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Abstract

Under the current paradigm, organic matter decomposition and nutrient cycling rates are a func-
tion of the imbalance between substrate and microbial biomass stoichiometry. Challenging this
view, we demonstrate that in an individual-based model, microbial community dynamics alter rel-
ative C and N limitation during litter decomposition, leading to a system behaviour not predict-
able from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead
to an adaptation at the community level, which accelerates nitrogen recycling in litter with high
initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial
decomposers to overcome large imbalances between resource and biomass stoichiometry without
the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional
stoichiometric mass balance equations. We conclude that identifying and implementing microbial
community-driven mechanisms in biogeochemical models are necessary for accurately predicting
terrestrial C fluxes in response to changing environmental conditions.
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INTRODUCTION

Theoretical models have suggested that the imbalance between
stoichiometry of microorganisms and their substrate is the
major cause for C or N limitation of organic matter decompo-
sition (Moorhead et al. 1996; Manzoni et al. 2008; Manzoni
& Porporato 2009). This is based on the idea that microbes
have to maintain their elemental composition within certain
boundaries, irrespective of the substrate they feed on (Sterner
& Elser 2002a; Cleveland & Liptzin 2007). As a consequence
they need to either slow down decomposition, if one element
is limiting, or increase the efflux of the element that is in
excess, for example by N mineralisation or ‘overflow’ CO2 res-
piration (Schimel & Weintraub 2003; Manzoni & Porporato
2009; Manzoni et al. 2012). Such a stoichiometric regulation,
however, takes place at the level of an individual microbial
cell, rather than at the community level. At the community
level, resource competition among microbes may lead to com-
munity shifts, which may alter the community’s carbon and
nitrogen use efficiency and thus the overall response of
decomposition to resource stoichiometry. While previous stud-
ies and models have focused on ‘upscaling’ the physiology of
microorganisms to the bulk microbial biomass (Sterner &
Elser 2002a; Manzoni et al. 2012; Sinsabaugh et al. 2013;
Wieder et al. 2013), the mechanisms that operate at the com-
munity level and the community-driven response to stoichiom-
etry have not been explored so far.
At the micro-scale, a microbe’s competitive success will

likely be determined by the balance between species-specific
C : N demand and the local availability of resources (Tilman
1982; Cherif & Loreau 2007). Microbial growth rates and cel-

lular C : N ratios (which both determine the C : N demand)
may thus be relevant functional traits with respect to competi-
tion. These traits exhibit considerable variations across micro-
bial taxa. The size of a fungal cell, for example, differs by up
to three orders of magnitude from that of a bacterial cell
(Rutz & Kieft 2004; Bryan et al. 2010), and fungi have a pro-
foundly different macromolecular composition compared to
bacteria. Cell sizes are often linked to growth rates: Microbes
with smaller cell sizes exhibit a higher surface to volume ratio,
which allows them to grow faster than microbes with large cell
sizes. Slower growing microbes, on the other hand, often have
to invest more in structural and/or defensive compounds to
compensate for their reduced ability to quickly rebuild bio-
mass (K- vs. r-strategists). Such differences in life-history traits
will thus likely influence both competition for C and nutrients
and substance flow during litter decomposition. Another
important microbial trait is the ability to release extracellular
enzymes to breakdown complex substrates into compounds
small enough for uptake. Because products of enzymatic
deconstruction diffuse in the soil solution and become accessi-
ble also to other microbes, not only competitive but also
synergistic interactions occur among microbes (Cz�ar�an &
Hoekstra 2009; Cornforth et al. 2012; Johnson et al. 2012).
Collective dynamics emerging from such spatial interactions

between individual microbes at the micro-scale are likely to
reveal unexpected non-linear system properties at the macro-
scale (Grimm et al. 2005). A new generation of models have
started to include micro-scale interactions between individual
microbes for investigating microbial decomposer systems
(Allison 2005, 2012; Ginovart et al. 2005; Folse & Allison
2012), which has shed new light on the role of microbial
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community dynamics for decomposition. Although some of
these models explicitly include stoichiometric C and N fluxes,
they did not show (or did not aim to show) a consistent link
between C and N availability and community dynamics. The
key question thus still remains: how does functional diversity
and community dynamics regulate decomposition and its
response to litter stoichiometry?
Here, we explicitly address this question with a new model

that accounts for micro-scale processes and functional diver-
sity in a way different from previous microbial models. Our
model is individual-based, spatially and biogeochemically
(C and N) explicit. It is based on microbial functional groups
differing in life-history traits, such as cell size and associated
maximum turnover rates, biomass C : N ratio and production
capacity of extracellular enzymes for degradation of plant or
microbial material. The model was calibrated and tested based
on published data from a laboratory litter decomposition
study (Wanek et al. 2010a; Keiblinger et al. 2012; Leitner
et al. 2012; Mooshammer et al. 2012). We asked the questions
(1) how differences in life-history traits across microbial
groups govern community shifts in response to input stoichi-
ometry, and (2) whether changes in community composition
have the potential to significantly contribute to the overall
response of decay rates to resource stoichiometry.
Our results reveal a strong link between initial litter C : N

ratio and functional community dynamics, which in turn
influences decay rates in a way that is not predictable from

litter stoichiometry and microbial physiology parameters.
They further demonstrate that adaptations at the community
level in response to resource stoichiometry allow microbes
to overcome large stoichiometric imbalances between litter
and microbes by controlling the N recycling flow, a result
that challenges predictions of established stoichiometric
models.

MATERIAL AND METHODS

Model description

We developed a process- and individual-based computer
model (programmed in JAVA, using Eclipse IDE, The Eclipse
Foundation, Ottawa, Canada, http:/eclipse.org/), which aimed
at capturing the link among resource availability, microbial
community composition and decomposition processes. Each
soil microbe is individually represented as one object in the
computer memory. Microbes in the model colonise a virtual
grid of 100 9 100 soil or litter microsites, each site being
10 9 10 9 10 lm, the whole grid thus representing a piece of
1 mm 9 1 mm of soil or decomposing litter. Each microsite
can host a single microbial cell or a small colony of cells,
depending on the microbe’s cell size. Each microsite can only
be inhabited by microbes of one functional group. The model
runs at discrete time steps (1 time step = 3 h). All biochemical
transformations and stoichiometry are calculated explicit each

Figure 1 Conceptual diagram of the microbial functional groups model. Solid arrows depict mass flow of C and N. Dotted arrows depict the catalytic effect

of a certain enzyme pool on the breakdown of its respective complex substrate (for details on enzymatic breakdown see Appendix S2). Bold blue and red

arrows indicate diffusion (for details on diffusion algorithm see Appendix S3). All transformations are calculated once per time step for each microsite on

the grid at a random order. MR-C: C-rich Microbial remains (contains cell walls, lipids, carbohydrates, C : N ratio = 150). MR-N: N-rich microbial

remains (contains proteins, DNA, RNA from dead microbial cells, and denatured extracellular enzymes, C : N ratio = 5). DOM, dissolved organic

material. DIN: dissolved inorganic nitrogen.

© 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

Letter The microbial community response to stoichiometry 681



time step for each microsite and executed in a random order
across the grid (for a graphical model overview see Figure 1).

Substrate pools and enzymatic degradation

Each microsite can hold up to three pools of complex sub-
strate, one ‘primary’ (= original plant material) and two ‘sec-
ondary’ substrates (= complex compounds that accumulate as
a result of microbial activity). Secondary substrates are either
C-rich microbial remains (contains cell walls, lipids, carbohy-
drates and others, with a C : N ratio of 150) or N-rich micro-
bial products (contains proteins, including denatured
extracellular enzymes, DNA and RNA, C : N ratio = 5).
Each of the three complex substrate pools is associated with
one class of enzymes, which catalyses its degradation. Enzy-
matic breakdown is calculated each time step according to
Michaelis–Menten kinetics (Appendix S2) (Allison et al. 2010;
Wang & Post 2013). Products from enzymatic degradation of
complex substrates are added to the dissolved organic matter
(DOM) pool at the respective microsite. In addition, each mi-
crosite has a pool of dissolved inorganic nitrogen (DIN).
DOM and DIN move via diffusion between neighbouring mi-
crosites in each time step (Appendix S3). A certain fraction of
DOM and DIN that is diffusing between microsites is lost by
leaching.

Microbial processing of C and N and stoichiometric overflow

Microbes take up C and N in the ratio present in the DOM
pool at their microsite at a rate related to cell surface area
(Appendix S1). Maintenance respiration is calculated as a
fraction of microbial biomass per time. A small part of
enzymes (one tenth of maximal enzyme production) are pro-
duced constitutively in our model, i.e. also under conditions
where uptake is not sufficient to cover maintenance respira-
tion. If maintenance respiration and constitutive enzyme pro-
duction exceed C uptake, biomass decreases (starving). After
deduction of maintenance respiration and constitutive enzyme
production, absorbed C and N are used for enzyme produc-
tion and growth. If needed, microbes additionally take up N
from the DIN in their microsite (N immobilisation). Growth
and enzyme production require additional respiration, which
is calculated as a fraction of the C used for the respective pro-
cess (Schimel & Weintraub 2003). The model assumes that
microbes need to keep their cellular C : N ratio constant.
After meeting the needs for enzyme production and growth,
the element in excess is thus released, either by N mineralisa-
tion (transfer of excess N into the DIN pool) or by overflow
C respiration (Schimel & Weintraub 2003; Manzoni et al.
2012).

Mortality and reproduction

Microbes can die by starving (if biomass falls below a mini-
mum limit), or due to ‘catastrophic death’ (reflecting preda-
tion or abrupt changes in environmental conditions). The
latter is implemented as a functional-group specific probability
of each individual to die in each time step. This stochastic
mortality randomly creates empty microsites, which will be

occupied by the most successful microbes in their surround-
ing: Microbial cells divide and colonise a neighbouring micro-
site if their biomass exceeds a functional-group specific
maximum level. If all neighbouring microsites are occupied,
microbes can ‘invade’ an occupied microsite with a probability
of 0.01 (leading to the death of the owner). Microbes are not
‘mobile’ in the model. The only movement of microbes on the
grid is due to dispersal to neighbouring microsites in the
course of reproduction. Upon cell death, microbial cellular
compounds are distributed among the substrate pools of the
microsite (C-rich and N-rich microbial remains, and DOM).
After a defined lifetime, extracellular enzymes will also be
shifted to the N-rich microbial remains pool which makes
them inactive and ready to be degraded by other enzymes.

Functional traits

A functional microbial group is composed of microbes with
certain functional traits. Functional traits can be classified in
‘life-history’ traits (microbial cell sizes and associated turnover
rates, cell C : N stoichiometry and the microbe’s investment
in enzyme production) and ‘substrate-specificity’ traits (the
ability to produce specific enzymes to degrade specific sub-
strates).

(1) Cell size and turnover rates: Each functional group is
characterised by its ‘maximum cell size’; (MCS), which is the
cell size at which a microbe divides and colonises neighbour-
ing cells. All individuals of a functional group will thus have
cell sizes distributed between half of MCS and MCS. We cou-
pled cell size and growth rates in the model by relating maxi-
mum possible uptake rates to the cell surface : volume ratio.
In addition, we assumed that species with larger cells are more
resistant against catastrophic death, thereby we related
(stochastic) mortality rate inversely to MCS. Actual growth
rates in our model are thus a result of (i) local availability of
labile C and N and (ii) functional-group specific maximum
uptake and mortality rates. (Appendix S1).
(2) Cell chemical composition and C : N ratio: Each func-
tional group is characterised by its cell stoichiometry and
chemical composition (Table 1). Microbial biomass is divided
into three compartments: (i) low molecular weight substances
(sugars, amino acids or small peptides, C : N ratio 15) (ii) N-
rich macromolecules (proteins, DNA, RNA, C : N ratio 5)
(iii) C-rich structural or storage compounds (cell wall com-
pounds, carbohydrates, lipids, C : N ratio 150). The ratio of
this three pools determines the overall C : N ratio of the cell
(Table 1).
(3) Production of extracellular enzymes: Each functional
group is characterised by the fraction of C uptake invested
into enzyme production and by which types of enzymes it can
produce.

Model calibration with experimental data

We calibrated the model parameter with a Bayesian approach
[Markov Chain Monte Carlo simulation (Van Oijen et al.
2005)] using empirical data from a beech litter decomposition
experiment (Wanek et al. 2010b; Mooshammer et al. 2012).
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(Appendix S4). After calibration, the model predicted overall
C and N dynamics of the empirical study reasonably well
(Fig. 2). Other C and N pools and fluxes that are calculated
by the model (such as gross N mineralisation, microbial respi-
ration, DIN) were in the same order of magnitude as in the
empirical study.

Evaluating the effect of life-history traits on competition

To evaluate how differences in life-history traits between
microbial groups drive community shifts in response to input
stoichiometry, we run the model with two functional groups
at initial litter C : N ratios from 15 to 95. One of the two

Figure 2 Comparison of model output with data from a litter incubation study (Wanek et al. 2010; Mooshammer et al. 2012). Beech litter of four sampling

sites in Austria differing in litter stoichiometry had been incubated for up to 65 weeks. Mean (� standard error) of initial litter C : N mass ratios from

distinct sampling sites were as follows: 41.8 � 0.8 (indicated by green symbols), 52.6 � 0.5 (blue), 57.9 � 0.6 (red) and 60.0 � 0.7 (dark red). Incubation

times/model time of 2, 14, 26 and 65 weeks is represented by circles, squares, diamonds and triangles respectively. Remaining carbon is calculated from

measured respiration rates during the litter decomposition study. Model parameter settings are given in Table S1. The model was run in five replicates for

each of the initial litter C : N ratios of the study. Empirical data from incubations at initial litter 41.8 and 60.0 (green and dark-red symbols) had been

included in the model calibration (Markov Chain Monte Carlo).

Table 1 Microbial cell stoichiometries, cell sizes and enzyme production rates used for the evaluation of the effect of life-history traits on resource competi-

tion (Fig. 4)

Parameter Description

r-strategist

(bacteria)

Generalist

(bact/fungi)

K-strategist

(fungi) Unit

Cell stoichiometry* Cell component Fraction of cell biomass

Cell DOM Cell solubles, immediately available for uptake by other microbes

upon cell death (C : N ratio = 15)

0.06 0.06 0.06

Cell MR-C C-rich microbial remains, i.e. cell wall compounds, lipids, starch

(C : N ratio = 150)

0.78 0.52 0.37

Cell MR-N N-rich microbial remains, i.e. proteins, DNA, RNA

(C : N ratio = 5)

0.16 0.42 0.57

Resulting cell C : N ratio 6.21 9.03 12.22

Cell size and turnover rates† Fast Slow

Max cell size Size at which a microbial cell divides and colonises a neighbouring

microsite

10 100 fmol C

Max cells ms Max. number of microbes of that group in one microsite 3 1

Enzyme production Half Full

Enz fract Fraction of microbial C uptake after deduction of maintenance

respiration that is invested in enzyme production

0.06 0.12

Enz ratio Ratio in which specific enzymes are produced for the degradation of

plant material: C-rich microbial remains: N-rich microbial remains

0.7: 0.15: 0.15 0.7: 0.15: 0.15

Cell stoichiometries presented here have also been used as assumptions for the three distinct functional groups used in the Bayesian calibration of the

model.

*Chemical composition of prokaryotic and eukaryotic (e.g. yeast) cells based on Kirchman (2012).

†Microbial cell sizes based on Rutz & Kieft (2004); Clode et al. (2009); Bryan et al. (2010); Romanova & Sazhin (2010). Turnover rates are cell size depen-

dent because: (1) growth is related to cell size based on the assumption that uptake is surface dependent and smaller cells have a larger surface to volume

ratio, i.e. smaller cells grow relatively faster compared to larger cells. (2) Mortality rate is inversely linked to maximum biomass per microsite, assuming

that larger cells invest more in defensive structures. For more details, see Appendix S1.
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groups had fixed traits (C : N ratio = 12, MCS = 100 fmol C,
enzyme production = 12% of C uptake after deduction of
maintenance respiration), whereas the second group’s func-
tional traits were systematically varied (C : N ratio = 6, 9 or
12; MCS = 100 fmol C or 10 fmol C, roughly corresponding
to fungal and bacterial cell sizes; enzyme production = 12%
or 6%). As MCS is linked to uptake and mortality rates,
MCS = 100 and 10 fmol C correspond to slow and fast turn-
over rates respectively. Microbes of all groups produced all
three extracellular enzymes present in the model at the same
ratio (7 : 1.5 : 1.5 for enzymes degrading plant material:
C-rich remains: N-rich remains).

Evaluating the effect of substrate-specific enzyme production

For evaluating the link between community and substrate
dynamics during litter decay, we ran the model with three
functional groups. ‘Plant degraders’ and ‘microbial-remains
degraders’ both produce extracellular enzymes at a rate of
12% of the C uptake remaining after maintenance respira-
tion. Ninety per cent of enzymes produced by ‘plant degrad-
ers’ specifically degrade plant material, whereas 10%
degrade N-rich microbial remains. ‘Microbial-remains
degraders’ produce enzymes degrading C-rich and N-rich
microbial remains (each 50% of total enzyme production).
‘Opportunists’ were fast-growing microbes without any
enzyme production capabilities, assuming this a realistic
component of the microbial decomposer community. We ran
the model at four different initial litter C : N ratios (from
45 to 75) and recorded the C : N ratio of total dissolved
organic material (aggregated over the grid) as a measure of
microbial C : N limitation at any time point. We calculated
community carbon use efficiency (CCUE, i.e. the fraction of
the total carbon uptake that is used for microbial growth)
as an emergent result from the output of the model in each
time step as:

CCUE ¼ ðUDOC �R� PENZÞ=UDOC (Manzoni et al:2012Þ
where UDOC is the total amount of DOC taken up by all
microbes on the grid, R is the total amount of C respired and
PENZ is the total amount of C released as extracellular
enzymes.

RESULTS

Emerging spatiotemporal dynamics of microbes and resources

Individual-based modelling allows overall system behaviour
to emerge as a consequence of the sum of individual behav-
iour and interactions (Grimm et al. 2005; Hellweger & Bucci
2009). In our model, micro-scale competition between
microbes with different functional traits promotes a continu-
ous feedback between local resource availability and commu-
nity composition, which leads to the emergence of closely
coupled spatiotemporal dynamics of microbes and litter
chemistry (Fig. 3). Spatial heterogeneity of initially uniform
distributed substrates increases during a litter decomposition
model run: primary substrate (dead plant material) becomes
depleted at parts of the grid with high microbial activity,

while at the same time microbial products, such as dead
microbial cells or remains of enzymes, are accumulating else-
where (Fig. 3, Movie S1). Diffusion of labile C and N, which
are produced at certain spots (by enzyme activity or cell
death) and removed at other spots (by microbial uptake),
establishes spatial gradients of C and N availability (Fig. 3,
Movie S1).

Effect of life-history traits on microbial community dynamics

Litter stoichiometry controls community dynamics of two
functional groups, when they differ in basic life-history traits.
Given that competing microbes invest the same fraction of the
substrate taken up into extracellular enzyme production,
microbial groups with smaller cell sizes (faster biomass turn-
over) and/or a lower cellular C : N ratio are only competitive
in degrading low C : N litter (Fig. 4a). Slow-growing
microbes, on the other hand, are not as efficient at low litter
C : N, but can cope relatively better with N limitation. Over-
all, decay rates are negatively correlated with litter C : N,
when competing microbes invest the same fraction into extra-
cellular enzyme production (Fig. 4a).
The situation changes, however, when functional groups

invest different fractions of their uptake into enzyme produc-
tion (‘different enzyme production’, Fig. 4b). When microbes
of one group invest only half as much in extracellular enzyme
production compared to the other group, they automatically
benefit from their competitors activities. This ‘cheating’
increases competitive advantage at all litter C : N ratios
(Fig. 4b).
Thus, in scenarios with unequal enzyme production, the

effect of litter C : N ratios on community dynamics is no
longer predictable from ‘conventional’ microbial stoichiome-
tric traits. In addition, decay rates need no longer be posi-
tively correlated with litter N content: when the group that
produces less enzymes, for example, has a higher competitive
advantage at low litter C : N ratio (e.g. by exhibiting a faster
turnover rate, or a lower cellular C : N ratio), it substantially
slows down the growth rate of enzyme producers, leading to a
reduction in litter decomposition particularly at low litter
C : N ratios (Fig. 4b).

Effect of community dynamics on carbon and nitrogen fluxes

For a second analysis we implemented functional groups,
which did not only differ in basic life-history traits but also in
their abilities to deconstruct different substrate polymers. The
model was run with three functional groups: one specialised
for degrading primary substrates (plant-derived material), one
for secondary substrates (microbial remains) and the third
was an opportunistic, fast-growing group, without the ability
of producing extracellular enzymes. The presence of substrate-
specific groups leads to the emergence of a microbial succes-
sion during litter decay, with plant degraders peaking before
microbial remain degraders (Fig. 3 and 5).
The initial litter C : N ratio substantially affects these

dynamics. In low C : N litter, a two-phased decomposition
pattern emerges. Initially, plant degraders grow to high num-
bers, favoured by relatively high plant N concentrations.
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Degraders of microbial remains only grew to numbers after a
significant amount of plant material had been depleted, utilis-
ing the meanwhile accumulated microbial necromass (Fig. 3
and 5).
Litter with high initial C : N ratios, by contrast, exhibited a

less pronounced succession between the two groups. In this
case, microbial-remains degraders exhibited a higher relative
abundance already in the early phase of decay. The ratio of
degraders of plants: microbial-remains degraders were 35.5
(SE = 8.7, n = 4) and 4.2 (SE = 0.3, n = 4) for litter
C : N = 55 and C : N = 75 at 50% C loss respectively
(Fig. 5). The higher relative abundance of degraders of micro-
bial remains at litter with higher C : N ratios is caused by
lower competitiveness of the plant-degrading group (due to
the poorer N quality of their substrate). This allows degraders
of microbial remains to be more competitive at early stages of
decomposition, and to degrade emerging patches of microbial
remains soon after they appear.

Such changes in community dynamics induced by initial sub-
strate stoichiometry, in turn, influence the dynamics of complex
and labile compounds. The two-phase successional community
dynamics at low litter C : N ratios initially lead to a strong
accumulation of microbial remains, which are degraded in the
second stage. DOM in the second stage is thus characterised by
an increased contribution from N-rich microbial compounds
(C : N ratio ~10), leading to a significant drop of C : N ratio of
DOM at later stages of decay (Fig. 5).
At high litter C : N ratio, by contrast, the higher relative

abundance of microbial-remains degraders in the early phase
of decomposition lowers the accumulation of microbial necro-
mass over time. At the same time, however, it increases the
relative proportion of N-rich microbial necromass to the con-
tinuous DOM production (Fig. 5). This result is caused by an
interesting emerging mechanism which drives the model
dynamics: N is locked up to a greater extent in complex
microbial remains in the low C : N litter (i.e. when N is not

Figure 3 A closely linked succession of microbial groups and chemical complexity emerges during litter decomposition from individual-based modelling.

Each square shows a 100 9 100 grid of microsites, corresponding to a 1 9 1 mm area of leaf litter. The uppermost row displays the spatial distribution of

individual microbes of three functional groups (blue: Plant degrader, green: Microbial-necromass degrader, red: Opportunists), whereas rows 2–6 display

spatial distribution of complex (plant material, microbial remains) and labile substrate (dissolved organic material, inorganic nitrogen). Relative amounts of

each substrate per microsite are indicated by the colour code in the lower left corner. Inserted figures on the right show the aggregated sizes of the

respective pools as calculated from the model output. For detailed parameter settings, see Table S1 and main text.
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limiting), but is rather kept in circulation when the C : N
ratio of the litter is high, due to a greater activity of microbial
recyclers. This leads to a more efficient use, i.e. a faster
recycling of N in the high C : N litter.
The positive feedback loop between litter C : N and the

abundance of degraders of microbial remains leads to the sur-
prising observation that the community composition effectively
buffers the C : N ratio of DOM. Independent of the initial litter
C : N ratios the C : N ratio of DOM converges to around 22 in
all scenarios when the substrate-specific functional group model
was used. By contrast, when the model was run without func-
tional group diversity (i.e. all microbes belonged to the same
functional group which equally produces all kinds of enzymes),
C : N ratios of DOM were still positively correlated with litter
C : N ratios (Fig. 6), varying between 22 (for litter with C : N
45) and 28 (for litter with C : N 75). In both models, DOM
C : N ratios were at least 50% lower than litter C : N ratios.
The surprising decoupling of DOM and litter C : N ratios in
our community model is also supported by empirical data from
a litter decomposition study where beech leaf litter from four
different sampling sites in Austria (varying in initial C : N
ratios) had been incubated under laboratory conditions for up
to 65 weeks (Wanek et al. 2010; Leitner et al. 2012; Moosham-
mer et al. 2012). Results from that study show that (1) C : N
ratio of dissolved material is constantly lower than C : N ratio
of litter and (2) C : N ratio of dissolved material is decoupled

from C : N ratio of litter (it only decreases with time, but is
independent of litter C : N ratio) (Fig. S1).
By altering DOM C : N ratio, the community-driven mech-

anism in our model also affected CCUE. This is because indi-
vidual microbial CUEs are linked to the C : N ratio of
available DOM via the implemented mechanism of overflow
respiration (N limitation causes overflow C respiration, which
decreases microbial CUE). As DOM C : N ratios levelled off
at a relatively low value, CCUE converged consequently at a
relatively high value of 0.32, independent of initial litter C : N
ratios in the community-driven model (Fig. 6).

DISCUSSION

Microbial community dynamics has so far been neglected in
modelling decomposition processes in terrestrial systems due
to the difficulty of establishing a link between microbial com-
munity structure and function. Our model links C and N
fluxes to microbial community dynamics in a bottom-up mod-
elling approach, based on functional microbial groups that
differ in life-history traits and substrate-specific enzyme pro-
duction capacity. Our work shows that (1) simple differences
in microbial life-history traits, such as cell size, turnover rates
and chemical composition, are sufficient to cause community
shifts in response to resource stoichiometry and (2) that com-
munity dynamics of specific functional groups regulate the

(a) (b)

Figure 4 Resource stoichiometry controls competition between microbial groups with different life-history traits, which in turn govern litter decay rates.

Displayed are average microbial biomass and decay rates over model runs from 0 to 60% mass loss. Bars (microbial biomass) and dots (decay rates) are

means of five replicate model runs (error bar = standard error, sometimes too small to see). Colours within each bar depict proportions of the competing

groups (grey = group 1, blue = group 2). Traits of group 1 were kept constant (C : N ratio = 12, turnover rate: slow), whereas group 2 varied as outlined

in the figure. The upper left panel thus shows model dynamics with a uniform population (both groups have equal traits). (a) Groups invest the same

fraction of uptake into enzyme production. (b) Group 2 invests only half as much as group 1 into enzyme production, all other parameters are identical.

For parameter settings see Table 1.
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overall response of litter decay to stoichiometry in a way not
predictable from the simple imbalance of litter and microbial
biomass stoichiometry.
Although microbial decomposer communities are highly

diverse, they are also highly redundant with respect to ecolog-
ical functions, especially at the species level (Prosser 2012).
Fundamental functional differences between microbes may,
however, occur at higher phylogenetic levels (Philippot et al.
2010; Schimel & Schaeffer 2012), the most significant ones
probably between fungi and bacteria. Here, we accounted for
these differences by considering the large variation in cell size,
chemical composition and enzyme production capacities
found across microbial phyla. Our results show that resource
stoichiometry has the potential to influence microbial commu-
nity composition based on the presence of contrasting life
strategies, such as those broadly assigned to major fungal and
bacterial lineages.

Cellular C : N ratios of microbes have often been regarded
crucial for microbial competition for C and N resources
(Sterner & Elser 2002b; Cherif & Loreau 2007). Our model
results suggest that not only C : N ratios but also species-
specific turnover rates of microbes may affect competitive
success at certain resource C : N ratios. Microbes with faster
turnover rates grow faster and have higher mortality rates.
They therefore have a higher N demand per unit of time,
compared to slower growing microbes, which can conserve
N in their biomass for a longer time. It is interesting to note
that this basic link between turnover rates and the C : N
demand is effective even independent of cellular C : N ratios
(Fig. 4). In reality, however, cellular C : N ratios and
turnover rates are often coupled because slower growing
K-strategists invest more in C-rich structural compounds,
whereas fast-growing microbes have a larger amount of
N-rich ribosomes.

Figure 5 Initial litter C : N ratio affects community dynamics of substrate-specific functional groups, which in turn influences dynamics of complex and

labile compounds during litter decay. The model was run at four different initial litter C : N ratios (containing the same amount of carbon, but different

amounts of nitrogen in the native plant material) until 90% mass loss. First row: coloured lines show biomass of functional groups over time (for

visualising stochastic variability, each panel shows results of four model runs). Group traits as in Figure 1. Second row: Grey and brown areas show

remaining C in plant compounds and microbial necromass respectively. Third row: Grey and brown areas show enzymatic DOM production from plant

material and microbial necromass respectively. Vertical lines depict the time point of 50% mass loss for each of the four scenarios. Screenshots show the

spatial distribution of microbes on the 100 9 100 microsites grid at 50% mass loss.

© 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

Letter The microbial community response to stoichiometry 687



Both high cellular C : N ratios and relatively slow turnover
rates yield a competitive advantage at high-substrate C : N
ratios in our model. Our results from scenarios with equal
extracellular enzyme production (Fig. 4a) thus seem to sup-
port the frequently applied ‘rule of thumb’ that (often fungal)
K-strategists perform better at high-substrate C : N ratio,
whereas fast-growing (often bacterial) r-strategists dominate
at low-substrate C : N ratio (Fig. 4a). In reality, however,
and despite that this is not considered in most models, it is
very unlikely that different microbial groups have an equal
share on total extracellular enzyme production. Our results
from scenarios with unequal enzyme production show that
this mundane fact may substantially change the expected out-

come of competition. Fungi, which are thought to be the main
producers of extracellular enzymes for plant litter breakdown
(Osono 2007; Gessner et al. 2010; Vo�r�ı�skov�a & Baldrian
2013) may thus not necessarily be more competitive at high
litter C : N ratios than bacteria, which invest far less in
enzyme production (Roman�ı et al. 2006; Schneider et al.
2012). Although our results indicate interactions between
resource stoichiometry and the dynamics of microbial K- and
r-strategists, we did not account for specific fungal-related
traits, such as the ability to translocate nutrients via hyphae,
nor for a possible antibiotics production of enzyme producers.
Such features may additionally affect resource-driven competi-
tion between fungi and bacteria.
Although the importance of microbial remains as a precur-

sor for soil organic matter formation is widely acknowledged
(Schmidt et al. 2011; Wickings et al. 2012), the build-up and
recycling of this pool during litter decomposition has only
been considered in a limited number of litter decomposition
models (e.g., Moorhead & Sinsabaugh 2000; Ingwersen et al.
2008). Our results indicate that a substantial proportion of
the overall C and N flux at any given time during litter
decomposition may originate from reprocessing of microbial
necromass, explaining why the C : N ratio of DOM can be
constantly lower than the bulk C : N material (Fig. 6 and
S1). This has far-reaching implications for the concept of
stoichiometric limitation of microbes. Stoichiometric limita-
tion of microbial growth is controlled by the C : N ratio of
the bioavailable DOM, rather than by the C : N ratio of the
overall (complex) substrate. Bioavailable DOM, in our model
as in reality, unites inputs from different complex sources, its
C : N ratio is thus a result of the ratio of supply rates from
different complex substrates with different C : N ratios. If
substrates with different C : N ratios, such as a plant-derived
and a microbial-biomass derived pool, turnover at different
speeds, the rates of C and N recycling in the remaining litter
decouple. Recycling C and N at different rates has an instan-
taneous effect on the ratio at which they are available for
microbes at any time point. The C : N ratio of dynamically
available compounds in the DOM may thus be fundamentally
different from the overall C : N ratio of the substrate.
This concept is not included in state-of-the-art stoichiome-

tric models, which are based on the stoichiometric mass bal-
ance between the (complex) substrate and the microbial
biomass. For example, the critical litter C : N ratio (or thresh-
old element ratio, TER), defined as the substrate C : N ratio,
at which decomposition switches from being C limited to
being N limited, is thought to be a function of decomposer’s
stoichiometry and their carbon and sometimes nitrogen use
efficiencies (Manzoni & Porporato 2009; Sinsabaugh et al.
2013):

TERC:N ¼ ðNUE=CUEÞ � BC:N ð1Þ
where NUE is microbial nitrogen use efficiency and BC:N is
microbial biomass C : N ratio. At common model assump-
tions of NUE = 1 and CUE = 0.5, TERC:N would range from
~16 to 30 (assuming microbial biomass C : N ratios range
from 8 to 15). Litter with a higher C : N ratio than TERC:N

is thought to need external N to be decomposed. In a global
data set of ~2800 observations of decomposing litter, it has

Figure 6 The implementation of community dynamics in the model

enables a flexible response of decomposition to stoichiometric conditions.

Comparison of outputs of model runs at four different initial litter C : N

ratios of (1) a model with a uniform population (left column, all microbes

have the same traits and produce all kind of enzymes) and (2) a model

including three substrate-specific functional groups (right column, same

parameters as in Figure 3). In the one-group model, DOM C : N ratio

happens to be coupled to litter C : N ratio, leading to a greater N

limitation of microbes in the low-N litter. In the functional diverse model,

the system responds to increasing litter C : N ratios with increasing the

fraction of DOM from recycled microbial necromass. This lowers DOM

C : N ratios, which in turn alleviates microbial N limitation and thereby

increases community CUE. For parameter details, see Table S1.
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been shown, however, that TERCN was positively correlated
by power law to initial litter C : N ratio (Manzoni et al. 2008;
Sinsabaugh et al. 2013), allowing even high C : N litter to be
decomposed without external input of N (Moore et al. 2006;
Parton et al. 2007). To explain this phenomenon, it has been
concluded that [based on equation (1)] decomposers need to
strongly decrease CUE with increasing N limitation, which is
also in line with the concept of C overflow respiration at the
microbial cell level (Manzoni & Porporato 2009). This implies,
however, that a drastic waste of carbon would occur, wher-
ever nutrients are limiting (Manzoni et al. 2008). Such a
reduction in CUE with increasing N limitation is the prevail-
ing assumption in almost all models and conceptual papers up
to date (Schimel & Weintraub 2003; Manzoni et al. 2008;
Manzoni & Porporato 2009; Sinsabaugh et al. 2013).
Our results here provide an alternative and contrasting

explanation of this phenomenon. Decomposers in our model
overcome the stoichiometric imbalance between the resource
and their biomass through adjustments of the relative
turnover rates of C- and N-rich pools, driven by a microbial-
community response to resource stoichiometry. In fact, this
community-driven mechanism fixes community CUE at a rela-
tively high level, even when N concentration in the litter is
low, instead of leading to its drastic decrease.
We thus propose that stoichiometric models need to

account not only for substrate C : N ratios but also for the
C : N ratio of bioavailable DOM, which is a result of relative
differences in turnover rates of C- and N-rich pools and for
the community-driven flexibility to adjust these relative differ-
ences. If we assume, for example, that the average N unit is
reused r times more often per unit of time than the average C
unit, the critical litter C : N ratio could subsequently be calcu-
lated as:

TERC:N ¼ ððNUE � rÞ=CUEÞ � BC:N ð2Þ

For incorporating a community-driven feedback loop
between initial litter C : N ratio and N recycling, as our model
suggest, r would need to scale with initial litter C : N ratio.
This would effectively link TERC:N to litter C : N ratio, as has
been shown in the global litter decomposition data set (Manz-
oni et al. 2008), but without the need to severely reduce CUE,
and thus increase C waste, with increasing nutrient limitation.
Bioavailable DOM, which we show to be critical in regulat-

ing the microbial response, may only be a fraction of the
extractable DOM pool, rapidly consumed and thus difficult to
measure in real systems. Interestingly, C : N ratios of bulk lit-
ter and extractable DOM turned out to be clearly decoupled
during a 65-week-long litter decomposition experiment, sup-
porting in general our model results (Fig. S1). Further
research will be needed to identify suitable measurements of
bioavailable DOM to evaluate this mechanism in nature. Not-
withstanding this, our results clearly demonstrate that stoichi-
ometric limitation of microbial decomposition may be
different from what traditional mass balance equations pre-
dict. Although we implemented a mass balance-based over-
flow regulation at the cellular level in our model, the system
behaviour at the community-scale turned out to be fundamen-
tally different from the individual-scale (=physiological) regu-

lation. The identification of such community-driven
mechanisms is important for the accurate representation of
stoichiometric relationships in biogeochemical models, which
likely has a profound influence on the prediction of terrestrial
C sequestration rates.
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