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Abstract: The study purpose was to train and validate a deep learning approach to detect microscale
streetscape features related to pedestrian physical activity. This work innovates by combining
computer vision techniques with Google Street View (GSV) images to overcome impediments to
conducting audits (e.g., time, safety, and expert labor cost). The EfficientNETB5 architecture was
used to build deep learning models for eight microscale features guided by the Microscale Audit of
Pedestrian Streetscapes Mini tool: sidewalks, sidewalk buffers, curb cuts, zebra and line crosswalks,
walk signals, bike symbols, and streetlights. We used a train–correct loop, whereby images were
trained on a training dataset, evaluated using a separate validation dataset, and trained further until
acceptable performance metrics were achieved. Further, we used trained models to audit participant
(N = 512) neighborhoods in the WalkIT Arizona trial. Correlations were explored between microscale
features and GIS-measured and participant-reported neighborhood macroscale walkability. Classifier
precision, recall, and overall accuracy were all over >84%. Total microscale was associated with
overall macroscale walkability (r = 0.30, p < 0.001). Positive associations were found between model-
detected and self-reported sidewalks (r = 0.41, p < 0.001) and sidewalk buffers (r = 0.26, p < 0.001).
The computer vision model results suggest an alternative to trained human raters, allowing for audits
of hundreds or thousands of neighborhoods for population surveillance or hypothesis testing.

Keywords: built environment; computer vision; deep learning; Google Street View; microscale;
walkability

1. Introduction

The health and wellbeing benefits of physical activity and its environmental and
economic co-benefits are well established [1]. Ecological models posit and evidence consis-
tently shows that approaches for promoting physical activity must address multiple levels
of influence, including built environments. Features of the built environment can influence
physical activity behaviors directly through accessibility, pedestrian safety, comfort, and
the affective experiences of walking and active travel [1–7]. In the context of behavioral
interventions, evidence suggests the built environment interacts with intervention com-
ponents to impact physical activity adoption and maintenance [3,8–11]. A supportive
built environment can facilitate walking and active travel [6,11], while an unsupportive
environment may be a barrier to physical activity engagement [6,11], warranting behavioral
intervention to overcome [8,9].

Features supportive of walking and active travel can be measured at the macroscale
using geographic information systems (GIS) or at the microscale (street-level) with in-person
streetscape audits, and either may be closer to measuring what exists than perceptions [12].
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Features measured on a macroscale, such as land-use mix, intersection density, park, transit,
or residential density, are generally difficult to modify but are easily assessed using publicly
available data sources. Microscale built environment features such as pedestrian amenities
that increase the safety and comfort of active travel can explain further variance in physical
activity, even after adjusting for macroscale walkability [4,13].

Microscale features are more cost-effectively modified than macroscale features but
are measured much less often. This observation is likely due to the limited feasibility of
conducting neighborhood streetscape audits. Traditional in-person microscale audits are
expensive, require extensive travel and audit time, and expose auditors to crime, traffic,
and weather safety concerns. As a result, relationships among microscale neighborhood
environments, physical activity, and the shared health, environmental, and economic co-
benefits of active living [1] are not broadly researched. Substantial population differences
may be linked to relatively inexpensive and easily modifiable street-level features, but
evidence to show inequities across neighborhoods is lacking.

Virtual microscale audits by human raters using online mapping tools such as Google
Street View (GSV) to scroll down and audit a streetscape are reliable alternatives to tradi-
tional in-person audits [14–22]. Virtual audits effectively eliminate travel, weather, and
safety challenges of standard in-person audits. However, virtual audits conducted by
human content experts remain time-intensive [23–25], are limited to small areas or short
routes [4,21], require extensive auditor training and retraining, and are susceptible to audi-
tor fatigue [26]. Thus, the scalability of virtual audits remains dependent on the amount of
available trained human labor. The challenge of scaling in-person or virtual audits to assess
hundreds or thousands of neighborhoods continues to be a primary obstacle to surveillance
(e.g., changes over time) or hypothesis testing.

Combining computer-enabled deep learning and computer vision techniques is an
emerging approach for increasing the scalability of collecting street-level environmental
data. Deep learning is a subset of artificial intelligence that uses algorithms (i.e., neural
networks) to learn to recognize and interpret patterns in data. The algorithms used in deep
learning are self-adaptive, meaning that the networks get smarter when given more training
data or training time. Computer vision is a broad term describing how computers see and
understand digital visual data. When deep learning is combined with computer vision,
neural network models can be trained to recognize built environment patterns in GSV
images for classification tasks [27] such as land-use (e.g., building classification [28], scene
classification (e.g., perceived streetscape safety [29]) and object detection (e.g., detecting
and classifying automobiles [30] or cataloging trees [31]).

Among classification tasks, image classification using neural networks has been the
most commonly used approach for remotely detecting specific features present in GSV
images. For example, Hara and colleagues combined crowdsourcing with deep learning
and computer vision to detect curb ramps in GSV imagery to assess sidewalk accessibility
for disabled individuals [32]. Since then, others have worked to automate the detection
of curb cuts [33], crosswalks [34], and other built environment objects visible in GSV im-
ages [35–37]. For example, Koo et al. selected eight of 150 categories available from the
existing Pyramid Scene Parsing Network (PSPN) model to represent mesoscale streetscapes
including building, house, sidewalk, tree, road, grass, car, and plant [38]. They calculated
three indices from these categories: building-to-street ratio, greenness, and sidewalk-to-
street proportion, and they found that the building-to-street ratio and greenness were
associated with reported walking trips. These advances have led to the promise of devel-
oping an automated or semi-automated approach for conducting pedestrian streetscape
audits. However, the development of automated microscale tools remains an open problem.
Existing research relies heavily on deep learning models developed for broad classifications,
which were not developed or validated for features related to physical activity. Further-
more, custom trained models for physical activity-related behaviors focused on a small
number of microscale features (e.g., curb ramps), trained and/or validated models in one
geographic region (e.g., Atlanta), did not examine how model-detected features align with
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perceptions of features (or feature indices) by individuals living in evaluated neighbor-
hoods, or suffered some combinations of these issues. Developing a reliable and validated
automated tool for detecting microscale features that reduces reliance on human labor is
crucial to addressing current issues of scalability. Increasing scalability will enable greater
numbers of studies investigating the influence of microscale built environment features, as
well as including larger and more diverse samples of participants and neighborhoods to
allow generalizability.

The current study explores whether eight microscale features selected mainly from an
existing validated tool, the Microscale Audit of Pedestrian Streetscapes (MAPS) Mini [13],
could be reliably trained and validated using computer vision and deep learning techniques
from a sample of GSV images across five cities. We further inferred the presence or
absence of these microscale features in GSV images within buffers around 512 homes
for participants enrolled in the baseline phase of the WalkIT Arizona physical activity
trial. Additionally, we examined the correlations between our automated micro-scale audit
against macroscale walkability and participant perceptions of these neighborhood features
and related subscales.

This paper is structured as follows: in Section 2 (Materials and Methods), we introduce
the study design and participant recruitment for the walkability analysis, outline how
perceived walkability is measured, and detail how macroscale walkability is determined
using GIS. For the microscale walkability assessment using GSV images, we present how
microscale features are derived from the images using training and validation datasets and
outline the classifier training and evaluation process. We then explain how neighborhood
microscale features are quantified and analyzed. In Section 3 (Results), we present the
image classifier performance and the model inference results. Lastly, we discuss the results
in Section 4 and offer conclusions.

2. Materials and Methods

Study Design and Participant Recruitment. The current study used data collected from
participants enrolled in the WalkIT Arizona trial as described by Adams et al. [10]. Briefly,
participant enrollment was balanced across four neighborhood types in Maricopa County,
AZ, according to census block group socioeconomic status (SES) and GIS-measured macro-
level walkability. For participant sampling, we computed block group SES and walkability
using available census median income data and public regional datasets for net residential
density, land use, intersection density, and public transit density. Following Frank et al. [6],
block groups in the first through fifth deciles of SES were categorized as “lower SES” and
those in the seventh through 10th deciles were categorized as “higher SES”. The sixth
decile was omitted to minimize mis-categorization for participants on the boundaries.
Similarly, block groups were ranked and categorized into “lower walkable” (first through
fourth deciles) and “higher walkable” (seventh through 10th deciles) with the fifth and
sixth walkability deciles excluded to minimize the likelihood of mis-categorization. Finally,
block groups were classified according to their combined walkability and SES yielding
four neighborhood strata: “higher SES/higher walkable”, “lower SES/higher walkable”,
“higher SES/lower walkable”, and “lower SES/lower walkable”. Study marketing materials
targeted eligible block groups from these strata.

Enrolled participants (N = 512) met the following inclusion criteria: (1) lived in one
of the four neighborhood strata in Maricopa County, (2) 18–60 years of age, (3) generally
healthy, and (4) insufficiently active. The number of participants for each neighborhood type
ranged from 108 in the “lower walkable/lower SES” to 136 in the “higher walkable/higher
income” and “lower walkable/higher income” neighborhoods. The mean age was 45.5
(SD = 9.1) years, with the majority of the sample reporting being female (64.3%), white
(84%), non-Hispanic or Latino (81.2%), and married or living with a partner (67.5%). The
sample reported a median household income of 60,000–79,999 USD, median educational
attainment of college graduate, a median distance to work of 10.1 miles (16,316 m), and a
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median time at current residence of 52 months (see Adams et al. for full inclusion/exclusion
criteria and sample characteristics [10]).

Perceived Walkability Attributes. Participants evaluated their perceived neighborhood at-
tributes using the Neighborhood Environment Walkability Scale (NEWS) [39], completed at
the baseline appointment. Seven NEWS subscales were computed using scoring guidelines
published at https://drjimsallis.org/Documents/Measures_documents/NEWS_scoring.
pdf (accessed on 14 March 2015). These included residential density, proximity to nonresi-
dential land uses, street connectivity, presence of walking and cycling facilities, aesthetics,
traffic safety, and crime safety. Higher scores on each of the subscales and index score
indicate higher perceived walkability. The NEWS subscales have demonstrated good to ex-
cellent test–retest reliability and the ability to discriminate between high and low walkable
neighborhoods [40,41].

GIS-Measured Macroscale Walkability. In addition to block group walkability described
above for recruitment and enrollment purposes, we also calculated individual-level walka-
bility components and the overall index around enrolled participant homes. Participants’
home residential addresses were geocoded using ArcGIS 10.5 (ESRI, Redlands, CA, USA)
with US Census Tigerline address feature. Geocoded addresses were used to create a 500 m
“individual-level” buffer throughout the street network and to geoprocess spatial datasets
and create “individual-level” GIS variables for the following components: net residential
density (i.e., number of housing units divided by residential parcel land area), land-use mix
(i.e., diversity of several land uses with normalized scores ranging from 0 for single use to
1 indicating an even distribution across residential, retail, recreational, office, civic, food,
and entertainment parcel land uses), intersection density (i.e., number of three-leg or more
intersections), and public transit access. A composite walkability index was calculated with
the following formula: walkability index = [(z-score for net residential density) + (z-score
for land-use mix) + (z-score for intersection density) + (z-score for transit access)]. Figure 1
provides a visual example of these variables.

Figure 1. Example of individual-level buffers and macroscale walkability components and index
values for a single participant’s neighborhood. Note: In the example in Figure 1, land-use mix shows
residential, recreational, and civic uses. Other land uses such as office, food, entertainment, and retail
were possible but not present in this example.

Microscale Features and Training and Validation Datasets. To curate a high-quality dataset
of labeled features for the microscale features of interest for training and validation, we

https://drjimsallis.org/Documents/Measures_documents/NEWS_scoring.pdf
https://drjimsallis.org/Documents/Measures_documents/NEWS_scoring.pdf
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relied on existing GSV images of street intersections from Phoenix, AZ (133,235 images),
Washington, DC (20,784 images), San Diego, CA (8000 images), Seattle, WA (8000 images),
and Baltimore, MD (8578 images). In addition, we relied on non-intersection images in
Phoenix (1,331,994 images). The images were retrieved between 2018 and 2019 for urban
climate studies [42–44]. Because images did not necessarily contain a feature of interest,
we relied on a larger set of images than used for any single feature. The advantage of
dividing the images into these intersection and non-intersection categories was to allow us
to use only images that were necessary for a specific image classifier. For example, to train
a zebra crosswalk classifier, we only needed intersection images, and, for sidewalks and
sidewalk buffers, we required both intersection and non-intersection images. The following
classes were used to create their respective image classifiers: (1) sidewalk (2) sidewalk
buffer (3) curb cut (4) zebra crosswalk (5) line crosswalk (6) walk signal (7) bike symbol,
and (8) streetlight.

Creating Image Classifiers. To study associations between model-detected microscale
street features and GIS-measured and perceived neighborhood walkability, we wanted the
system to determine the presence or absence of each of the eight street features at every
audit point within participants’ neighborhood network buffers. To accomplish this, we
created a separate image classifier for each street feature using the EfficientNetB5 neural
architecture [45]. For each input image, the classifier output the probability of street feature
presence (i.e., crosswalk, curb cut, etc.) using the visual features it identified in the image.
The classifier training and evaluation process consisted of the steps shown in Figure 2 and
further described below.
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Creating Initial Maricopa Datasets. The first step in creating our classifiers was to create
a set of images labeled with the appropriate classification (i.e., presence or absence of street
feature) to train the classifier and a separate set of labeled images to validate classifier
performance after each step of the training process. We used our knowledge of Phoenix
neighborhoods to select initial GSV images from existing image datasets to be used in
the training and validation datasets. To label the datasets, we used the open annotation
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tool, wkentaro/labelme, available at: https://zenodo.org/record/5711226#.YhzeS-jMJaQ
(accessed on 10 April 2018) [46].

Training and Validation Loop: Using the initial training and validation datasets in place
for each street feature, we trained a classifier to recognize the presence or absence of a
street feature in an image. Each step in the classifier training process was one pass through
the entire training dataset. After each step, the trained classifier was saved for potential
future use. The training continued until the classifier started overfitting or the performance
metrics did not improve after each step. To prevent overfitting, we tracked training and
validation error values. We determined that the classifier had overfit when the training
error continued to decrease but the validation error began to increase. When training was
complete, we selected the classifier with the best performance metrics from all the saved
classifiers while making sure that the classifier had not overfit [47].

For image sets with unsatisfactory performance metrics of the trained classifier, we
visually examined the validation dataset to understand false positive and false negative
results. We then found additional images from the Phoenix dataset that were similar to the
ones where the classifier failed, labeled them, and added them to the training dataset. With
the new training dataset, we restarted the training process.

Once the trained classifier performed well, we ran inference on additional Phoenix
images to understand how the classifier was performing on those additional images. If
the classifier identified the street features in the new images well, we considered that
classifier to be trained. Otherwise, we tried to understand the images where the classifier
failed, labeled the images, added those and other similar labeled images to the training and
validation datasets, and restarted the training process.

We further improved the classifier by adding images from other cities (i.e., San Diego,
Washington DC, Seattle, and Baltimore) to the training datasets.

Considerations in Training the Classifiers: Single vs. Multiple Classifiers. We selected an
approach using a separate classifier for each feature instead of a single classifier that would
simultaneously detect all features because it allowed us to iterate and improve on each
feature classifier effectively and efficiently. Additionally, a single classifier approach can be
problematic due to the discrepancy in prevalence across features. Training a single classifier
to improve on a specific feature that is less prevalent in images, such as a zebra crosswalk,
can lead to overfitting [47] on detecting a feature that is highly prevalent in the dataset such
as a curb cut. Thus, a single-model approach may require settling on a poorer-performing
model overall to balance these issues across features.

Selecting the Classifier Architecture. Considering the results of how different neural net-
work architectures performed on the ImageNet challenge [48], as well as the availability of
pretrained weights, we decided to base our classifier on the EfficientNetB5 [45] architecture.

Selecting a Deep Learning Framework. Frameworks such as TensorFlow, Keras, PyTorch,
Caffe, and Fast.ai are popular in the deep learning field to create neural networks that solve
a variety of computer vision problems. We evaluated the different frameworks for the
purpose of creating image classifiers and selected Fast.ai [49] due to its ease of use, inbuilt
data augmentation capabilities, and the simplicity of accomplishing transfer learning.

Transfer Learning. Training a classifier as deep as EfficientNetB5 is a time-consuming
process. To reduce classifier training time and quickly iterate to improve model perfor-
mance, we used transfer learning. To achieve transfer learning, we used weights from a
classifier pretrained on the ImageNet dataset as the initial weights for training our clas-
sifiers [50]. The pretrained classifiers could identify patterns for ~1000 different classes,
which facilitated training our image classifiers.

Data Augmentation Techniques. When selecting the data augmentation techniques, an
important consideration was ensuring that augmenting did not result in losing information
that was critical for the classifier to infer a feature. For example, if a sidewalk was only
a small section of the image at one of the edges, zoom, crop, warp, cutout, and rotation
augmentations could completely remove the sidewalk from the image, resulting in the

https://zenodo.org/record/5711226#.YhzeS-jMJaQ
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classifier learning incomplete information. Thus, we applied only three data augmentation
techniques: (1) horizontal flip, (2) brightness, and (3) contrast adjustments.

Quantifying Neighborhood Microscale Features. The trained models were used to infer
(i.e., detect) eight street features in 765,869 previously unexamined photos available in
participant buffers in Phoenix, AZ. The probability threshold to classify “presence” of a
detected feature in images was set to ≥0.50 and used for each cardinal direction associated
with every coordinate (i.e., if the model probability of specific feature presence in an image
was ≥0.50, we classified the feature as present). To capture the presence of sidewalks on a
block regardless of the side of the street, we averaged the four model-detected probabilities
from the four directional images. This approach was used for sidewalks to ensure we did
not miss sidewalks only on one side of the block or visible in only one of the four images.
For sidewalk buffers, we estimated the presence of sidewalk buffers for coordinates with a
model-detected sidewalk only. To summarize each participant’s neighborhood, we summed
the count of coordinates with positive instances of each feature within the neighborhood
buffer and divided by the count of coordinates within the buffer to obtain an average
count of neighborhood coordinates with positive instances of each feature. Because the
denominator (number of coordinates) could vary by intersection vs. non-intersection
feature, the averages of each feature were z-scored to create a ranking relative to the sample
mean. A “total microscale feature score” for each participant’s home neighborhood was
created by summing individual z-scores for each of the microscale features detected within
the neighborhood buffer.

Analytic Plan. The performance of the image classifier was assessed using the valida-
tion dataset for Phoenix, AZ. As the task was classifying images by street feature presence or
absence, we calculated precision, recall, negative predictive value, specificity, and accuracy
for each feature. Precision was the probability that, following a positive model-detected
observation, the image truly had the feature present (i.e., true positives/true positives +
false positives). Recall was the probability that a model-detected observation was truly
present in an image (i.e., true positives/true positives + false negatives). Negative pre-
dictive value was the probability that, following a negative model-detected observation,
the image truly did not have a feature present (i.e., true negatives/true negatives + false
negatives). Specificity was the proportion of images classified as not having a feature
among all images that truly did not have the feature present (i.e., true negatives/true
negatives + false positives). Accuracy was the probability of a correct observation (i.e., true
positives + true negatives/all observations).

Additionally, we examined the extent to which model-detected neighborhood mi-
croscale features corresponded with GIS-measured macro-level walkability and self-reported
neighborhood walkability attributes (i.e., convergent validity) by conducting Spearman
rank correlations between (1) model-detected microscale neighborhood features (z-scored
individual features and total micro-scale) and GIS-measured neighborhood walkability (z-
scored individual components and overall walkability), and (2) model-detected microscale
neighborhood features (z-scored individual and total microscale) and participants’ NEWS
items (e.g., sidewalks, curb cuts) and subscales (e.g., walking and cycling facilities).

3. Results
3.1. Image Classifier Performance

Eight image classifiers were trained to identify their respective street features (i.e.,
sidewalk, sidewalk buffer, curb cut, zebra crosswalk, line crosswalk, walk signal, bike
symbol, and streetlight). Table 1 provides the number of images used for training and
validation for each of the eight classifiers.
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Table 1. Summary of the number of images used for training and validation datasets.

Street
Feature

Image Counts

Present Absent Total

All
Training

All
Validation

Phoenix
Only

Training

Phoenix
Only

Validation

All
Training

All
Validation

Phoenix
Only

Training

Phoenix
Only

Validation
Training Validation

Sidewalk 8868 2851 5177 1745 3702 1254 2298 429 12570 4105

Sidewalk
buffer 3530 629 1519 347 6066 1773 4461 1567 9596 2402

Curb cuts 5947 599 2406 268 6059 767 2459 599 12006 1366

Zebra
crosswalk 1687 2456 412 100 5604 6121 2971 879 7291 8577

Line
crosswalk 1762 1053 1693 758 4057 2462 3798 2257 5819 3515

Walk
Signal 3126 509 1951 216 4722 1221 2747 1014 7848 1730

Bike
Symbol 1127 152 853 132 9306 2138 6908 2078 10433 2290

Streetlight 1380 288 808 170 1213 273 761 171 2593 561

The performance metrics for each of the image classifiers using the Phoenix, AZ
validation dataset are displayed in Table 2. Generally, accuracy was high and ranged from
99.59% for zebra crosswalks to 90.03% for streetlights. The precision values (when the
model indicated the presence of a feature, how likely was the model to be correct compared
to human raters) ranged from 100% for zebra crosswalks to 86.73% for sidewalk buffers.
Negative predive values (i.e., when the model indicated the absence of a feature, how
likely was the model to be correct compared to human raters) ranged from 99.66% for bike
symbols to 89.93% for sidewalks. See Appendix A for a table of validation performance
using pooled data from all five cities.

Table 2. Validation performance of image classifiers for Phoenix, AZ.

Street Feature
Performance

Precision Recall Negative
Predictive Value Specificity Accuracy

Sidewalk 97.93% 97.48% 89.93% 91.61% 96.32%

Sidewalk buffer 86.73% 84.73% 96.63% 97.13% 94.88%

Curb cut 95.38% 92.54% 96.71% 98.00% 96.31%

Zebra crosswalk 100% 96.00% 99.55% 100% 99.59%

Line crosswalk 95.97% 94.20% 98.06% 98.67% 97.55%

Walk signals 96.77% 97.22% 99.41% 99.31% 98.94%

Bike symbols 93.28% 94.70% 99.66% 99.57% 99.28%

Streetlight 88.64% 91.76% 91.52% 88.30% 90.03%

3.2. Model Inference Results

The prevalence of model-detected features across the 512 participant neighborhoods
in Phoenix, AZ was highest for sidewalks (89.8%), followed by streetlights (31.5%), curb
cuts (26.2%), sidewalk buffers (15.9%), line crosswalks (4.9%), walk signals (3.7%), bike
symbols (0.5%), and zebra crosswalks (0.3%).

3.2.1. Associations between Model-Detected Microscale Feature and GIS-Measured
Macro-Level Walkability

Spearman correlations between model-detected microscale features and GIS-measured
walkability attributes are presented in Table 3. The macroscale walkability index correlated
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with nine microscale features, while the four individual macroscale components correlated
with seven microscale features. A general pattern of significant weak-to-moderate positive
associations existed between GIS-measured macroscale walkability and microscale features
(r = 0.11 to 0.52, p < 0.05). There were two exceptions to this pattern: (1) model-detected
curb cuts had weak but significant negative relationships with intersection density, transit
density, and overall macro-level walkability, and (2) GIS-measured intersection density had
weak but significant negative associations with model-detected sidewalk buffers, curb cuts,
line crosswalks, walk signals, and the total microscale feature score. Overall, the magnitude
of associations with model-detected microscale features was greatest for transit density,
land-use mix diversity, and overall GIS-measured walkability. Model-detected microscale
features generally showing the greatest magnitude of associations with GIS-measured
walkability were crosswalks, walk signals, bike symbols, streetlights, and total microscale
feature scores (r = 0.19–0.52, p < 0.05).

3.2.2. Associations between Model-Detected Microscale Feature and Perceived
Neighborhood Walkability

Spearman correlations between model-detected microscale features and NEWS sub-
scales walkability attributes are presented in Table 3. Subscales for perceived residential
density, land-use mix diversity, presence of walking and cycling facilities, and perceived
aesthetics were positively associated with one or more model-detected microscale features
(r = 0.11–0.31). Significant negative associations were found between model-detected curb
cuts and perceived residential density (r = −0.19, p = 0.000) and between model-detected
sidewalks and perceived aesthetics (r = −0.24, p = 0.000). Perceived street connectivity,
pedestrian safety, and crime safety were not related to any model-detected microscale
feature or to the total microscale feature score. Among model-detected microscale features
with corresponding individual NEWS items, there were significant positive associations
between model-detected and perceived sidewalks (r = 0.41, p = 0.000), model-detected
sidewalk buffers and perceived grass/dirt sidewalk buffers (r = 0.26, p = 0.000), and
model-detected and perceived crosswalks and walk signals (r = 0.15, p < 0.01).
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Table 3. Model-detected microscale feature correlations with GIS-measured macro-level walkability and perceived NEWS scales.

Model-
Detected

Microscale
Feature

GIS-Measured Macroscale Neighborhood
Walkability Perceived Neighborhood Walkability

Residential
Density

Land-Use
Mix

Diversity

Intersection
Density

Transit
Density

Overall
Walkability

Index

Residential
Density

Land-Use
Mix

Diversity

Street
Connectivity

Walking and
Cycling

Facilities
Aesthetics Pedestrian

Safety
Crime
Safety

Sidewalks 0.12 ** 0.05 0.18 ** −0.06 0.02 −0.06 −0.02 −0.03 0.11 * −0.24 *** 0.01 −0.02

Sidewalk Buffers 0.18 *** 0.30 *** −0.14 ** 0.01 0.17 *** 0.07 † −0.01 0.05 0.17 *** 0.19 ** −0.08 † 0.01

Curb Cuts 0.04 0.16 * −0.16 *** −0.20 *** −0.11 * −0.19 *** −0.06 0.06 0.17 *** −0.03 0.08 † 0.04

Zebra crosswalks 0.16 *** −0.07 0.04 0.37 *** 0.02 0.15 ** 0.04 −0.01 −0.04 −0.06 −0.04 −0.07

Line crosswalks 0.06 0.42 *** −0.14 ** 0.13 ** 0.39 *** 0.28 *** 0.24 *** 0.01 0.02 0.03 −0.01 −0.02

All crosswalks 0.07 † 0.39 *** −0.12 ** 0.38 ** 0.38 *** 0.30 *** 0.23 *** 0.00 0.01 0.01 −0.01 −0.03

Walk Signals 0.09 * 0.37 *** −0.10 * 0.52 *** 0.46 *** 0.31 *** 0.23 ** 0.02 0.00 0.07 −0.07 † −0.07

Bike Symbols 0.17 ** 0.22 *** 0.06 0.20 *** 0.28 *** 0.25 *** 0.15 ** −0.01 0.02 −0.03 −0.03 −0.05

Streetlights 0.23 *** 0.38 *** 0.00 0.12 ** 0.35 *** 0.17 *** 0.07 −0.00 0.14 ** −0.03 −0.06 −0.07

Total Microscale 0.19 *** 0.38 *** −0.12 * 0.11 * 0.30 *** 0.13 ** 0.07 † 0.02 0.21 *** 0.04 −0.02 −0.02

Notes: Spearman rank correlation coefficients. † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001. Model-detected features were assessed by z-scoring the average count of positive feature
instances for coordinates within a 500 m street network buffer around participants’ homes. Perceived neighborhood features were assessed by the Neighborhood Environment
Walkability Scale (NEWS). All crosswalks = sum of zebra and line crosswalks. Total microscale score = sum of z-score averages for bike symbols, all crosswalks, curb cuts, walk signals,
sidewalks, sidewalk buffers, and streetlights within each participant’s 500 m neighborhood buffer.
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4. Discussion

This paper demonstrates that the use of computer vision to detect intersection and
street segment features that are conceptually related to pedestrian physical activity (i.e.,
zebra and line crosswalks, curb ramps, walk signals, sidewalks, sidewalk buffers, bike
symbols, and streetlights) is feasible with high correspondence to human raters. Indi-
vidual microscale features and a summary index of microscale features correlated with
both GIS-measured macroscale walkability and with human participants’ reports of their
neighborhood environment. These expected correlations offer a degree of validly to the
computer vision models of microscale features. The development of machine learning
models for detecting microscale features opens the possibility of conducting research across
broad regions and new research questions.

Computer model-detected microscale features correlated with both the individual
components of macroscale walkability and the macroscale walkability index around par-
ticipant neighborhoods in Phoenix. These correlations were expected, as higher levels
of macroscale walkability are often complemented by improvements to more affordable
microscale improvements (e.g., curb cuts, sidewalks) that further enhance the streetscape.
Previous studies have shown that individual microscale features and macroscale walkabil-
ity indices are weakly to moderately correlated, with both contributing unique measures
of the built environment for walking [4]. While most component correlations between
macro- and microscale features were positive, the macroscale component of intersection
density was negatively correlated with all microscale features except sidewalks. Higher
intersection densities are typically observed in denser urban settings with shorter, more
connected street blocks. One could expect urban settings with shorter blocks to have a
greater prevalence of sidewalks and related safety features such as crosswalks and curb cuts;
however, the WalkIT AZ participants’ perceptions of street connectivity and pedestrian
safety surprisingly did not correlate with any model-detected features.

Model-detected microscale features correlated with four perceived subscales of the
built environment, specifically residential density, land-use mix, walking and cycling facili-
ties, and aesthetics. WalkIT participants evaluated their neighborhoods using the previously
validated NEWS, which has been validated against GIS-measured macroscale features and
used in dozens of studies as a predictor of pedestrian walking for transportation with
weak to moderate correlations (i.e., r < 0.40) [40,41]. The NEWS does not offer an index to
summarize its seven subscales, but our index of model-detected microscale features did
correlate with perceived residential density and walking and cycling facilities subscales
(r = 0.13 and 0.21, respectively). The strongest microscale relationships occurred for the resi-
dential density subscale, which had eight significant correlations, with model-detected walk
signals and combined crosswalks (zebra and line) correlating the strongest (r = 0.30–0.31).
This suggests that higher levels of model-detected safety features for pedestrians correlated
with higher levels of independent perceptions of residential density, which aligns with
expectations that these features would be more prevalent in areas with more people. The
present results were consistent with previous studies showing weak to modest agreement
between objective and subjective assessments of neighborhood walkability overall, with
lower concordance among those with less physical activity and higher BMI [12,51]. Because
the current study included only insufficiently active individuals with a median BMI of
33.0, results may not generalize to other populations. However, considering previous
research [41], we would expect higher correspondence between model-detected features
and perceived neighborhood walkability in a more physically active sample.

Methodological Considerations. Two major strengths should be noted. First, in previous
studies, human raters audited only parts of participant neighborhoods—usually limited
to a quarter mile route or sample of blocks in a neighborhood—by in person or virtual
observation. The current computer vision approach was used to audit all blocks and
crossings for the entire neighborhood for all participants, limited only by the number of
GSV photos available and the timeframe of the study. Second, WalkIT participants were
purposefully recruited in similar numbers from neighborhoods high and low in walkability
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and high and low in neighborhood socioeconomic status. Therefore, our analyses involving
microscale, macroscale, and participant perceptions reflect the full spectrum of walkability
and income environments present in the Phoenix, AZ region.

However, our models were limited to seven of the 15 features assessed by the MAPS
Mini roadmap. Future work will focus on developing models for detecting additional
microscale features supportive of physical activity (e.g., benches important for older adults).
Several MAPS Mini items, such as transit stops and public parks, are now commonly
included in publicly available datasets, making it possible to conduct audits using GIS
technology. Other items, such as building and sidewalk disrepair or graffiti are difficult to
observe from the perspective of omnidirectional cameras, require subjective or qualitative
judgement, or are more transient in nature. Alternative artificial intelligence methodologies
have been suggested to overcome the scalability challenges associated with assessing these
items. For example, Athens et al. [52] applied a natural language processing approach
to detect sidewalk maintenance, building safety, and other urban blight indicators from
311 data, while Ping et al. [53] leveraged city garbage trucks equipped with video cameras
combined with edge computing technology to develop a deep learning model for detecting
and classifying street litter. A combination of approaches will likely be needed to provide a
comprehensive characterization of microscale neighborhood streetscapes on a large scale.

Several considerations also should be noted in the development of computer vision
models. First, we explored existing annotated image datasets such as Mapillary [54] and
CAMVID [55] and found that labeling did not capture the features of interest, as well
as led to incorrect classifications and bucketing of categories, which precluded utilizing
existing datasets and developing good computer vision models of the features of interest.
Second, while a standardized number of images for each feature for training and validation
datasets would have been conceptually clearer to report, we found that additional training
or validation images were needed for certain features (e.g., bike symbols, zebra crosswalks)
because of the low prevalence of such features in the Phoenix, AZ region. We also collected
a greater number of training samples to ensure that we captured inherent variability in
feature design and photos of features that exist in the real world in the training dataset.
For example, the variability in the design of crosswalks varies even by small geographic
regions to include different patterns and colors (e.g., crosswalk with LGBT rainbow flag
colors). We also considered image artefacts (e.g., shadows that appear similar to zebra
crossings, distance from GSV camera to streetlight) that resulted in small or fuzzy training
samples. In addition, some photo elements confused the models (e.g., actual bike vs.
painted bike symbol) and necessitated additional training samples. Although results
presented in the current analyses used a Phoenix, AZ validation dataset, we expect that the
generalizability of our trained classifiers was enhanced with the inclusion of images from
four additional geographically diverse cities (i.e., Seattle, San Diego, Washington, D.C., and
Baltimore) in the classifier training (see Appendix A Table A1). To scale up results to cities
around the globe, images from other countries would have to be included in the training
dataset, because street features such as sidewalks and crossings do not follow international
standards.

5. Conclusions

The current results demonstrate that computer vision models can reliably conduct
neighborhood audits of pedestrian streetscape features. Our model results correlate with
both objective and self-reported macroscale neighborhood walkability. Future research
will examine the relationship between model-detected microscale features and physical
activity and chronic disease outcomes. The computer vision approach to auditing neigh-
borhoods promises to accelerate the pace of microscale research and opens new lines of
microscale research for urban planning and public health. Results suggest that automated
virtual streetscape audits may provide a scalable alternative to human audits, enabling
advancements in the field currently constrained by time and cost. Reducing reliance on
trained auditors will enable scaling up audits to assess hundreds or thousands of neighbor-
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hoods or even entire cities for surveillance, hypothesis testing, identifying environmental
disparities, or change detection research related to pedestrian streetscapes. For example,
given sufficient resources, such models could be applied at scale to map all sidewalks
in the US, evaluate whether motivational physical activity interventions perform better
in neighborhoods with more vs. fewer sidewalks, determine whether the prevalence of
sidewalks differs by neighborhoods that vary by race/ethnicity or income, or even evaluate
change in sidewalks before and after a new development or passage of a complete street
policy or transportation infrastructure tax. This work also has potentially important impli-
cations for urban municipality decision-makers. While previous work has largely focused
on macroscale walkability due to ease of measurement, it is often not feasible to change
these aspects of the built environment due to complexity and cost. However, microscale
features can be more easily and cost-effectively modified than macroscale elements. Thus,
large-scale microscale audits can enable municipalities to make well-informed decisions
about streetscape enhancements that equitably promote physical activity within budgetary
constraints.
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Appendix A

Table A1. Validation performance of image classifiers in pooled dataset including Phoenix AZ, San
Diego CA, Washington D.C., Seattle WA, and Baltimore MD.

Street Feature
Performance

Precision Recall Negative
Predictive Value Specificity Accuracy

Sidewalk 97.25% 96.81% 92.82% 93.78% 95.88%

Sidewalk buffer 87.10% 85.85% 95.01% 95.49% 92.96%
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Table A1. Cont.

Street Feature
Performance

Precision Recall Negative
Predictive Value Specificity Accuracy

Curb cut 83.21% 65.86% 52.32% 73.81% 68.54%

Zebra crosswalk 97.33% 84.97% 93.61% 98.95% 94.62%

Line crosswalk 89.20% 75.59% 71.20% 86.83% 80.20%

Walk signals 86.00% 73.38% 68.80% 83.09% 77.40%

Bike symbols 95.00% 95.00% 98.33% 98.33% 97.50%

Streetlight 84.30% 86.44% 83.84% 81.37% 84.09%
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