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Abstract

In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the 
genetic cause remains unidentified. Since the lack of certain miRNAs in animal models 
has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes 
(MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A 
heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) 
was found in one patient. Our results suggest that mutations in the studied miRNAs are 
unlikely causes of cHH. However, the complex interplay between miRNAs and their target 
genes in these diseases requires further investigations.

Introduction

Congenital hypogonadotropic hypogonadism (cHH) is a 
rare genetic disease that prevents pubertal development 
and causes infertility due to deficient secretion or action of 
gonadotropin-releasing hormone (GnRH) (1). Congenital 
hypogonadotropic hypogonadism is called normosmic 
(ncHH) if patients have normal sense of smell, whereas 
Kallmann syndrome (KS) is a form of the same disease 
where patients have absent or deficient smell (2). In the 
case of normosmic cHH, abnormal GnRH function results 
from mutations affecting GnRH signaling, whereas in the 
case of KS, development of the olfactory system along 
with the development and/or migration of the GnRH 
neurons are disrupted (1, 3). These diseases have great 
phenotypic and genetic heterogeneity, as to date over 
30 genes underlying ncHH and KS have been identified 
(1). Several ncHH and KS disease genes are yet to be 
discovered, since currently known genes account for only 
half of all cases (1).

miRNAs are small (~22 nt long) non-coding RNAs 
that suppress gene expression by binding with 3′UTRs of 
their target mRNAs. Binding of a miRNA with its target 

mRNA induces the mRNA’s translational repression 
or decay (4). miRNAs from individual gene families 
typically target hundreds of mRNAs, and over 60% of 
human protein-coding genes are miRNA targets (5). The 
significance of miRNAs in the hypothalamus–pituitary–
gonadal system regulation has been shown in several 
animal models. Garaffo et  al. showed that miR-200 
(named miR-8 in miRBase) and miR-9 gene families are 
required for early GnRH neuron genesis and migration 
and that lack of these miRNAs lead to KS phenotypes 
in zebrafish (6, 7). In turn, Ahmed et al. demonstrated 
that homozygous knockout mice lacking miR7a-2, a 
miR-7 family member and precursor, recapitulated 
the phenotype of normosmic cHH (8). Therefore, we 
asked if some miRNA genes (or their closest human 
equivalents), which are known to regulate the 
hypothalamus–pituitary–gonadal system in animals, 
could be mutated in ncHH or KS patients without 
genetic diagnoses. Members of the miR-200 (miR-8) gene 
family, MIR141, MIR429 and MIR200A-C, were selected 
for screening based on previous evidence (6, 7) and  
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MIR7-3 based on literature (9) and bioinformatic 
analyses by using miRWalk 3.0 (10, 11) and BLAT (12) 
and BLASTN (13) tools in Ensembl (14).

Subjects and methods

We studied a set of 19 KS and 5 normosmic cHH patients 
without previously found mutations in known cHH-
causing genes (26, 27). Informed consent was obtained 
from all patients, and in the case of minor/children, 
a parent or guardian gave the consent. The study was 
approved by the Ethics Committee of the Hospital 
District of Helsinki and Uusimaa, and it was conducted in 
accordance with the Declaration of Helsinki.

The RNA-coding exons and exon-untranslated 
region boundaries of MIR141 (ENSG00000207708, 
ENST00000384975.1), MIR429 (ENSG00000198976, 
ENST00000362106.1), MIR200A (ENSG00000207607, 
ENST00000384875.3), MIR200B (ENSG00000207730, 
ENST00000384997.3) and MIR200C (ENSG00000207713, 
ENST00000384980.3) were amplified by means of PCR 
from the genomic DNA of the Kallmann patients and 
the equivalent regions of MIR7-3 (ENSG00000207630, 
ENST00000384898.1) from the genomic DNA of the 
ncHH patients. The PCR conditions and primers are 
available upon request. The PCR products were purified 
with ExoProStar treatment (GE Healthcare Life Sciences) 
and sequenced from both directions with the ABI 
BigDyeTerminator Cycle Sequencing Kit (v3.1) and ABI 
Prism 3730xl DNA Analyzer automated sequencer (Applied 
Biosystems). The DNA sequences were aligned and read 
with Sequencher 4.9 software (Gene Codes Corporation, 
AnnArbor, MI, USA). Allele frequency of the identified 
variant was validated from the Genome Aggregation 
Database (gnomAD) (http://gnomad.broadinstitute.org/) 
(28). gnomAD contains WGS and exome data of 141,456 
individuals including 12,562 Finnish samples.

The mouse gene Mir7-2 was aligned against the 
human reference genome (GRCh38) with the BLAT (12) 
and BLASTN (13) tools in Ensembl database (14). The 
BLAT search was run with ‘Genomic sequence’ and the 
BLASTN search with ‘Ensembl Non-coding RNA genes’ 
as DNA databases. In both alignment types, other 
settings were default and the mouse reference genome 
(CL57BL6) was applied as a control genome. BLAT found 
hits in two genes, MIR7-3 and MIR7-3HG, with score 46 
(probability 3.6e-05). BLASTN found hits in several genes, 
among which MIR3529 and MIR7-2 had the highest 
score (52, probability 5e-07) and MIR7-3 and MIR7-1 the  
second-highest score (48.1, probability 9e-06).  

miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/)  
search with default settings was applied to find the 
predicted target genes of hsa-miR-7-5p (7).

Results

To find out if mutations in miRNA genes, which are 
predicted to regulate the hypothalamus–pituitary–
gonadal system, could underlie KS/ncHH, our 19 KS 
patients were screened for mutations in MIR141, MIR429 
and MIR200A-C, and 5 ncHH patients for mutations in 
MIR7-3. We amplified and Sanger-sequenced the coding 
exons and exon–intron boundaries of the selected genes 
from the patient genomic DNA. A heterozygous variant, 
c.42C>T, rs202051309, with a frequency of 0.01996 in the 
Finnish population in gnomAD, was found in MIR200A 
in one KS patient. There were no mutations in other 
investigated miRNA genes.

Discussion

Mutations in miRNA genes may alter the target specificity 
and processing of miRNAs and cause disease (4, 15). For 
example, a mutation in the MIR96 gene has been shown 
to alter the miR-96 biogenesis and, consequently, cause 
autosomal dominant deafness in an Italian family (16). A 
SNP in MIR140 is known to alter the miR-140 precursor 
processing and be associated with familial isolated cleft 
palate (17), whereas a mutation in MIR184 underlies familial 
severe keratoconus combined with early-onset cataract (18). 
To the best our knowledge, however, miRNA genes have not 
been investigated in patients with cHH to date.

Members of the miR-200 (miR-8) family are expressed 
in the mouse and zebrafish olfactory tissues (19, 20) and 
are required for the olfactory progenitor cell differentiation 
in mice (20). Moreover, miR-200 miRNAs are expressed 
in the GnRH neurons and pituitary, and they play a role 
in reproduction and fertility in mice (21, 22). Lack of  
miR-200 members recapitulated KS phenotypes in zebrafish 
(6). As previous studies strongly indicate their role in the 
olfactory system and GnRH neuron development, genes 
of the mir-200 (miR-8) family, MIR141, MIR429, MIR200A, 
MIR200B and MIR200C, were chosen for screening in 
our KS patients. In the current study, we identified one 
variant (c.42C>T, rs202051309) in MIR200A in one of 
our KS patients. As its general population frequency was 
relatively high (0.01996), we concluded that it is unlikely 
to cause disease. However, our patient cohort was limited 
in size and we cannot fully exclude the possible effect of 
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this variant on target specificity or miRNA processing. 
Indeed, if one assumes that mutations in the mir-200 
family genes selected for the current study caused 10% of 
KS, we would have had an 86% chance to detect at least 
one such a mutation among our 19 KS patients.

Based on the results by Ahmed et  al. (8), literature 
(9) and our bioinformatic analyses, we chose MIR7-3 
for screening of our normosmic cHH patients. In brief, 
all human miR-7-encoding genes (MIR7-1, MIR7-2 and 
MIR7-3) produce primary miRNAs that are subsequently 
processed into pre-miRNAs and finally into the same 
mature miR-7 (4, 9). Most of the miR-7 expression in the 
human pituitary is presumably attributed to MIR7-3 that 
is located in an intron of the pituitary-specific gene PGSF1 
(pituitary gland specific factor 1, also known as MIR7-3HG, 
MIR7-3 host gene) (23, 24, 25). In addition, the predicted 
target genes of the mature human miR-7, hsa-miR-7-5p, 
include several of the murine miR-7 predicted target genes, 
such as Glg1, Ptgfrn, Sema4c and Chd3 (8) and currently 
known nHH/KS genes such as GNRHR, FGFR1, SEMA7A 
and PROK2 (see Subjects and methods; (1)). However, we 
found no mutations in MIR7-3, which implies it might 
rarely be mutated in ncHH, suggesting that the miRNA it 
encodes has no implications in the human cHH.

In conclusion, this study is the first on miRNAs in cHH. 
Based on our results, mutations in the examined miRNAs 
seem to be a rare cause of cHH. We acknowledge that our 
approach is limited, as we selected specific RNA genes with 
implicated significance in animal experiments. An unbiased 
human tissue RNA expression analysis might imply that 
the most central human and animal miRNAs differ in the 
hypothalamus–pituitary–gonadal axis. Thus, we cannot 
exclude the possibility that the examined, or other miRNAs, 
might contribute to the development and function of the 
hypothalamus–pituitary–gonadal axis in humans.
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