
����������
�������

Citation: Lee, K.; Brown, R.D. Effects

of Urban Landscape and

Sociodemographic Characteristics on

Heat-Related Health Using

Emergency Medical Service Incidents.

Int. J. Environ. Res. Public Health 2022,

19, 1287. https://doi.org/10.3390/

ijerph19031287

Academic Editor: Zhi-Jie Zheng

Received: 29 November 2021

Accepted: 21 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Effects of Urban Landscape and Sociodemographic
Characteristics on Heat-Related Health Using Emergency
Medical Service Incidents
Kanghyun Lee 1,* and Robert D. Brown 2

1 Division of Landscape Architecture, College of Architecture, University of Oklahoma,
Norman, OK 73019, USA

2 Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University,
College Station, TX 77843, USA; robert.brown@tamu.edu

* Correspondence: kanghyun.lee@ou.edu

Abstract: It is well known that extremely hot weather causes heat-related health issues. Health
problems, especially in urban areas, are becoming increasingly important due to urban heat island
effect. Understanding the impact of neighborhood characteristics is important for research into the
relationship between thermal environment and human health. The objectives of this study were
to explore the urban landscape and sociodemographic characteristics affecting heat-related health
and identify spatial inequalities for vulnerable groups. A total of 27,807 heat-related EMS incidents
were used at the census block group level (N = 285). We used land cover database and Landsat
satellite images for urban landscape variables and used 2019 U.S. Census data for sociodemographic
variables. Negative binomial regression was used to identify the neighborhood variables associated
with the heat-related EMS incidents in each block group. Heat-related health has been alleviated
in block groups with high green areas. However, the negative effects of thermal environments on
human health were higher in areas with a high percentage of impervious surface, over 65 years,
non-white people, no high school diploma, or unemployment. The results indicate that heat-related
health problems can be addressed through prevention strategies for block group variables. Local
intervention efforts to solve health issues should be targeted at more vulnerable areas and groups.

Keywords: climate change; heat-related health; urban landscape characteristics; heat vulnerability

1. Introduction

It is well established that climate change is causing many areas of the world to experi-
ence an increase in frequency and intensity on extremely hot days [1]. Besides, more than
half of the world population now lives in cities [2], and in counties like the United States
and Canada, more than 80% of the population lives in urban areas [3]. As cities grow to
accommodate the increasing population, they are often inadvertently built in such a way
as to create an urban climate where the ambient temperature is higher than the prevailing
conditions, a phenomenon known as the Urban Heat Island (UHI) [4].

Adverse effects of extremely hot days and high ambient temperatures caused by
the two major trends on human health are well established [5–7]. Prolonged exposure
to extremely high ambient temperatures can lead to increased heat-related morbidity [1].
In the United States, exposure to extreme heat from 2004 to 2018 resulted in a total of
10,527 deaths, with about 90% of deaths in hot weather from May to September [8]. Also,
more than 30,000 deaths have been caused by heat waves during summer of 2003 in Western
Europe, surpassing 739 heat-related deaths in the 1995 heat wave in Chicago, Illinois [9].
Due to global climate change, hot weather will become more intense, more frequent, and
last longer in the late 21st century, and its impact on health will be more severe [10].
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Previous studies have shown that urban landscape characteristics such as vegetation,
surface, water bodies, and urban structure play an important role in mitigating the thermal
environment [2,11–13]. These urban features have positive effects on heat-related health
and have been used as essential factors for heat vulnerability assessment [14,15]. Sociode-
mographic characteristics are also a crucial part to be considered to address heat-related
health problems [16,17]. Most heat-related health problems occur in urban areas because
more than half of the world’s population lives in urban areas [18] and urban areas are
more vulnerable to thermal environments due to higher temperatures than surrounding ar-
eas [19]. According to Lloyd-Sherlock [20], heat-related health issues are more pronounced
in vulnerable groups such as the elderly, which has emerged as a major demographic trend.
Also, various age groups, including infants, children, and the elderly are most vulnerable
to heat-related death because they are more sensitive to excessive heat stress [21]. Heat
vulnerability index (HVI) can be used to identify the effects of neighborhood characteristics
such as vulnerable area or groups on heat-related health. HVI describes statistical and
spatial patterns of heat vulnerability and consists of spatial explicit indices of exposure, sen-
sitivity, and adaptability to heat [22]. HVI also can be used to construct vulnerability maps
to determine areas requiring heat-related mitigation policies for extreme heat days [17,23].

The sociodemographic characteristics at the neighborhood level sometimes show
different results depending on the internal correlation of variables. Some studies found
that heat-related mortality increase with low socioeconomic status, such as education lev-
els and buildings condition [16,24], but other studies have not confirmed any significant
results [25,26]. These different results of the relationship between neighborhood charac-
teristics and human health according to conditions such as population and location mean
that the thermal vulnerability associated with social property is controversial and difficult
to reach a single clear conclusion. Several studies have been attempted to explore the
effect of neighborhood characteristics on heat-related health to address heat-related urban
problems. However, there is a lack of empirical research that considers the variability of
the relationship according to various neighborhood conditions. Also, most studies on heat
vulnerability also have limitations in that they do not have finer spatial resolution than
census track or county levels.

Therefore, the goal of this study was to conduct empirical research to explore neigh-
borhood effects on heat-related health using emergency medical service (EMS) incident
data in Cincinnati, Ohio (OH), over a 5-year period (2016–2020) at the census block group
level. There were two neighborhood categories: urban landscape and sociodemographic
characteristics. Normal and extreme heat days were considered to analyze the impact of
hot weather on human health. This study aimed to explore neighborhood factors that affect
heat-related health, identify spatial inequalities in heat-related EMS incidents, find the
most heat-vulnerable areas by mapping heat vulnerability, and provide a foundation of
knowledge for local interventions.

2. Materials and Methods
2.1. Study Design

We used daily heat-related health for the warm season between June and September
(2016–2020) in Cincinnati, OH, which is in the mid-latitudes at around 39◦ N 84◦ W. Cincin-
nati is classified as a humid subtropical climate zone (Cfa, Köppen climate classification)
and demonstrates an increasing trend with more extreme hot and humid weather types [27].
During the study period, the mean daily high temperature of normal heat days, 95th, and
97.5th extreme heat days were 84, 91, and 95◦ F, respectively. While many heat-related
studies have used census tract level as the unit of analysis [2,24,28], we used census block
group level to get more relative samples and improve the accuracy of analysis. Census block
groups are more socially homogeneous than census tracts level since they are subdivisions
of census tract [17,23]; 285 census block groups in Cincinnati were considered with a total
population of about 302,000 in 2019.
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2.2. Heat-Related Health Data

Heat-related Emergency Medical Service (EMS) data was used as a proxy for heat-
related health. EMS data from 2016 to 2020 was obtained from the City of Cincinnati. The
data provides information on date, time, latitude/longitude coordinates, and incident type.
According to the Privacy Laws, latitude/longitude coordinates have been randomly skewed
to represent values within the same block area of an incident. The Medical Priority Dispatch
System (MPDS) determinant code is a way of categorizing and prioritizing EMS incidents.
MPDS code consists of 32 categories. As described in previous studies, subcategories of
heat-related MPDS codes were used [1,2]: code 06 (Breathing Problems), code 09 (Cardiac
or Respiratory Arrest & Death), code 10 (Chest Pain, Non-traumatic), code 18 (Headache),
code 20 (Heat & Cold Exposure), code 28 (Stroke & Cerebrovascular Accident), and code 31
(Unconscious & Fainting). The total daily heat-related EMS incidents for each code were
calculated as the sum of 24-h EMS incidents. Latitude/longitude coordinates of each heat-
related EMS incident were geocoded and assigned to the block group using ArcGIS 10.7 to
calculate the total number of daily EMS counts for each block group.

2.3. Heat Exposure Assessment

Daily maximum air temperature data were obtained from the Cincinnati Municipal-
Lunken, OH weather station. Weather conditions were divided into normal heat (NH)
days and extreme heat (EH) days. We defined the extreme heat with daily maximum
temperatures above 95th and 97.5th percentiles of the time-period [24,28,29], and extreme
heat days were defined as the daily maximum temperature above each threshold. Heat
wave can be defined using extreme heat days with minimum duration of at least two or
three days [30].

2.4. Urban Landscape and Sociodemographic Characteristics

For urban landscape characteristics, previous studies dealing with the relationship be-
tween neighborhood characteristics and outdoor thermal environments mainly focused on
four categories: vegetation, surfaces, water bodies, and urban structure as urban landscape
characteristics [12,13]. This study mainly focused on the effects of outdoor environments
on heat-related health. Thus, we considered these four factors as urban landscape charac-
teristics without considering the impact of the indoor environment such as buildings and
houses. We considered these four factors as urban landscape characteristics. We considered
these four categories as urban landscape characteristics and used the related variables for
each category. Land cover database in 2016 with 30 m resolution was obtained from the US
Geological Survey (USGS) and classified into tree covers, grass areas, impervious surfaces,
and water bodies. The percentage of each classification for each block group was calculated
using the TIGER/Line Shapefile in ArcGIS 10.7.

We used two variables for urban structure. Urban density should be regarded as a
key concept in the description of urban spatial structures [31]. Density is the population
density of a city and it not only accounts for a significant portion of the compact city-related
literature, but is also used as an attribute for estimating urban compactness [32,33]. We
calculated population density for each block group using 2019 American Community
Survey (ACS) data from the U.S. Census. Also, urban spatial structure can be explained
by the volume of the built-up area [34]. We calculated the normalized difference built-up
index (NDBI) to measure the distribution of urban structure within the block groups using
the band 5 Near-Infrared (0.85–0.88 µm) and 6 SWIR 1(1.57–1.65 µm) of Landsat 8 satellite
images at a resolution of 30 m. We also calculated land surface temperature (LST) using the
band 10 TIRS 1 (10.6–11.19 µm) of Landsat 8 satellite images on July 2020, which showed
the highest average temperature during the target period, at a resolution of 100 m for
each block group [35]. To calculate the average value of NDBI and LST, pixel scores were
aggregated to each block group.

For the sociodemographic characteristics, we used HVI-based variables suggested by
Nayak, Shrestha [22] and Reid, O’neill [36]. We included (1) percentage of over 65 years
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of age, (2) percentage of over 65 years of age and living alone, (3) percentage of living
alone, (4) percentage of race other than white, (5) percentage with less than a high school
diploma, (6) percentage below the poverty line, (7) percentage that are not employed, and
(8) percentage of houses built before 1939. 2019 ACS data from the U.S. Census were
collected for each block group. Variables were geocoded and assigned to the corresponding
block group using ArcGIS 10.7.

2.5. Statistical Analysis

We analyzed how the potential relationship between neighborhood environments and
heat-related health outcomes varies depending on the level of spatial characteristics. When
the dependent variable is the frequency of occurrence of events, count models are typically
used to analyze the results, and negative binomial regression is commonly used to count
variables when the dependent variable shows the skewed distribution and over-dispersed
counts [37]. The negative binomial regression was used to predict an odds ratio (OR)
because the dependent variable, which is the daily count of heat-related EMS incidents in
each block group, showed the skewed distribution and overdispersion. Heat-related EMS
was divided into three categories including normal, 95th extreme, and 97.5th extreme heat
days according to temperature and three models were evaluated for each category.

The analysis of this study can be mainly divided into three steps. First, univariate
analysis was conducted for each of the independent variables. Second, after confirming
the multicollinearity of the variables, multivariate analysis was performed using only
statistically significant independent variables with a significant value of p-value < 0.05.
R Studio version 1.3 was used to perform statistical analysis. Third, the heat vulnerability
(HVI) map, which represent the relative risk (RR) of morbidity associated with hot days,
was created. The values of each variable were normalized to have a mean of 0 and a
standard deviation of 1. Then, the normalized variables were classified into six groups
and scored from 1 to 6 points for each classification; 1 represents a low vulnerability and
6 represents a high vulnerability. HVI was calculated by summing all the scores for each
block group and mapped to visualize the results.

To use the count variable in the model, we need to identify the area in which the counts
were generated. Size of census block group affects the occurrence of EMS incidents because
the size of block groups varies, and more incidents may occur in larger block group. To
control these effects, block group size was included in the analysis as a control variable.
Also, to control the statistical probability that more incidents can occur in block groups
with a larger population, population data of each block group was used as an exposure
variable. Negative binominal regression can be used to describe expected rates when the
rate is a count data divided by a specific unit of exposure such as population, and exposure
variable can be used to modify each observation from a count into a rate per area [38].

3. Results
3.1. Summary Statistics for Heat-Related EMS and Neighborhood Characteristics

There were a total of 29,270 heat-related EMS incidents during the warm season
(2016–2020) in Cincinnati, OH. The daily count of heat-related EMS incidents ranged from
17 to 65, with an average of 39.9 (incidents/day). Figure 1 shows the comparison of the
daily average number of heat-related EMS incidents during normal heat days and extreme
heat days, including heat wave days and their daily average number of incidents. Overall,
the number of EMS incidents on extreme heat days was higher than normal heat days, and
it slightly increased with heat wave days.

A total of 27,807 heat-related EMS data were used for the analysis, except for 1463 inci-
dents that were missing location information. Of these, 66% (18,436) occurred on normal
heat days, with 24% (6556) and 10% (2815), respectively, in 95th and 97.5th percentiles of
extreme heat days. Table 1 shows descriptive statistics for all census block group variables,
and most of the variables showed a wide range of variations. Overdispersion occurs when
the observed variance is higher than the variance of a theoretical model [39]. The mean
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and standard deviation of EMS counts at 95th extreme heat days were 48.78 and 37.20. The
relatively higher mean value was the same for other variables. According to the result of
the overdispersion test using RStudio (qqc package), the p-values for the EMS counts at
normal, 95th, and 97.5th extreme heat days were all less than 0.05. A p-value < 0.05 indi-
cates spatially overdispersion and it means that the incidents were not equally distributed
throughout the study areas because there are certain physical or sociological character-
istics that affect this spatial overdistribution. Among the variables on urban landscape
characteristics, water bodies showed the greatest variation, with the mean was 0.64%,
and some block groups were more than 23% of water bodies. On average, 12% of the
population were over 65 years of age, and in some block group, half the population was
elderly. Similarly, the percentage of people living alone showed a high variability. Some
block groups consisted almost entirely of people living alone, while others had relatively
low rates.

Table 1. Descriptive Statistics for census block group variables.

Category Variable Abbreviation Mean SD Min Max

Heat-related Morbidity

Normal heat days daily EMS NH 48.78 37.20 2.50 275.50

95th extreme heat days daily EMS 95th EH 23.00 17.03 0.00 125.00

97.5th extreme heat days daily EMS 97.5th EH 9.88 8.51 0.00 54.00

Urban Landscape

Percent of tree cover Tree 34.48 16.50 2.94 84.38

Percent of grass area Grass 21.33 6.91 1.07 52.28

Percent of impervious surface Imper 41.00 17.72 5.48 92.34

Percent of water area Water 0.64 2.68 0.00 23.33

Population density (urban density) Dense 9.27 5.97 0.23 32.41

Average of NDBI * (built-up) NDBI −0.11 0.04 −0.20 0.02

Average of LST ** LST 22.89 1.52 18.40 26.50

Socio-demographic

Percent of over 65 years of age +65 12.93 8.76 0.68 47.53

Percent of over 65 years of age and
living alone 65+ alone 43.39 24.95 2.27 97.28

Percent of living alone Live alone 19.89 11.66 1.13 74.18

Percent of non-white Non white 51.47 29.19 3.32 97.95

Percent of no high school diploma No HS 13.45 11.39 0.23 61.29

Percent below the poverty line Poverty 26.04 19.45 0.18 86.23

Percent of unemployment Unemployment 10.05 10.00 0.48 64.41

Percent of building before 1939 Old Building 43.01 25.06 1.05 95.83

Confounding Variables
Population - 188 246 19 2781

Size of block group - 1085 553 155 4405

* Normalized difference built-up index. ** Land surface temperature (N = 285).

Table 2 shows the correlations between block group variables. Relatively strong and
positive correlations were observed between impervious surface, built-up area, and land
surface temperature variables. Percent of tree cover was strongly and negatively correlated
with these variables. Also, there were positive and strong correlations between variables,
such as percent of unemployment, percent of below the poverty line, and percent of no
high school diploma, which are related with social vulnerability. The results were used to
identify the multicollinearity of variables for multivariate analysis.
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Figure 1. Comparison of daily number of heat-related EMS incidents between normal heat days
and extreme heat days. An extreme heat day was defined using the intensity (90th, 95th, 99th) and
duration (1 day, ≥2 days, ≥3 days).

Table 2. Correlations for census block group variables.

Variable
Urban Landscape Socio-Demographic

Tree Grass Imper Water Dense LST NDBI +65 65+
Alone

Live
Alone

Non
White No HS Poverty Unemployment Old

Building

Tree 1

Grass 0.079 1

Impervious −0.856 ** −0.426 ** 1

Water −0.059 −0.024 −0.160 ** 1

Density −0.367 ** −0.137 * 0.493 ** −0.290 ** 1

LST −0.897 ** −0.367 ** 0.923 ** 0.033 0.326 ** 1

NDBI −0.906 ** −0.183 ** 0.900 ** −0.062 0.458 ** 0.897 ** 1

65+ 0.044 0.186 ** −0.128 * 0.047 −0.310 ** −0.105 −0.062 1

65+ alone −0.138 * −0.044 0.144 * −0.060 0.144 * 0.147 * 0.149 * 0.091 1

Live alone −0.026 −0.114 0.111 −0.141 * 0.080 0.053 0.048 0.125
* 0.082 1

Non white −0.103 0.146 * 0.094 −0.204 ** 0.059 0.163 ** 0.153 ** 0.036 0.100 0.003 1

No HS 0.001 −0.056 −0.023 0.045 −0.114 0.088 −0.017 −0.033 0.053 −0.019 0.426
** 1

Poverty −0.094 −0.043 0.095 −0.055 0.098 0.159 ** 0.080 −0.192
** 0.065 −0.048 0.453

** 0.514 ** 1

Unemployment −0.093 −0.122 * 0.128 * −0.023 0.135 * 0.181 ** 0.092 −0.243
**

0.124
* −0.054 0.519

** 0.638 ** 0.600 ** 1

Old Building −0.244 ** −0.268 ** 0.318 ** 0.045 0.105 0.274 ** 0.254 ** −0.174
** −0.101 −0.022 −0.173

** −0.012 0.003 −0.044 1

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level. (N = 285).

3.2. Neighborhood Effects on Heat-Related EMS

Figure 2 shows how the relationship between neighborhood features and heat-related
EMS varies depending on the block group variable for normal, 95th, and 97.5th extreme heat
days. As a result, as the temperature rose, urban landscape variables such as impervious,
NDBI, and LST affected the increase in heat-related EMS. Also, tree, green areas, impervious
surfaces, NDBI, and LST variables were statistically significant with p-value < 0.05. We also
found that the effect of percent of tree cover on the relationship between hot weather and
heat-related health was stronger with higher temperatures, and the effects of percent of
grass area were strongest in the 95th extreme heat days. As confirmed in correlation analysis,
variables such as impervious surface, NDBI, and LST, which had high correlation with
each other, showed similar results in a univariate analysis. Their impact on health became
stronger as the weather got hotter. For the sociodemographic characteristics, variables such
as percent of over 65 years of age, percent of over 65 years of age and living alone, percent of
non-white, percent of no high school diploma, percent below the poverty line, and percent
of unemployment were statistically significant. The impact of the elderly population and
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the elderly population living alone on heat-related EMS decreased as the weather got hotter,
and the impact of variables such as high school degrees and unemployment rates increased
as the temperature increased. Meanwhile, the percentage of buildings before 1939 and the
percentage of people living alone were found to be insignificant in this analysis.
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extreme heat days (** p < 0.01, * 0.01 ≤ p < 0.05).

Table 3 shows the results of the multivariate analysis of the three models. Variables
that were not significant (p > 0.05) in univariate analysis, such as percent of water area,
population density, percent of living alone, and percent of buildings before 1939, were
excluded from multivariate analysis. Also, NDBI and LST variables, which were highly
correlated with the percent of impervious surface, were excluded from further analysis to
avoid the multicollinearity issue.

Table 3. Odds ratios (ORs) and 95% confidence intervals for heat-related EMS incidents during
normal, 95th extreme, and 97.5th extreme heat days with multivariate analysis.

Category Variable
Model 1 (Normal Heat) Model 2 (EH 95th) Model 3 (EH 97.5th)

OR 95% CI OR 95% CI OR 95% CI

Urban landscape
Grass area 0.847 ** 0.755–0.951 0.839 ** 0.750–0.940 0.861 ** 0.765–0.972

Impervious surface 1.120 ** 1.065–1.177 1.141 ** 1.087–1.198 1.157 ** 1.099–1.219

Socio-demographic

Age > 65 years 1.320 ** 1.209–1.441 1.300 ** 1.194–1.415 1.277 ** 1.166–1.399

Age > 65 living alone 1.016 0.982–1.051 1.012 0.980–1.045 1.009 0.975–1.044

Race other than white 1.070 ** 1.033–1.109 1.069 ** 1.033–1.107 1.081 ** 1.042–1.121

No HS diploma 1.084 1.021–1.152 1.130 ** 1.035–1.234 1.119 * 1.018–1.229

<Poverty line 1.083 ** 0.987–1.189 1.056 0.996–1.120 1.044 0.982–1.111

Unemployment 1.099 0.999–1.208 1.111 1.014–1.217 1.141 ** 1.038–1.255

Confounding variable
Area 1.109 ** 1.080–1.138 1.105 ** 1.077–1.134 1.109 ** 1.079–1.140

Population exposure - exposure - exposure -

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level. (N = 285).

According to the results, the grass area had a greater effect on alleviating heat-related
health on the 95th extreme heat day (OR = 0.839, 95% CI: 0.750–0.940, p < 0.01) than normal
heat days (OR = 0.847, 95% CI: 0.755–0.951, p < 0.01). In contrast, the negative effects of
impervious areas on heat-related health increased as temperatures increased from normal
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heat (OR = 1.120, 95% CI: 1.065–1.177, p < 0.01) to 95th (OR = 1.141, 95% CI: 1.087–1.198,
p < 0.01) and 97th (OR = 1.157, 95% CI: 1.099–1.219, p < 0.01) extreme heat days.

In sociodemographic variables, a high percentage of over 65 years of age showed a
negative impact on heat-related health, and the relative risk decreased as the temperature
increased from normal heat (OR = 1.320, 95% CI: 1.209–1.441, p < 0.01) to 95th (OR = 1.300,
95% CI: 1.194–1.415, p < 0.01) and 97th (OR = 1.277, 95% CI: 1.166–1.399, p < 0.01) extreme
heat levels. This may be due to the tendency of the elderly to avoid their outdoor activities
on hot days because the total volume of physical activities in the elderly is influenced by
meteorological factors such as mean ambient temperature [40]. Percent below the poverty
line was only significant on normally heat level (OR = 1.083, 95% CI: 0.987–1.189, p < 0.01)
and percent of unemployment was only significant on 97.5th extreme heat level (OR = 1.141,
95% CI: 1.038–1.255, p < 0.01).

Figure 3 includes the heat vulnerability map and the number of heat-related EMS
for each block group. Spatial inequalities in heat vulnerability and heat-related health
through spatial analysis of the thermal environment can be confirmed on the map. Also,
Spatial information for the vulnerable could be confirmed by utilizing the spatial inequality
relationship between thermal vulnerability and heat-related EMS. The most vulnerable
areas were the downtown of Cincinnati and several northern outskirts. This means that
more heat-related EMS occur in areas with high HVI.
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4. Discussion

This study explored the impact of neighborhood environments on heat-related human
health using daily EMS data. Statistics and spatial analysis were used to investigate vulner-
able areas to heat and to identify the spatial characteristics of these areas. The results found
that heat-related accidents occur more often on extremely hot days than on normally hot
days. The potential effects of block group variables, including individual and area-levels,
was evaluated through the univariate approach that analyzes each variable individually.
Also, the multivariate approach that is frequently applied in heat epidemiology was used
to consider various variables together [16,24] and the results showed that the following
variables have a statistically significant influence on heat-related health: percentage of grass
area, percentage of impervious surfaces, percentage over 65 years of age, percentage of a
race other than white, and percentage below the poverty line. Considering all variables
comprehensively, the risk of heat-related EMS in the most heat-vulnerable areas has been
investigated to increase significantly compared to relatively less vulnerable areas.
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The findings indicate that heat-related EMS incidents increase in block groups with
less green space, consistent with the results from previous epidemiological studies explor-
ing whether heat-related health associations vary by social and physical environmental
characteristics. Urban green areas mitigate the urban heat island effect and play an im-
portant role in reducing heat stress during extreme heat days [41,42]. A study of U.S.
Medicare participants showed that low green spaces cause hot temperatures, resulting in
an increase in heat-related mortality [43]. Gronlund, Berrocal [16] conducted time-stratified
case-crossover analysis using daily mortality in Michigan. They analyzed the modifica-
tion effect of individual and ZIP code-level sociodemographic characteristics on extreme
heat-related mortality among the elderly. Their results showed that green space is a sig-
nificant modifier of the association between mortality and extreme heat. In the study of
heat-related deaths in Phoenix from 2000 to 2008, the increase in green space showed a
weak but significant association with the decrease in heat-related mortality probability in
the target area as a separate variable [17]. These findings provide the basis for the main
purpose of this study on the effect of green space, a representative element of the urban
landscape, on heat-related health. In addition, the findings suggest that understanding the
regional variations and characteristics of urban green spaces is crucial in heat vulnerability
assessment along with the fact that green space is an essential factor to mitigate thermal
environments and address heat-related problems.

This study found that the percentage of the population over 65 years was a statistically
significant predictor of increased incident risk, consistent with the results of previous
relevant studies. Benmarhnia, Deguen [44] found that heat vulnerability and heat-related
health problems increased in the vulnerable groups, such as older adults aged over 65
and 75 and low individual socioeconomic status. Hendel, Azos-Diaz [45] also showed
that the population most affected by the heat wave was those aged 65 or older, with night
temperatures having the highest impact on heat wave mortality. As such, the elderly, along
with vulnerable groups such as infants and young children, are more sensitive to heat stress
and are most vulnerable to heat-related health [21].

Meanwhile, the percent of no high school diploma, percent of non-white, and per-
cent of unemployment variables have shown significant results in this study. It means
that these factors are related to heat vulnerability. They are also essential factors in so-
cial vulnerability assessment as well as heat vulnerability issues. Social vulnerability
means that human health problems caused by external stress, including natural or human-
caused disasters, can negatively affect local communities [46]. Flanagan, Hallisey [47]
developed social vulnerability index (SVI) including four sections: socioeconomic status,
household composition & disability, minority status & language, and housing & trans-
portation. They defined the variables such as education, race, poverty, and unemployment
as indicators for evaluating social vulnerability. Thus, the results of this study indicate that
addressing heat-related problems for socially vulnerable groups is an essential challenge
in urban areas along with the fact that socially vulnerable groups are also vulnerable to
heat-related problems.

The percent of buildings before 1939 was not a significant predictor of increased risks in
this study, while previous studies found significant results. One possible explanation is that,
according to Gronlund [48], heat-related health problems were more serious in areas with
a higher proportion of older buildings. However, he also found that housing conditions
were not significant as an important predictor of heat vulnerability after controlling other
characteristics such as the number of floors, how often left home in an average week, and
number and type of fans. It means that the characteristics of buildings may vary depending
on their geographical characteristics, which may affect the relationship between older
buildings and human health.

This study provides insights to reduce heat-related problems, but there are several
limitations. First, there was a lack of information on the air conditioning prevalence at block
group level in this study. However, previous studies indicated that it is important not only
to own air conditioners but also to have the financial resources to operate [49,50]. Thus,
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air conditioning prevalence can be captured at the local level through the poverty levels
used in this study [16]. Nevertheless, the lack of detailed information on air conditioning
prevalence is a significant limitation in heat vulnerability-related research, so further
research will require a related analysis of block group levels. Second, this study only
analyzed the modifying effects of the urban landscape and socio-demographic variables
on heat-related morbidity at the census block group level, so did not necessarily consider
individual associations. This is because individual-level data such as human health and
demographic characteristics on a finer scale were not available. Third, the EMS data used in
this study included latitude/longitude coordinates of each incident. According to privacy
laws, however, coordinates were randomly distributed within the same urban block. It
means that there is a limit to confirming the exact location information of heat-related EMS.
Thus, further research is needed using data on smaller units. In addition, further research is
needed to use more detailed spatial information. Fourth, this study used relatively coarse
spatial resolution at the block group level. The distinction of green areas using satellite
images with a resolution of 30 m cannot be accurately distinguished at the block group
level. Spatial information about smaller spatial units may better explain the role of spatial
properties of neighborhoods in health effects. Finally, this study used a cross-sectional
approach that has limitations to sufficiently reflect causal inference between variables. Land
cover database from 2016, American Community Survey (ACS) data from 2019, NDBI
and LST Landsat satellite data from 2020 were used in this study. At the same time, our
study covered a five-year period from 2016 to 2020. Other hard-to-control situations in the
analysis beyond the scope of this study can affect the temporal and spatial distribution
of incidents over the five-year period. In this regard, this study needs a premise that
spatial patterns should remain largely unchanged to use data for different time periods.
Thus, to identify causal relationships, longitudinal approaches should be considered in
future research.

5. Conclusions

The findings of this study suggest that multifaceted strategies for communities to
create thermally comfortable and safe neighborhoods could play an important role in
preventing heat-related incidents. A summary of the findings of this study is as follows.
First, green areas among urban landscaping variables mitigated the effects of hot weather
on heat-related health. In contrast, other variables such as impervious surface, NDBI,
and LST showed a negative effect on heat-related health, indicating that NDBI and LST
might be used as indicators to identify heat-vulnerable areas. Sociodemographic variables
such as percent of over 65 years of age, percent of no high school diploma, percent of
non-white, and percent of unemployment significantly affected the relationship between
hot weather and health outcomes; in particular, socially vulnerable groups were more
vulnerable to heat-related health. Second, we compared three models according to EMS
categories, including normal and extreme heat-related data to find out the relationship
between temperature changes. The finding is that the higher the temperature, the stronger
the effect of block group variables on heat-related incidents. This means that the effects
of hot weather on health outcomes can be mitigated through intervention in various
neighborhood characteristics. Third, there were spatial inequalities in heat-related EMS
incidents. Spatial patterns showed substantial variability between heat vulnerability, social
vulnerability, and heat-related health. Urban centers and downtown areas showed higher
heat vulnerability and more heat-related incidents, while suburban areas with high-income
people, younger white populations, and greener environments were linked to reduced heat
vulnerability and heat-related incidents. Finally, the heat vulnerability map of Cincinnati
created in this study provides a foundation of knowledge for local interventions through
information on where heat-related accidents occur what environmental factors affect.

The results of this study provide urban planners, policy makers, sociologists, and pub-
lic health experts with a cornerstone for solving social problems caused by the deteriorated
thermal environment. Policy makers may use this map to make decisions on the selection
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of locations where additional medical facilities are needed. Urban planners can use the map
to establish strategies to enhance the accessibility of rescue activities to vulnerable areas
from heat-related accidents. In addition, the results can be used to establish interventions to
public health experts to solve related public health problems. Public health experts can use
the map and data to provide information on community or social care policies that currently
exist or should be implemented in the future to vulnerable social groups such as the elderly
in heat waves. These heat-related policies and suggestions can contribute to alleviating
the UHI caused by climate change and urbanization, and furthermore, improving the
relationship of climate change on human health.
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