 At-home gait speed estimated using a single lumbar-worn sensor (GaitPy) differed between age groups. a The median gait speed
estimated by GaitPy showed significant group differences between younger and older groups (p= 0.006). There was also significant main
effect of day type (χ2= 42.08, p < 10−5), and group by day type interaction (χ2= 13.38, p= 0.002); i.e., the group difference was larger during
weekdays than weekends. b The 95th percentile gait speed was also different between younger and older groups (p= 10−5). Box and whiskers
plots show the median and interquartile range, the lines extend to the smallest/largest value within 1.5 times interquartile range below/above
the 25th/75th percentile, and the dots represent each individual data value.
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speed had higher variability than APDM, likely the result of
reliance on a single device. This suggests that there might be a
sensitivity trade-off when utilizing fewer devices for measuring
gait speed. Although, based on our previous findings, this trade-
off may be minimal39. Using gyroscope in combination with the
accelerometer could potentially lead to better gait characteriza-
tion, especially important to capture rotational information for
turns and falls, with a cost of higher battery usage. Despite
limitations in sensitivity, gait speed estimated using a single
lumbar-worn device has been shown to distinguish between
disease states, as well as detect the effects of treatment20.

Additional work investigating the validity of gait feature estima-
tion using a single lumbar-mounted device in various disease
populations is still needed. Our results suggest that a single
lumbar-worn device can provide sufficient accuracy for monitor-
ing gait under free-living conditions and at the same time
minimize participants burden.
There is mounting evidence that gait measurements differ

between in-lab and at-home environments14–17. In our study, in-
lab gait speed derived using either wearable sensors or GAITRite
was unable to distinguish between the two age groups, whereas
at-home gait speed showed the older group walked significantly

Fig. 4 Weak association between in-lab and at-home gait speed. a The median gait speed at home showed a significant slope and an
intercept (β= 0.57, p < 10−3, I= 0.65; p < 10−5). The two gait speed measures were moderately correlated (Spearman’s rho= 0.35, p= 0.004),
and at-home median gait speed explained only 18% of the variance of in-lab gait speed. b When a regression analysis was performed to
explain the in-lab gait speed with the 95th percentile gait speed, at-home gait speed showed a significant slope and an intercept (β= 0.47, p <
10−4; I= 0.54, p= 10−4). The two gait speed measures showed moderate correlation (Spearman’s rho= 0.42, p= 0.0005). At-home 95th

percentile gait speed explained only 25% of the variance of in-lab gait speed. Shaded area shows the 95% confidence interval.

Fig. 5 Amount of data needed to reliably estimate gait speed at home. Subset of data in terms of successive steps or randomly selected
days was compared to the full data set (ICC > 0.75 represents excellent agreement between two measurements). Minimum required data to
estimate both a median gait speed and b 95th percentile gait speed was 2–3 days of monitoring data. c, d At least 15,000 and 10,000
concurrent steps were required to reliably estimate median and 95th percentile gait speed, respectively. Box and whiskers plots show the
median and interquartile range, the lines extend to the smallest/largest value within 1.5 times interquartile range below/above the 25th/75th
percentile, and the dots represent each individual data value.
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slower than younger participants. We further confirmed our
findings using uninstrumented measurements, which were
collected as part of the traditional Short Physical Performance
Battery (SPPB) assessment on the same participants (i.e., the time
for participants to perform the walk test timed using a stop
watch), and found no differences between age groups based on
stop watch time (average time to walk 4-m, younger group: 3.8 ±
0.5 s, older group: 3.7 ± 0.5 s, χ2= 1.08, p= 0.3). Furthermore,
other gait metrics such as step time and stride length derived
from in-lab assessments failed to differentiate the age groups
(Supplementary Table 1). In-lab measures are acquired during
single visits, whereas at-home measurements enable continuous
evaluation over prolonged periods, providing the ability to
capture nuanced therapeutic effects18. Our findings are consistent
with evidence that while a participant might change his/her
behavior for a short period of time under observation (e.g., no age
group difference for gait speed during in-lab assessments), it is
unlikely that they will be able to do so during long periods of
passive monitoring under free-living conditions14.
We have not observed a sex effect, but there was an age group

by sex interaction during the short in-lab walk test captured by
both instrumented and uninstrumented measurements (Supple-
mentary Fig. 1). This effect did not exist in the at-home monitoring
data, and we suggest that the interaction effect is due to the
participants change of behavior during short, observed assessments
in the lab environment (i.e., observer effect). Therefore, healthy
volunteer studies interested in at-home gait speed as an endpoint
may not need independent grouping based on sex. However,
controlling for age may be needed in studies with wide age ranges.
Several studies have proposed that gait should be considered

as the sixth vital sign2. For example, higher gait speed predicted
better survival40 and lower gait speed was associated with serious
falls that resulted in a visit to the emergency room in older adults,
with mild cognitive impairment41. In healthy adults, real-world gait
speed is expected to decrease approximately 0.03 m/s every
decade over the life span of an adult, resulting in a difference of
around 0.12 m/s after 40 years42. In our study, we observed that
at-home gait speed differed by 0.09 m/s on average between the
younger and older groups (approximately four decades apart), and
that group difference in median gait speed was driven by
weekday rather than weekend periods (Supplementary Fig. 2a).
We also observed that age-based differences existed for various
bout length, especially for short (ranging between 10 and 30 s)
and medium bouts (ranging between 30 and 60 s), although gait
speed increased with bout length (effect of age group: χ2= 6.62,

p= 0.02, effect of bout length: χ2= 557, p < 10−16 Supplementary
Fig. 2b). Furthermore, not only gait speed but other gait features
differed by age group (Supplementary Table 2). Similar trend was
observed in patient populations such as PD, where significant
group differences in at-home gait features were observed
compared to healthy volunteers20. Although these are cross-
sectional studies, accurate estimation of real-world gait and
evaluating its sensitivity to clinically meaningful change; e.g., the
disease state or its progression, are extremely important. We have
shown that gait metrics derived from at-home monitoring with a
single lumbar-worn sensor provided more sensitive information to
differentiate two age groups compared to in-clinic assessments,
and that there is only a weak association between at-home and in-
lab gait speed. This result was recently reported in older
adults14,15,17, and it was also shown that gait speed derived
during longer walking bouts in the laboratory appears to be better
correlated with at-home measurements17. These findings provide
further evidence for implementing wearable devices in clinical
trials for monitoring physical function at home instead of in-clinic
assessments. The use of wearable devices out-of-lab settings not
only provides a better assessment of real-world activity, but also
brings additional benefits of remote monitoring. For example, it
enables to enroll patients who live in remote regions with difficult
access to clinic, or reduces the exposure of participants who may
be vulnerable to healthcare settings during a pandemic. In
summary, remote data capturing offers the ability to design
decentralized trials, which may become crucial for a wide variety
of clinical trials in the near future.
Overall, the median gait speed measured at home was lower

than in-lab gait speed for both age groups. This result suggests
that at-home gait speed may be affected by one or more factors
that are present during daily life. One possible factor may be the
cognitive challenges that are typically present during performance
of activities of daily living. Several studies suggest that mobility
relies on cognitive resources43–45. In fact, it has been recently
shown that mobility assessments performed at home better
reflect cognitive functioning compared to those performed in the
laboratory46. In addition, Hillel et al. showed that gait speed
measured during in-lab dual-task walking is comparable to the
gait speed measured during at-home monitoring15. The presence
of a relationship between cognition and mobility performance
may explain the reduced at-home gait speed compared to in-lab
gait speed we observe in our data. Additional factors such as
mood and fatigue may also contribute to the at-home gait, more
so than in lab, where participants may put forth their best effort.

Table 2. The minimum number of at-home monitoring days required to differentiate the at-home gait speed between younger and older groups
similar to full data.

Days Median gait speed 95th Percentile gait speed

t-Original t-Bootstrapb p Value t-Original t-Bootstrapb p Value

1 3.01 ± 0.67 0.048 3.35 ± 0.68 0.08a

2 3.57 ± 0.51 0.146a 3.73 ± 0.53 0.147a

3 3.79 ± 0.42 0.225a 3.96 ± 0.41 0.214a

4 3.91 ± 0.33 0.259a 4.06 ± 0.33 0.243a

5 3.99 ± 0.26 0.292a 4.15 ± 0.26 0.288a

all 4.13 4.29

For both 95th and median gait speed 1000 bootstraps were drawn for various number of days [1–5] and the t-values were compared to the original t-values. In
order to obtain similar group distinguishability compared to full data set, at least 2 and 1 days of at-home monitoring data with 1000 steps were required for
median and 95th gait speed, respectively (p > 0.05). t-Original shows the t-statistic for the group difference using the full data, t-bootstrap indicates the mean t-
statistic over the bootstrap samples.
ap < 0.05.
bMean ± sd.
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Our results suggest that at least two to three days of monitoring
is required to estimate both median and 95th percentile gait speed
in healthy volunteers. When the age groups were analyzed
separately, we found only one to two days of data was needed to
reliably estimate gait speed in the older cohort, whereas two to
three days were needed for the younger cohort. This result
suggests more day-to-day variance in gait speed in the younger
cohort (Supplementary Fig. 3), as also reflected by the significant
effect of day type, as well as age group by day type interaction
(Supplementary Fig. 2a). In addition, our results (Table 2) suggest
that two days of data were necessary to estimate differences
between young and old using median gait speed, whereas one
day was needed for 95th percentile gait speed. Indeed, the upper
and lower ICC bounds were tighter for 95th percentile gait speed
compared to median gait speed, suggesting less day-to-day
variability of 95th percentile gait speed. The lower variability of
95th percentile gait speed could have contributed to the improved
distinguishability of young and older groups with less data
compared to median gait speed. It may also be the case that
median gait speed is a more sensitive indicator of age. A previous
study employed a similar approach to quantify the minimum days
required for reliable estimation of physical activity in older adults,
and found that two days were sufficient for seven of the nine
activities32. In accordance with our results, another study in older
adults found that three days of accelerometer data were needed
to accurately predict physical activity levels28, and another recent
study found that a monitoring period of three days is necessary
for gait speed estimation in frail older adults17.
Our results on healthy participants comparing two age groups

will be helpful for future studies with multiple disease populations;
e.g., for selecting important variables, deciding the test environ-
ment, and minimal monitoring period. Moreover, we suggest this
study provides an evidence on the ability of gait speed to detect
minimal change between two close populations, especially
important during the early stages of gait impairment, where only
subtle differences may be detected relative to healthy partici-
pants, and during disease progression. However, validation of
GaitPy performance in advanced disease populations may be
needed to verify accuracy of the algorithm. In addition, disease-
specific effects, such as motor fluctuations seen in some PD
patients due to wearing off medication, could produce changes in
variability of at-home gait speed. Therefore, future work would be
needed to consider the potential impact of disease-specific
changes on algorithm reliability and gait speed variability.
One limitation of our study is that we measured gait speed in

healthy adults for just over 1 week, (mean ± SD= 8.72 ± 1.88 days).
The group analyses were conducted based on the full data;
however, we limited gait speed reliability analysis to participants
with at least five days of data (number of participants who had
five days of data with at least 1000 steps per day= 64, number of
participants who had five days of data with at least 100 steps
per day= 65). Although we instructed our participants to wear the
device continuously, we did not have a robust way to determine
participant compliance for a lumbar-worn accelerometer. There-
fore, we set a minimum threshold of 100 steps for including a day
in our analyses. We investigated different step threshold values
(10, 250, and 1000 per day), but they did not have any significant
impact on the results (Supplementary Fig. 4). Accurate determina-
tion of participant compliance remains a challenge in the field and
a limitation of this study.
Another limitation of this analysis is that the randomly selected

days, varying from 1 to 5 days, were compared to the full data set,
which captured on average 9 days of at-home monitoring.
Moreover, we have observed that the type of day (weekend/
weekdays) has a significant effect on gait metrics (Supplementary
Table 2 and Supplementary Fig. 2a). In our analysis, we only tested
for steps or days without labeling the type of day, since that would
introduce another limit for bootstrapping. Further analysis

accounting for the day type showed that including weekend
day out of a total of 3 days only slightly improved reliability of
both median and 95th percentile gait speed estimation (Supple-
mentary Fig. 5). Future studies may benefit from longer
monitoring periods, in order to obtain more substantial baseline
data to replicate these findings.
In the present study, we have shown that a single lumbar-worn

sensor can be used for monitoring gait under free-living
conditions and capture meaningful information about real-world
function that might not be possible in controlled settings (e.g.,
laboratory or clinic). We have shown that, despite higher
variability, at-home gait speed was able to capture age-related
group differences in healthy volunteers. In contrast, in-lab gait
speed measured using either of the three methods did not
differentiate between the two age groups. Moreover, we found
that there was a weak correlation between at-home and in-lab
gait speed, and gait speed measured at home was lower than in
lab for both age groups. Finally, two to three days of at-home
monitoring is sufficient for reliably estimating median and 95th

percentile gait speed in both older and young healthy adults.

METHODS
Subjects and procedure
We recruited 65 participants in total, 33 healthy young participants (age=
29.2 ± 4.6 years, 17F, body mass index (BMI)= 23.4 ± 2.6) and 32 healthy
older participants (age= 72.3 ± 5.8 years, 16F, BMI= 24.5 ± 2.6, Table 1) to
take part in two instrumented in-lab assessments each lasting around two
hours in duration about 7–14 days apart, and an at-home portion in
between the two visits (range= [6–15] days, mean ± SD= 8.72 ± 1.88 days;
younger group= 8.61 ± 1.73 days; older group= 8.84 ± 2.05 days). Through-
out this manuscript at-home activity monitoring refers to monitoring all
activity outside the laboratory; i.e., real-world environment or daily life.
The in-lab portion was completed at the Pfizer Innovation Research Lab

(PfIRe Lab) in Cambridge, Massachusetts. The study was reviewed and
approved by Advarra IRB (protocol number: Pro00029419). All participants
signed the written informed consent. The eligibility criteria included no
significant health problems, as reviewed by the study physician during
medical history intake; BMI ≥ 18.5 (kg/m2) and <30 (kg/m2) or absolute
weight <125 kg; and the predetermined score for VES-13 (Vulnerable
Elders Survey).
During the in-lab portion, participants were instrumented with six

wearable inertial devices (Opal, APDM Inc., Portland, Oregon) consisting of
three-axis accelerometer, gyroscope, and magnetometer worn on the
sternum, lumbar (L4 position), and bilaterally on the wrists and feet. The
devices recorded data from three-axis accelerometer, gyroscope, and
magnetometer at a sampling rate of 128 Hz. Subjects were asked to
complete a battery of activities, including sit-to-stand tasks, postural/balance
tasks, and a gait task, as part of the SPPB assessment. The analysis presented
herein was limited to data from the gait task during which participants
walked three laps on an instrumented mat (GAITRite, CIR Systems Inc.,
Franklin, New Jersey), while wearing the APDM six-sensor set. Uninstru-
mented measurements were also acquired using stop watch to register the
time to complete the tasks as part of the standard SPPB assessment.
For the at-home portion, participants were instructed to wear a device

(GENEActiv, Activinsights Ltd., UK) on their lower back and wrist
continuously for a period of about 7–14 days. Both devices recorded
three-axis accelerometer data at sampling rate of 50 Hz. Only acceler-
ometer data from the lumbar-worn device was used for the analysis
presented herein.

Gait feature extraction
Three separate methods were used for estimating gait speed during the
performance of a gait task in the laboratory. Ground truth gait speed was
estimated from data collected using an instrumented mat (GAITRite), using
a vendor supplied proprietary algorithm (GAITRite Software version 4.8.5).
In addition, six inertial sensors (Opal, APDM) located on the sternum, lower
back, and bilaterally on the wrists and feet, were used to estimate gait
speed using a vendor supplied proprietary algorithm (APDM Mobility Lab
v2.0.0.2018). Lastly, we estimated gait speed from accelerometer data
recorded using a lumbar-mounted device (Opal, APDM), using an
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open-source algorithm (GaitPy v1.6.0), we implemented in Python v3.635.
GaitPy uses a wavelet-based method to enhance patterns that occur in the
vertical acceleration signal for first detecting heel strike and toe off events
during a gait cycle43. Gait speed is then estimated by integrating the
vertical acceleration signal to derive vertical displacement and applying an
inverted pendulum model as described by Zijlstra et al.47.
GaitPy was also used to estimate gait speed from data collected at

home. For at-home data, GaitPy first uses a binary classifier to detect bouts
of gait. Bouts of gait <3 s apart are concatenated into a single bout before
estimating gait speed on a stride by stride basis.

Statistical analysis
Statistical analysis was performed in R version 3.5.2 with following main
packages: “lme4” for linear mixed-effect regression, “car” for type-III
ANOVA, “BlandAltmanLeh” for Bland–Altman plots, and “psych” for ICC. For
in-lab walk test, for each digital device and algorithm aforementioned, the
median of gait metrics across all steps for each lap was computed. Then,
the median values across all laps per visit were used for statistical analysis.
Bland–Altman plots were used to test the homoscedasticity of the gait
speed derived from APDM and GaitPy compared to the instrumented mat
(GAITRite). Agreement of gait speed across multiple devices were
characterized with ICC2,1 (two-way random effects, absolute agreement,
with respect to single measurement). Pearson’s correlation coefficients
were also computed to test for the consistency between gait speed
estimated using different methods.
The group analysis of in-lab walk tests was performed using a linear

mixed-effects regression model with repeated measures followed by
ANOVA. Each participant had data from two in-lab visits. The statistical
model included method (GAITRite/APDM/GaitPy), age group (younger/
older) and sex (F/M) as main factors, and height and muscle mass as
covariates. Random effects (participant/visit and participant/device) were
also included to account for within participant variability.
The statistical testing of the at-home data was conducted using linear

mixed-effects model with repeated measures followed by ANOVA. In order
to account for outliers, which are upper and lower extremes in bout length,
bouts that lasted <10 s or >3000 s were excluded from the analysis.
Moreover, only bouts with at least four detected gait cycles were included
in the analyses to ensure robust gait parameter estimation. For each
participant, median gait speed was estimated per walking bout and then
fed into the statistical model. Age group (younger/older), sex (F/M), and
type of day (weekday/weekend) were added as main fixed factors, and
height and muscle mass were added as covariates. Random effects
(participant/type of day/each day) were also added to account for within
participant variability. The 95th percentile gait speed was summarized over
all walking bouts and fed into the same linear model, excluding type of day
and random effects.
In addition, the same analyses including ICC, Bland–Altman, and group

analysis were repeated for each gait metric. The group analysis p values
were corrected for multiple comparisons using false discovery rate
correction.
The association between in-lab and at-home gait speed was evaluated

using a linear regression model (lm in “lme4” package), using in-lab gait
speed as the dependent variable, and at-home gait speed as the
independent variable. The agreement between in-lab and at-home gait
speed was assessed using Spearman’s rho to account for outliers.
The amount of data required for reliable estimation of gait speed under

free-living conditions was determined by drawing bootstrap samples (with
replacement) from the at-home data by increasing the number of
consecutive steps to estimate the gait speed from 5000 to 25,000 steps,
and the number of days to estimate the gait speed from one to five days. A
1000 bootstraps were performed in each subgroup, and the analysis
included participants with at least total 25,000 steps (62 participants) and
five days of data (65 participants), during the continuous at-home
monitoring period for steps and days analyses, respectively. For each
bootstrap, we computed the median gait speed and the 95th percentile
gait speed per participant, and then computed the ICC with respect to the
gait speed estimated from the full data for that participant. Full data for a
participant ranged from 6 to 15 days based on the detected gait cycles.
Reliability of estimated gait speed was assessed according to the following
benchmarks: ICC ≤ 0.4 indicates poor, 0.4–0.59 moderate, 0.6–0.74 good,
and 0.75–1 excellent reliability48.
The number of at-home monitoring days required for detecting

differences in gait speed of the younger and older groups was
determined using bootstrapping followed by group analysis36.

Specifically, participants with at least 100 steps per day and five days
of data were included, and 1000 bootstraps were drawn for each number
of days varying from one to five days. For each bootstrap, the t-statistic
with the contrast of age group difference was compared (t-bootstrap,
Fig. 5) with respect to the t-statistic of the full data (t-original, Fig. 5), and
the proportion of t-bootstrap that were greater than the original
t-statistic were used to compute the p value.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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