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a b s t r a c t

The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has led to a sharp increase in hospitalized patients with multi-
organ disease pneumonia. Early and automatic diagnosis of COVID-19 is essential to slow down the
spread of this epidemic and reduce the mortality of patients infected with SARS-CoV-2. In this paper,
we propose a joint multi-center sparse learning (MCSL) and decision fusion scheme exploiting chest CT
images for automatic COVID-19 diagnosis. Specifically, considering the inconsistency of data in multiple
centers, we first convert CT images into histogram of oriented gradient (HOG) images to reduce the
structural differences between multi-center data and enhance the generalization performance. We then
exploit a 3-dimensional convolutional neural network (3D-CNN) model to learn the useful information
between and within 3D HOG image slices and extract multi-center features. Furthermore, we employ
the proposed MCSL method that learns the intrinsic structure between multiple centers and within
each center, which selects discriminative features to jointly train multi-center classifiers. Finally, we
fuse these decisions made by these classifiers. Extensive experiments are performed on chest CT images
from five centers to validate the effectiveness of the proposed method. The results demonstrate that the
proposed method can improve COVID-19 diagnosis performance and outperform the state-of-the-art
methods.

© 2021 Published by Elsevier B.V.
1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by
he novel severe acute respiratory syndrome coronavirus 2 (SARS-
oV-2) has led to a sharp increase in hospitalized patients with
ulti-organ disease pneumonia. In the early stages of the disease,
atients with COVID-19 may be asymptomatic or appear some
ommon symptoms, such as fever and cough [1]. With the disease
orsening, these patients can appear viral sepsis, which may
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further lead to life-threatening organ dysfunction and even fail-
ure [2]. According to the data from the world health organization
(WHO), COVID-19 has caused more than 239.4 million confirmed
cases and 4.8 million deaths worldwide as of 15 October 2021 [3].
Since it spreads rapidly mainly through respiratory droplets from
face-to-face contact, infection cases are increasing with a mor-
tality rate of up to 2%, which causes the clinicians’ shortage and
the increase of their workloads. Many clinical measures have
been used to diagnose whether the suspected cases are infected
with SARS-CoV-2, such as reverse transcription-polymerase chain
reaction testing (RT-PCR) [4,5], manual chest X-ray [2,6], and
computed tomography (CT) [7,8] screening. However, RT-PCR
easily has a low sensitivity problem [9], and the limited RT-PCR
test kits cannot detect all the suspected cases. Meanwhile, manual
X-ray and CT screening are time-consuming and cannot quickly

and accurately diagnose COVID-19.
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As a good plan B, artificial intelligence methods based on
medical image data are playing an increasing role in automatic
COVID-19 diagnosis [10–12]. In the early diagnosis of the disease,
chest CT images can better reflect lung abnormalities than chest
X-ray images and have captured widespread attention [2]. For
example, Li et al. [10] first used RestNet50 as the backbone to
extract features of each slice from CT images and then fused these
features by a max-pooling operation. The final fused features
were input to a fully connected layer and softmax activation
function for pneumonia diagnosis. Wang et al. [13] proposed a
transfer learning model based on the inception network, where
the pre-trained inception network is used to extract features from
CT slices, and the fully connected network is exploited for COVID-
19 diagnosis. However, most of these methods treat 3D CT images
as a series of slices [10,14] or manually select several pathological
slices [15,16] and input them into a 2-dimensional convolutional
neural network (2D-CNN) model for COVID-19 diagnosis. There-
fore, they are inherently unable to exploit the context of adjacent
slices to improve classification performance. Also, the manual
selection of some slices consumes the doctor’s time. Since the
3-dimensional CNN (3D-CNN) model can effectively and automat-
ically learn the inter-slice context information, it has been widely
used for classification and segmentation tasks of 3D data [17].

Due to the large-scale outbreak of COVID-19 around the world,
the data studied in the literature are collected from different
centers or hospitals, such as two centers [18], five centers [19], six
centers [10,20], seven centers [21,22], and ten centers [14]. These
multi-center data acquired from different devices and parameter
settings are structurally inconsistent, and the lesion character-
istics of some center data are not obvious. For example, in this
paper, we have collected chest CT images of COVID-19 patients
from Keting hospital (KT1), Wuhan shelter hospital (WH), another
Keting hospital (KT2), Wuhan No. 7 Hospital (SH), and Zhongnan
hospital (ZN) of Wuhan University, China, respectively. We also
collect chest CT images of their corresponding normal control
(NC). As shown in Fig. 1, we can see that CT images in SH and ZN
centers are quite different from the other three centers, and CT
images of COVID-19 patients in KT center are similar to those of
the NC group, which has undoubtedly augmented the difficulties
of COVID-19 diagnosis. Since the histogram of oriented gradient
(HOG) representation can capture gradient structure with local
shape characteristics, it is easy to control the invariance of local
geometry and photometric conversion [23,24]. Inspired by the
above, considering the inconsistency of data in multiple centers,
we first convert 3D CT images into HOG images, which can reduce
the structural differences between multi-center data. We then de-
sign a 3D-CNNmodel to learn the useful information between and
within 3D HOG image slices and extract multi-center features,
which can also save the doctor’s time to screen the pathological
slices.

Furthermore, most existing methods are restricted to treat
multiple centers into one center [21,25], which ignores the re-
lationship between and within multi-center data. There are some
methods proposed to learn the relationship of multi-center data.
For example, in [26], Wang et al. proposed a united learning
scheme to facilitate the diagnosis of COVID-19 by learning het-
erogeneous information from different centers. In our method,
considering the inconsistency of data in multiple centers, we
convert 3D CT images into HOG images to reduce the structural
differences between multi-center data, thereby enhancing gener-
alization performance. These two methods solve the problem of
multi-center data differences from two aspects, which form an
effective complementarity. In [27], Song et al. first used a 3D-
CNN to extract features from multi-center CT images and then
constructed an augmented multi-center graph to consider the

heterogeneity of multi-center data and disease state information.

2

Finally, the multi-center graph is input into a graph convolu-
tional network (GCN) for COVID-19 diagnosis. In the process of
constructing the multi-center graph, this method only constructs
edges for samples with the same category at the same center,
that is, it only considers the relationship within each center,
while ignoring the relationship between multi-center data. Also,
this method inputs the constructed graph directly into the GCN
for classification and does not consider the multi-center fusion
strategy to enhance the classification performance. There is re-
dundancy in the relatively high-dimensional features extracted
from CNN models, which can negatively affect the generalization
ability of the model [28,29]. Besides, since information fusion can
gather all kinds of useful information to enhance generalization
performance, various fusion strategies (e.g., center fusion, fea-
ture fusion, and decision fusion) have received wide attention
from researchers [11,30–32]. Center fusion treats multiple cen-
ters into one center [21]. Feature fusion concatenates/encodes
multi-modal features into high-dimensional/another form of fea-
tures [33]. Decision fusion combines the decisions made by mul-
tiple data [34]. However, center fusion can eliminate the re-
lationship between multi-center data, and feature fusion can
result in high feature dimensionality, which can reduce model
generalization performance. For decision fusion, it can compre-
hensively consider the relationship between multi-center data
and jointly analyze the diagnosis results of different classifiers
to improve the diagnostic performance. Inspired by the above,
we devise a multi-center sparse learning (MCSL) method to learn
the intrinsic structure information between multiple centers and
within each center for COVID-19 diagnosis. Specifically, we use
the group sparseness regularizer to learn the intrinsic relationship
between multiple centers and the global sparseness regularizer to
enhance the generalization performance. Furthermore, we con-
sider the similarity among subjects of each center to preserve
the local structure information within each center. Finally, we
select discriminative features from our MCSL model to jointly
learn multiple classifiers. The decision is determined by fusing the
results of multi-center classifiers.

We highlight the main contributions of our paper as follows.

• Considering the inconsistency of data in multiple centers,
we convert 3D CT images into HOG images to reduce the
structural differences between multi-center data and en-
hance the generalization performance.

• We propose a 3D-CNN model to learn the useful information
between and within 3D HOG image slices and extract multi-
center features, which saves the doctor’s time to screen the
pathological slices.

• We propose a MCSL method to learn the intrinsic struc-
ture information between multiple centers and within each
center and select discriminative features to jointly train
multi-center classifiers.

• The decision fusion is used to comprehensively consider the
relationship between multi-center data and jointly analyze
the diagnosis results of different classifiers to improve the
diagnostic performance.

2. Related work

2.1. Feature learning

Feature learning methods aim to automatically learn deep
features to improve the diagnostic performance of COVID-19.
However, due to the differences between multi-center data, it is
challenging to use a deep learning model to learn discriminative
features that meet the accuracy requirements of multiple centers.

Researchers have made some attempts by using different CNN
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Fig. 1. Examples of CT images and corresponding HOG images in COVID-19 patients and NC.
odels to handle this challenge. Ghoshal et al. [18] proposed a
ayesian convolutional neural network (BCNN) to estimate net-
ork uncertainty to improve the accuracy of pneumonia screen-

ng. Li et al. [10] first used RestNet50 as the backbone to extract
eatures of each slice from CT images and then fused these fea-
ures by a max-pooling operation. The final fused features were
nput to a fully connected layer and softmax activation function
or pneumonia diagnosis. Gao et al. [14] used the segmented
esion features to facilitate classification at the slice level and then
sed a slice probability mapping method to reduce the potential
nfluence of different imaging parameters from individual facili-
ies for COVID-19 diagnosis. Jie et al. [22] proposed an artificial
ntelligence system, where CT images were divided into different
ohorts to train the deep learning-based model for COVID-19
iagnosis. Wang et al. [21] developed a fully automatic deep
earning system, where lung segmentation network, non-lung
rea suppression operation, and lung- ROI normalization were
sed to obtain standard lung region, and then the standardized
ung-ROI was input into the COVID-19Net for COVID-19 diagnosis.

These methods show great potential by using various models
o learn deep features for COVID-19 diagnosis. However, they
o not fully consider processing at the data level to reduce the
ifferences between multi-center data. Meanwhile, most of these
ethods treat 3D images as a series of slices or manually se-

ect several pathological slices and then input these slices into
D-CNN models for COVID-19 diagnosis. This ignores related
nformation between slices, and manual selection of some slices
lso consumes the doctor’s time. In this paper, considering the
nconsistency of data in multiple centers, we first convert the
riginal CT images into HOG images, which can reduce the struc-
ural differences between multi-center data. We then propose
3D-CNN model to automatically learn the useful information
etween and within 3D HOG image slices and extract multi-
enter features, which can also save the doctor’s time to screen
he pathological slices.

.2. Sparse learning

Sparse learning methods aim to select discriminative features
or various tasks such as classification, regression, and prediction.
or example, in [35], the least absolute shrinkage and selec-
ion operator method (Lasso) method used linear regression and
1 penalty to perform feature selection. In [36], the elastic net
ethod used linear regression, l norm and l penalties for feature
1 2

3

selection. Zhang et al. [37] proposed a multi-modal multi-task
method to select common relevant features for Alzheimer’s dis-
ease diagnosis. Sun et al. [20] first extracted the location-specific
handcrafted features from chest CT images and then used the
adaptive feature selection guided deep forest (AFS-DF) model for
COVID-19 classification. Shaban et al. [38] proposed a COVID-
19 detection strategy based on a hybrid sparse learning and
enhanced k-nearest neighbor classifier. In [39], Zhu et al. first
extracted handcrafted features from CT images and then used
joint logistic and linear regression to select the discriminative
features for COVID-19 classification and prediction.

These methods have good performance in different tasks.
However, these methods do not consider the relationship be-
tween and within multi-center or multi-modal data at the same
time. In this paper, to handle this problem, we propose a MCSL
method to capture the intrinsic structure between multiple cen-
ters and within each center and selects discriminative features to
jointly train multi-center classifiers.

2.3. Information fusion

Information fusion aims to gather all kinds of useful informa-
tion to enhance generalization performance [11,30,40,41]. There
are currently three main fusion strategies, i.e., center fusion,
feature fusion, and decision fusion. Center fusion treats multiple
centers into one center [21]. Feature fusion concatenates/encodes
multiple modal features into higher-dimensional/another form
of features [33]. For example, Zhu et al. [42] first linearly fused
the multi-modal features and then input the fused feature into
a sparse learning model to select the discriminative features
for Alzheimer’s disease diagnosis. Decision fusion combines the
decisions made by multiple data [34]. For example, Xie et al. [30]
used decision fusion to combine texture, shape, and deep model
features for the classification of lung nodules.

These fusion strategies have good performance in different
scenarios. However, center fusion can eliminate the relationship
between multi-center data, and feature fusion can result in high
feature dimensionality, which can reduce model generalization
performance. For decision fusion, it can comprehensively consider
the relationship between multi-center data and jointly analyzes
the diagnosis results of different classifiers to improve the diag-
nostic performance. Thus, in this paper, we use decision fusion to
obtain the final result.
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Fig. 2. Illustration of the proposed method for COVID-19 diagnosis.
. Method

Fig. 2 shows our method for automatic COVID-19 diagnosis.
pecifically, considering the inconsistency of data in multiple
enters, we first convert 3D CT images into HOG images, which
an reduce the structural differences between multi-center data.
e then use a 3D-CNN to learn deep features from each center.

inally, we employ the proposed MCSL model to learn the intrin-
ic structure between multiple centers and within each center
nd select discriminative features for COVID-19 diagnosis.

.1. Notations

In this paper, boldface uppercase typefaces indicate matrices,
oldface lowercase typefaces indicate vectors, and normal italic
ypefaces indicate scalars. For a matrix X, we use XT , tr (X),
∥X∥2,1 =

∑
i ∥xi∥2, and ∥X∥F =

√∑
i ∥xi∥

2
2 to indicate the trans-

position, trace, ℓ2,1-norm and Frobenius norm of X, respectively.

3.2. Multi-center deep feature extraction

For each CT slice, the corresponding HOG image is gener-
ated through the following steps: (1) divide the CT slice into
many small spatial cells of equal size; (2) compute gradients and
accumulate histogram of gradient directions over the pixels of
each cell; (3) conduct contrast normalization on local responses;
(4) generate a pictorial rendition of HOG descriptors. As shown
in Fig. 2, we construct a 3D-CNN to automatically learn multi-
center deep features from HOG images. Specifically, the input
of this network is a down-sampled HOG image with a size of
128 × 128 × 64. It has six convolutional layers and three fully
connected (FC) layers (i.e., FC7-800, FC8-60, and FC9-2). The size
of each convolutional kernel is 3 × 3 × 3 and its stride, padding,
and data format equal one, ‘same’, ‘channel first’, respectively. The
number of convolutional kernels in each convolutional layer is
15, 25, 50, 50, 100, and 200, respectively. Each convolution layer
is followed by a rectified linear unit activation function and a
max-pooling operation. The size of each max-pooling operation
is 2 × 2 × 2 and its stride, padding, and data format equal two,
‘same’, and ‘channel first’, respectively. After building the network
model, we first use four central data to train the network model
to identify whether patients have COVID-19. Finally, we pop FC9-
2, FC8-60, and FC7-800 and add a global max-pooling layer to
4

Table 1
The architecture of our 3D-CNN used in this paper.
Layer Kernels, channels, stride, padding, data format

Conv1 3 × 3 × 3, 15, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 15

Conv2 3 × 3 × 3, 25, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 25

Conv3 3 × 3 × 3, 50, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 50

Conv4 3 × 3 × 3, 50, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 50

Conv5 3 × 3 × 3, 100, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 100

Conv6 3 × 3 × 3, 200, 1, same, channel first

ReLU

Max pooling, 2 × 2 × 2, 200

FC, 1 × 1 × 1, 800

FC, 1 × 1 × 1, 60

FC, 1 × 1 × 1, 2

Softmax

extract multi-center deep features. The feature dimension of each
center is 200. Table 1 also shows the detailed information of our
3D-CNN.

3.3. Multi-center sparse learning

After learning the multi-center features, we need to use these
features to build a regression model for COVID-19 diagnosis.
Generally speaking, the linear multi-center regression model can
be expressed as follows:

min
W

C∑yc − Xcwc
2
2 , (1)
c=1
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here Xc
∈ Rn×d indicates the training data of n subjects and d

features in the cth center, and yc ∈ {+1, −1} is the correspond-
ng true label vector (i.e., patient with COVID-19 or NC). W =

w1,w2, . . . ,wC
]

∈ Rd×C indicates the feature weight matrix of
C center data, where wc

∈ Rd×1 is the feature weight vector of
the cth center. The larger the value of wc , the more important the
corresponding feature. However, there is redundancy in relatively
high-dimensional features, which can lead to the over-fitting
problem. To solve this problem, we add the group sparseness and
global sparseness regularizers into Eq. (1), which is indicated as:

min
W

1
2

C∑
c=1

yc − Xcwc
2
2 + λ1 ∥W∥2,1 + λ2 ∥W∥

2
F , (2)

n multi-center data, the importance of features with the same
ndex should be similar. Thus we use the ℓ2,1-norm to conduct
he group sparseness to learn the intrinsic relationship between
ultiple centers. The ℓ2,1-norm can make the weight matrix have
any zero rows. In other words, the features corresponding to
on-zero rows in W will be selected for COVID-19 diagnosis.
eanwhile, we use the Frobenius norm to conduct the global
parseness to reduce the overall feature weight, which can further
nhance the generalization performance of the model.
Further, considering that in each center, the smaller the Eu-

lidean distance between two subjects, the more similar their
redicted target values should be. Thus, we introduce the follow-
ng formula to learn this similarity relationship among subjects
n each center:

1
2

C∑
c=1

Nc∑
i,j

scij
xcTi wc

− xc
T

j wc
2
2

=

C∑
c=1

(
Xcwc)T Lc (Xcwc) , (3)

where xci and xcj indicate the ith and jth subjects in the cth
center, respectively, and scij is their similarity value. Sc =

[
scij
]

indicates the similarity matrix of Nc subjects in the cth center.
Lc = Dc

− Sc indicates the Laplacian matrix of Sc , where Dc

is the diagonal matrix whose ith element value on the diagonal
equals to

∑Nc
j=1

scij+scji
2 . Eq. (3) aims to preserve the local structure

nformation within each center. To compute the similarity matrix
c in the cth center, we use a radial basis function kernel as
ollows:

c
ij = exp

(
−

xci − xcj

2

4t

)
, (4)

where t indicates a kernel width. If xci and xcj are among the k
nearest neighbors, we use Eq. (4) to compute scij, otherwise, we
set it to zero. Finally, we add Eq. (3) into Eq. (2) and we can get
our MCSL model:

min
W

1
2

C∑
c=1

yc − Xcwc
2
2 + λ1 ∥W∥2,1 + λ2 ∥W∥

2
F

+ λ3

C∑
c=1

(
Xcwc)T Lc (Xcwc) , (5)

here λ1, λ2, and λ3 are three regularization parameters. The
arger their value, the stronger the binding force of the cor-
esponding regularization terms. By our MCSL model, we can
earn the intrinsic structure between multiple centers and within
ach center and selects discriminative features to jointly train
ulti-center classifiers.

.4. Optimization of MCSL model

Since the objective function in Eq. (5) contains the non-smooth

art (i.e., ℓ2,1-norm), it is difficult to solve this function directly.

5

Thus, as shown in Algorithm 1, we exploit the accelerated prox-
imal gradient method (APG) [43] to optimize it. First, we divide
Eq. (5) into a smooth part h (W) and a non-smooth part g (W):

h (W) =
1
2

C∑
c=1

yc − Xcwc
2
2 + λ2 ∥W∥

2
F

+ λ3

C∑
c=1

(
Xcwc)T Lc (Xcwc) , (6)

g (W) = λ1 ∥W∥2,1 , (7)

Then, we introduce the following function to approximate
Eq. (6):

ℶ (W, γi) = h (γi) + tr
(
(W − γi)

T
∇h (γi)

)
+

l
2

∥W − γi∥
2
F , (8)

where ∇h (γi) indicates the gradient of h (W) at the search point
γi in the ith iteration, and we can use Algorithm 2 to compute
∇h (γi). l indicates the step length. Meanwhile, we compute γi
by the following formula:

γi = Wi + θi (Wi − Wi−1) . (9)

where θi = (ξi−1 − 1) /ξi and ξi =

√
1 +

(
1 + 4ξ 2

i−1

)
/2 (ξ0 = 0

and ξ1 = 1).
Finally, according to the APG method [43], we update Wi+1 as

follows:

Wi+1 = argmin
W

∥W − P∥
2
F +

2
l
g (W)

=

d∑
j=1

(wj − pj
2
2 +

2λ1

l

wj

2

)
, (10)

here wj and pj indicate the jth row of W and P, respectively.
eanwhile, P is obtained by the following formula:

= γi −
1
l
∇h (γi) , (11)

According to the work in [44], we can compute each wj of Eq. (10)
and obtain Wi+1 =

[
wT

1;w
T
2; . . . ;wT

d

]
:

wj =

⎧⎪⎨⎪⎩
(
1 −

λ1

l
pj

2

)
pj, if

pj

2 >

λ1

l
0, otherwise

(12)

We dynamically update W until convergence using Algorithm 1
and then use the optimal W as multi-center classifiers.

3.5. Decision fusion

Since information fusion can gather all kinds of useful infor-
mation to enhance the generalization performance, various fusion
strategies (e.g., center fusion, feature fusion, and decision fusion)
have received wide attention from researchers [11,30,40,41]. In
this paper, we select the third method, namely decision fusion.
Specifically, we first exploit Algorithm 1 to optimize the feature
weight W of Eq. (13):

argmin
W

1
2

C∑
c=1

yc − Xcwc
2
2 , +λ1 ∥W∥2,1 + λ2 ∥W∥

2
F

+ λ3

C∑
c=1

(
Xcwc)T Lc (Xcwc) , (13)
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We then use the optimal multi-center weight parameter W
s multi-center classifiers, where each wc is a central classifier
ike a clinician. To comprehensively consider the diagnosis results
f each clinician, we introduce the following formula to fuse the
ecision of each center to obtain the final diagnosis result for test
ubjects:

predict = sign
(
XtestW (0.25, 0.25, 0.25, 0.25)T

)
, (14)

ign(x) =

{
+1, if x ≥ 0
−1, if x < 0,

(15)

here Xtest indicates the training data, and the decision weight
f each center is 0.25. To further prove the advantages of de-
ision fusion, we attempt to conduct fusion at the center level,
.e., concatenating training subjects from multiple centers, and
nput these subjects to the MCSL model to learn a feature weight
6

ector w for COVID-19 diagnosis. Meanwhile, we also try to
erform fusion at the feature level, that is, to concatenate the
eatures of CT images and HOG images, and then input these
eatures to the MCSL model to learn a feature weight vector w
or COVID-19 diagnosis.

. Experiments

.1. Data acquisition

We have collected a total of 1034 chest CT images of COVID-19
atients from five hospitals or centers in Wuhan, China, including
78 subjects from KT1 center, 130 subjects from WH center,
17 subjects from KT2 center, 104 subjects from SH center, and
05 subjects from ZN center. We have also collected a total of
298 chest CT images of NC. These NC subjects are allocated to
ach center in proportion to the number of their corresponding
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Table 2
The number of subjects in five centers.
Center COVID-19 NC

KT1 178 395
WH 130 288
KT2 417 926
SH 104 231
ZN 205 458

Total 1034 2298

patients with COVID-19, namely, 395 NC subjects in KT1 center,
288 NC subjects in WH center, 926 NC subjects in KT2 center,
231 NC subjects in SH center, and 458 NC subjects in ZN center.
In Table 2, we also show the data distribution in the five centers.
In this paper, all the data we used have passed the corresponding
ethical approval, and the use of these data has been approved.

4.2. Experimental setting

As for data preprocessing, we first down-sample CT images to
size of 128 × 128 × 64. We then exploit the VLfeat tool pack-
ge (https://www.vlfeat.org/index.html) to generate HOG images
rom the down-sampled CT images. Finally, we down-sample
hese HOG images to a size of 128 × 128 × 64 again. These
reprocessing procedures can not only ensure that the generated
OG images can be normally input to the 3D-CNN network for
raining, but also ensure the clarity of these images.

In this paper, we collect chest CT images from five centers. We
se four central data as the training set and the remaining one
s the test set. In this way, we can get the classification results
f each center as the test set. In the 3D-CNN model, we set the
ollowing parameters: the learning rate is 0.0001, the optimizer is
dam, the loss is categorical cross-entropy, the number of epochs
s 15, and the batch size is 16. In Eq. (4), we set t equal to 1
nd k ∈ {1, . . . , 5}. We also tune the regularization parameters of
he MCSL method as follows: λ1 ∈

{
10−2, . . . , 105

}
, λ2 and λ3 ∈

10−5, . . . , 102
}
. Finally, we also show the running environment

f our framework to facilitate researchers to reproduce our exper-
ments in Table 3. It is worth noting that we use the Transplant
7

package of python to call the MATLAB program, and then we
use MATLAB to generate HOG images and optimize the MCSL
model in the paper. We compare our MCSL method with state-of-
the-art multi-center sparse learning methods including: (1) the
logistic regression (LogisticR) method is a multi-center learning
method consisting of the logistic regression and ℓ2,1-norm in the
MALSAR1.1 package [45]. (2) The LogisticR-G method is obtained
by adding a global sparse norm to the LogisticR method. (3) The
least-square regression (LeastR) method is a special case of our
proposed MCSL method by setting λ2 = λ3 = 0. This method does
not have the subject similarity norm and the global sparse norm.
(4) The LeastR-G method is also a special case of our method by
setting λ3 = 0. This method does not have the subject similarity
norm. (5) A library for support vector machines (LIBSVM) [46] is
a widely used classifier without feature selection. (6) We directly
use the proposed 3D-CNN for COVID-19 diagnosis.

We evaluate our method on the five center datasets and the
experimental results are given in Table 4, Figs. 3, and 4. To esti-
mate its diagnostic performances, we use the quantitative metrics
of accuracy (ACC), sensitivity (SEN), specificity (SPE), precision
(PRE), unweighted average recall (UAR), F1-score, and area under
the receiver operating characteristic (ROC) curve (AUC).

4.3. Diagnostic performance for COVID-19

Table 4 shows the sensitivity results of the competing methods
for different input images in different centers. Based on the above
results, we can make the following findings. Compared with using
CT images, we can get better and robust performance by using
corresponding HOG images. For example, the diagnosis of WH
and KT2 centers is relatively easy, since images of the two centers
have small differences and their lesions are relatively easy to dis-
tinguish. In KT center, we can see that chest CT images are directly
input to our 3D-CNN model and have low sensitivity since the
lesions are not very clear. As shown in Fig. 1, the diagnosis on
KT, SH, and ZN centers is difficult, since CT images with COVID-
19 patients in KT center are similar to those of the NC group, and
CT images in SH and ZN centers are different from the other 3
centers. However, we can easily see that HOG images are input

to our 3D-CNN model and always achieve good performance. For

https://www.vlfeat.org/index.html
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Table 3
The running environment of our framework.
Server Information Number/size/version Remark

Operating system Ubuntu 18.04.4 Version

Hardware

CPU 48 Number
GPU 2/12GB/TITAN X Number/size/version
Memory 120 GB Size
Data disk 4.4T Size

Software/package

CUDA 10.0.130 Version
cuDNN 7.6.3 Version
Python 3.6.10 Version
Transplant 0.8.10 Version (Call MATLAB)
Tensorflow-gpu 2.0.0 Version
Keras 2.3.1 Version (3D-CNN)
MATLAB R2017b Version (MCSL)
VLfeat 0.9.21 Version
i

s

s

example, there are sensitivities of 86.52%, 93.08%, 99.28%, 94.23%,
and 80.00% in KT, WH, KT2, SH, and ZN centers, respectively.
Because there are differences between multi-center CT images,
and HOG images can maintain good invariance to image geo-
metric and optical deformations. We convert 3D CT images into
HOG images, which can reduce the structural differences between
multi-center data and thus improve the diagnostic performance
of COVID-19.

Meanwhile, in HOG images, compared with the LogisticR,
ogisticR-G, LeastR, and LeastR-G methods that do not consider
he relationship between and within multi-center data at the
ame time, our MCSL method uses multiple regularizers to learn
he relationship between and within multiple centers and thus
as achieved higher performance. For example, our MCSL method
as the highest sensitivity and achieves results of 94.38%, 93.08%,
9.76%, 99.04%, and 93.17% in KT, WH, KT2, SH, and ZN centers,
espectively, which also has higher sensitivity than RT-PCR such
s sputum (72%) and nasal swabs (63%) [47]. In addition, although
here are structural differences between multi-center CT images,
ur MCSL method always maintains a sensitivity of up to 90% in
ll centers. The reason is that our method contains the sample
imilarity constraint, which can learn the local spatial structure
f each center and capture the heterogeneous information of
ultiple centers. Meanwhile, it includes the group sparsity and
lobal sparsity constraints, which can learn the common features
f multiple centers and enhance the generalization ability. There-
ore, our method can adapt to multi-center changes and maintain
ood performance. However, the LogisticR, LogisticR-G, LeastR,
nd LeastR-G methods cannot adapt to changes in multi-center
T images, and hence their sensitivities are low in KT, SH, and
N centers. Finally, the ROC curves of the competing methods
re compared using CT images and HOG images in Fig. 3. Fig. 4
lso shows the performance of the competing methods vividly
n radar charts. We can see that our method has more robust
erformance than other competing methods.

.4. The influence of regularization parameters of MCSL on perfor-
ance

From Table 4, we get that using HOG images has more robust
erformance, and our MCSL method has the best performance in
OG images. Further, to study the influence of each regularization
erm of our MCSL method on the classification performance, we
se HOG images with better performance for ablation experi-
ents on our MCSL method. Table 5 shows the sensitivity results
f our MCSL method using HOG images under different settings
f regularization parameters. From this table, we can obtain the
ollowing findings. First, when setting λ1, λ2, λ3 = 0, the MCSL
ethod only contains a multi-center least square regression term
ithout regularization terms. We can see that its diagnostic per-
ormance is acceptable in KT2 and SH centers, but poor in KT, p

8

Table 4
Sensitivity results of the competing methods for different input images in
different centers.
Image Method SEN (%)

KT WH KT2 SH ZN

CT

SVM 79.78 96.92 96.16 50.00 93.17
LogisticR 41.57 92.31 70.98 19.23 15.61
LogisticR-G 45.51 93.85 74.34 18.27 47.80
LeastR 41.01 96.15 93.05 27.88 13.17
LeastR-G 84.27 97.69 93.05 58.65 27.80
3D-CNN 57.87 96.92 94.24 19.23 9.27
MCSL 91.57 97.69 94.72 93.27 93.17

HOG

SVM 84.27 94.62 98.80 96.15 88.29
LogisticR 73.03 87.69 98.80 87.50 84.39
LogisticR-G 73.60 91.54 98.56 90.38 80.98
LeastR 87.08 90.77 99.04 90.38 72.68
LeastR-G 87.08 90.77 99.28 97.12 92.20
3D-CNN 86.52 93.08 99.28 94.23 80.00
MCSL 94.38 93.08 99.76 99.04 93.17

Table 5
Sensitivity results of our MCSL method using HOG images under different
regularization terms.
Image Hyper-parameter SEN (%)

KT WH KT2 SH ZN

HOG

λ1, λ2, λ3 = 0 30.34 20.77 99.76 90.38 57.56
λ1 ̸= 0 87.08 90.77 99.04 90.38 72.68
λ2 ̸= 0 87.08 90.77 99.76 97.12 92.20
λ3 ̸= 0 87.64 88.46 99.52 95.19 81.46
λ1 ̸= 0, λ2 ̸= 0 87.08 90.77 99.28 97.12 92.20
λ1 ̸= 0, λ3 ̸= 0 90.45 88.46 99.76 99.04 84.88
λ2 ̸= 0, λ3 ̸= 0 89.89 96.92 99.28 99.04 92.20
λ1, λ2, λ3 ̸= 0 94.38 93.08 99.76 99.04 93.17

WH, and ZN centers. For example, the MCSL method without

regularization term obtains a sensitivity of 90.38% in SH center,

but only has a sensitivity of 30.34% in KT center.

Second, when gradually adding regularization terms to our

method, we can see that its performance is improved. For exam-

ple, in KT center, the MCSL method including global sparseness

(i.e., λ2 ̸= 0) has a sensitivity of 87.08%. The MCSL method

including global sparseness and similarity constraint (i.e., λ2 ̸= 0

and λ3 ̸= 0 ) obtains a sensitivity of 89.89%. The MCSL method

ncluding group sparseness, global sparseness, and similarity con-

traint (i.e., λ1, λ2, λ3 ̸= 0 ) obtains a sensitivity of 94.38%, which

hows that each regularization term of our method can affect the

erformance improvement.
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Fig. 3. ROC curves for the competing methods in CT images and HOG images.
.5. Fusion strategies

For multi-center data, information fusion can occur at the
enter, feature, or decision level. In this paper, we first use 3D-
NN to extract deep features from multi-center data using HOG
9

images. We then input these multi-center features to the MCSL

model to jointly learn the feature weight matrix W, where each

wc is denoted as a clinician. Finally, to comprehensively consider

the diagnosis results of each clinician, we fuse the decision of
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Fig. 4. Diagnostic performance of the competing methods on radar charts.
each center to obtain the final diagnosis result for test sub-
jects, namely, ypredict = sign

(
XtestW (0.25, 0.25, 0.25, 0.25)T

)
.

Meanwhile, we attempt to conduct fusion at the center level,
i.e., concatenating training subjects from multiple centers, and
10
input these subjects to the MCSL model to learn a feature weight
vector w for COVID-19 diagnosis. We also attempt to perform fu-
sion at the feature level, that is, to concatenate the features of CT
images and HOG images, and then input these linearly connected
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Table 6
Diagnosis performance of center fusion, feature fusion, and decision fusion.
Center Method ACC (%) SEN (%) SPE (%) PRE (%) UAR (%) F1-score (%) AUC (%)

KT
Center fusion 96.51 94.94 97.22 93.89 96.08 94.41 98.79
Feature fusion 96.51 91.01 98.99 97.59 95.00 94.19 99.24
Decision fusion 97.21 94.38 98.48 96.55 96.43 95.45 99.29

WH
Center fusion 96.41 93.08 97.92 95.28 95.50 94.16 98.75
Feature fusion 94.74 98.46 93.06 86.49 95.76 92.09 99.38
Decision fusion 97.85 93.08 100.00 100.00 96.54 96.41 99.44

KT2
Center fusion 99.18 99.28 99.14 98.10 99.21 98.69 99.94
Feature fusion 98.88 99.04 98.81 97.41 98.93 98.22 99.57
Decision fusion 99.63 99.76 99.57 99.05 99.66 99.40 99.88

SH
Center fusion 92.24 87.50 94.37 87.50 90.94 87.50 96.29
Feature fusion 95.52 94.23 96.10 91.59 95.17 92.89 97.78
Decision fusion 99.40 99.04 99.57 99.04 99.30 99.04 99.98

ZN
Center fusion 91.86 81.95 96.29 90.81 89.12 86.15 96.77
Feature fusion 93.36 92.68 93.67 86.76 93.18 89.62 97.39
Decision fusion 96.08 93.17 97.38 94.09 95.28 93.63 98.87
features to the MCSL model to learn a feature weight vector w for
COVID-19 diagnosis. In Table 6, we compare the diagnosis per-
formance of the three fusion methods, and the results show that
decision fusion has better performance. For example, decision
fusion, center fusion, and feature fusion methods have accuracies
of 97.21%, 96.51%, and 96.51% in KT center, accuracies of 97.85%,
96.41%, and 94.74% in WH center, accuracies of 99.63%, 99.18%,
and 98.88% in KT2 center, accuracies of 99.40%, 92.24%, and
95.52% in SH center, and accuracies of 96.08%, 91.86%, and 93.36%
in ZN center. Decision fusion can comprehensively consider the
relationship between multi-center data and jointly analyze the
diagnosis results of different classifiers to obtain the best perfor-
mance, which is very similar to the situation in real life where
multiple doctors jointly diagnose suspected cases to improve the
diagnosis accuracy. The disadvantage of center fusion may be that
multiple centers are merged into one center, and the relationship
between multi-center data is ignored, thereby eliminating the
advantages of multi-center decision-making. The disadvantage of
feature fusion may be that the fused features have higher di-
mensionality, and different features may also interfere with each
other, which reduces the diagnostic performance. Meanwhile, in
feature fusion, high-dimensional features take more time to train,
and the time consumption is about three times that of decision
fusion and central fusion, which is not conducive to fast training
of the model to suit different scenarios.

5. Discussions

5.1. Comparison with the related methods for COVID-19 diagnosis

Based on HOG images corresponding to chest CT, we evalu-
ate our MCSL methods against eleven state-of-the-art COVID-19
diagnosis methods. Table 7 shows the performance of these com-
peting methods. We can see that although the method from
Toraman et al. [48] has high sensitivity, they use limited X-ray
images for the diagnosis, and hence their robustness needs to
be verified. Meanwhile, most of these methods are based on CT
images instead of X-ray images for imaging screening of COVID-
19 since chest CT can better reflect lung abnormalities in the
early diagnosis of the disease [2]. In addition, compared with
CNN methods, we also can see that our 3D-CNN has the overall
best performance, such as mean accuracy of 96.64%, mean sen-
sitivity of 90.62%, and mean specificity of 99.35% in five centers.
After using our 3D-CNN model to extract multi-center features,
we use the MCSL method for diagnosis. We can see that di-
agnostic performance has been further improved. The reason is
that these competing methods are restricted to a single-center
or treat multiple centers into one center and thus ignore the
11
relationship between and within multi-center data. However, our
MCSL method can select the most discriminative features by
learning the relationship between and within multiple centers for
COVID-19 diagnosis and thus has achieved higher performance.
For example, our MCSL method has the best performance overall
and obtains mean accuracy of 98.03%, mean sensitivity of 95.89%,
and mean specificity of 99.00% in five centers.

5.2. Visualization analysis

We use the t-distributed stochastic neighbor embedding (t-
SNE) method of MATLAB software to visualize high-level features.
We pop FC9-2, FC8-60, and FC7-800 layers and add a global
max-pooling layer to extract these features from testing images
(e.g., CT images and HOG images). Fig. 5 shows the t-SNE vi-
sualization results of the features extracted from 3D-CNN using
CT images and HOG images, respectively, where red dots indi-
cate patients with COVID-19 and blue dots indicate NCs. From
the t-SNE feature distribution maps, we can get the following
findings. The features extracted from CT images have large intra-
class differences and small inter-class differences. For example,
in KT center, blue dots of the same category are divided into two
pieces, and blue and red dots of different categories are close to
each other. After we convert CT images to HOG images, we can
see that the intra-class differences of the corresponding feature
maps have become smaller, while the inter-class differences have
become larger, which indicates that HOG images can improve the
diagnostic performance.

5.3. Limitations and future direction

Our approach has achieved appealing performance, but there
are still limitations, which we highlight here. First, when using
3D-CNN to extract deep features, we do not consider the rela-
tionship between multi-center data. We can add the relationship
among multi-center data to this network to further learn the
more discriminative features. Second, in this paper, we only use a
single modality (i.e., chest CT image) for COVID-19 diagnosis. We
can use multi-modal data (e.g., chest CT, chest radiograph, and
clinical information) to improve diagnosis accuracy [30]. Third,
our MCSL model is supervised, and we can further explore a semi-
supervised method to adapt to scenarios with a large number of
suspected cases [50]. Finally, we do not conduct the lung segmen-
tation and lesion area positioning tasks in the paper [51]. Since
SARS-CoV-2 mainly infects human lungs, we can perform the lung
segmentation task to further improve diagnostic performance for
COVID-19 in the future, and conduct the lesion area positioning
tasks to assist doctors in diagnosing COVID-19 [22,52].
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Fig. 5. The t-SNE visualization results illustrate features extracted from 3D-CNN using CT images and HOG images in five centers. (Red dots indicate patients with
COVID-19 and blue dots indicate NCs).
6. Conclusions

In this paper, we propose a MCSL and decision fusion scheme
exploiting chest CT images for automatic COVID-19 diagnosis.
Specifically, considering the inconsistency of data in multiple cen-
ters, we first convert 3D CT images into HOG images to reduce the
12
structural differences between multi-center data and enhance the
generalization performance. We then employ a 3D-CNN model
to learn the useful information between and within 3D HOG
image slices and extract multi-center features, which saves the
doctor’s time to screen the pathological slices. Furthermore, we
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able 7
erformance comparison of some related methods for COVID-19 diagnosis (Mean).
Image Method Ref. Subject ACC SEN SPE

X-ray BCNN [18] Two centers: 68 COVID-19, 2786 bacterial
pneumonia, 1504 non-COVID-19 viral
pneumonia, 1583NC

89.82 / /

X-ray CapsNet [48] One center: 231 COVID-19, 500 NC 91.24 96.00 80.95
CT ResNet [10] Six centers: 468 COVID-19, 1551 CAP, 1303 NC / 90.33 94.67
CT U-net, DCN,

FCN
[14] Ten centers: 704 COVID-19, 498 NC 94.81 95.39 94.46

CT DenseNet [21] Seven centers: 924 COVID-19, 342 other
pneumonia

81.15 79.70 76.40

CT U-net,
DeCoVNet

[49] One center: 313 COVID-19, 229 NC 90.10 84.00 98.20

CT U-Net,
ResNet

[22] Seven centers: 3084 COVID-19, 5941 others / 87.03 96.60

CT U-Net++,
ResNet

[19] Five centers: 723 COVID-19, 413 NC / 97.40 92.20

CT Feature
selection,
KNN

[38] Unknown: 216 COVID-19, unknown 96.00 74.00 /

CT AFS-DF [20] Six centers: 1495 COVID-19, 1027 CAP 91.79 93.05 89.95
CT-H 3D-CNN Ours Five centers: 1034 COVID-19, 2298 NC 96.64 90.62 99.35
CT-H 3D-CNN,

MCSL
Ours Five centers: 1034 COVID-19, 2298 NC 98.03 95.89 99.00

Note: CT-H denotes the HOG images corresponding to chest CT images; boldface denotes the best performance; community-acquired pneumonia (CAP).
-

employ the proposed MCSL model that learns the intrinsic struc-
ture between multiple centers and within each center and selects
discriminative features to jointly train multi-center classifiers. Fi-
nally, the decision fusion is used to comprehensively consider the
relationship between multi-center data and jointly analyze the
diagnosis results of different classifiers to improve the diagnostic
performance. The extensive experiments are performed on the
chest CT images from the five centers to validate the effectiveness
of the proposed method, where four central data are used as the
training set and the remaining one as the testing set. The results
demonstrate that the proposed method can improve COVID-19
diagnosis performance and precede state-of-the-art methods.
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