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A B S T R A C T   

Antimicrobial resistance has become one of the main public health issues in modern society. Ultra-
sonic antimicrobial treatment (UAT) is expected to solve the problem of antimicrobial resistance since ultrasonic 
treatment does not cause drug resistance during inactivation. However, the ultrasonic application is hindered 
due to the high energy cost. To cast more lights on the ultrasound in tandem with catalysts as a superior strategy 
for bacterial inactivation, the present review focuses on the UAT with the assistant of continuous development of 
organic sonosensitizer and inorganic sonocatalyst. With the application of these nanomaterials, the ultrasonic 
parameters changed from low-frequency and high-power ultrasound to high-frequency and low-power ultra-
sound. The review also presents the composition of sonosensitizers/sonocatalysts including organic and inor-
ganic nanoparticles and discusses the ultrasonic activation mechanisms triggered by these catalysts. Based on the 
synergistic effect of ultrasound and catalysts, we discuss the importance of extracellular oxidation and intra-
cellular oxidation in the process of bacterial inactivation. Overall, UAT combined with catalysts appears to be an 
effective treatment strategy that can be successfully applied in the field of medicine, environmental treatment, 
and food industry.   

1. Introduction 

Bacterial resistance occurs when bacterial strains survive from bac-
terial killing agents through evolution, which becomes one of the major 
public health problems in modern society [1]. In recent decades, with 
the development of novel antibiotics in the medical market, more 
resistant bacterial species appear which may bring the antibacterial 
therapy back to the pre-antibiotic era [2]. Drug-resistant infections 
(DRIs) are estimated to cause 50,000 deaths each year in Europe and the 
United States [3]. By 2050, DRIs may cause 10 million deaths worldwide 
every year [4]. Besides, it cannot be ignored that resistant bacteria also 
appear frequently in the process of environmental treatment [5]. In this 
regard, actions should be taken to avoid this increasingly serious global 
healthcare crisis from bacterial resistance. 

Unlike chemical or drug treatment on bacterial cells, physical 
treatment such as ultrasound and ultraviolet (UV) does not produce drug 
resistance, since these physical treatments do not rely on chemical re-
agents. However, UV inactivation is easily influenced by several factors, 
such as water quality, light scattering and absorption, cell shading, and 

organic fouling in UV lamps [6]. On the other hand, ultrasonic inacti-
vation could conquer the above-mentioned limitations, due to its strong 
penetrating ability. Therefore, ultrasonic inactivation itself, or com-
bined with UV irradiation, could be helpful in the fight against bacterial 
resistance [7]. 

Both physical and chemical effects from ultrasonic cavitation count 
for bacterial inactivation. During ultrasonic irradiation, collapsed 
microbubbles in water generate extremely high local temperatures and 
pressures in the critical region of ultrasound [8]. Moreover, mechanical 
effects, such as shock waves, shear forces, and micro-jets, lead to me-
chanical destruction and lysis of bacterial cell membranes [9-11]. 
However, the energy consumption by powerful ultrasound is highly 
concerned which limits the further application of ultrasonic inactivation 
of bacterial cells in water. 

With the increase of ultrasonic frequency, the mechanical effect will 
gradually decrease and the chemical effect will gradually increase 
[12,13]. The collapse of the microbubbles produces H2O2 and reactive 
oxygen species (ROS), including hydroxyl radicals (•OH), hydroperoxyl 
radicals (•HO2), and O2, promoting the oxidation reaction [14-16]. •OH, 
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•HO2, or •O are generated by the following reactions during US irradi-
ation in water (reactions (1–4)) [16,17]. These oxidation reactions can 
damage biocompounds such as DNA, RNA, proteins, and lipids mem-
branes [18,19], destroy the function and structure of bacteria, and 
finally induce cell death.  

H2O + Ultrasonication→•OH+•H                                                       (1)  

•H + O2→•HO2                                                                               (2)  

•OH + •OH → H2O+•O                                                                   (3)  

•O + •O → O2                                                                                (4) 

ROS are featured as that they will not produce other pollutants and 
have little harm to the environment. But due to their extremely short 
lifespan, the transfer of free radicals is limited [20-22]. In addition, ROS 
usually react with each other by the following reactions (reactions 
(5–7)). And these reactions inevitably reduce the oxidative inactivation 
performance via free radicals [17,23].  

•OH + •H → H2O                                                                            (5)  

•HO2 + •H → H2O2                                                                         (6)  

2H2O2 → 2H2O + O2                                                                      (7) 

Alternatively, sonodynamic therapy is an effective method to induce 
bacterial death by using the combination of ultrasound and sonosensi-
tizers to generate ROS for inactivation [24]. In fact, with the develop-
ment of sonosensitizers, compared with ultrasonic treatment alone, 
sonosensitizers can increase the ROS yield, and also reduce energy cost. 

This review is to cast more lights on the ultrasound in tandem with 
catalysts as a superior strategy to kill bacteria. Initially, fundamental 
aspects of ultrasonic cavitation and nano-sonocatalysts are discussed to 
prepare the ground for this work. We then focus on the composition of 
various sonosensitizers/sonocatalysts including organic and inorganic 
nanoparticles (NPs), giving a comprehensive understanding of how the 
catalysts contribute to ultrasonic cavitation. Furthermore, based on 
synergistic bioeffects from the combination of ultrasound and various 
catalysis, the inactivation mechanisms were also discussed. Moreover, 
we also highlighted the potential strategies using the combination of UV 
and ultrasonic antimicrobial treatment (UAT), which may further 
enhance the ROS yield for bacterial killing and reduce the energy cost. 
Therefore, in terms of bacterial inactivation, this work reviewed the 
combination of ultrasound and nanomaterials to amplify the yield of free 
radicals and the resulting killing pathway to determine the priority of 
future research. 

2. Overall picture of ultrasonic antibacterial treatment 

Cavitation effect refers to the change of microbubbles including 
rapid expansion, compression, and collapse in the liquid with the pres-
ence of sound pressure [10]. Cavitation could produce high tempera-
ture, pressure nearby the cavitation bubbles. Moreover, high shear 
forces and liquid jets could also be produced after the surface of cavi-
tation bubbles [9-11]. Cavitation is also closely related to ROS genera-
tion. Cavitation bubbles could absorb sound energy, leading to the 
vibration of the bubbles to cause violent collapse, and generate high 
temperature (up to 10,000 K) and high pressure (81 MPa). Thereby a 
large amount of energy is released to induce hydrothermal dissociation 
to generate •OH [17,25]. Acoustic cavitation does unique benefits, 
which can propagate into the deep area and also can be focused spe-
cifically on the target [11]. However, the energy consumption by 
powerful ultrasound is highly concerned which limits the further 
application of ultrasonic inactivation on bacterial cells [10]. 

To enhance the antibacterial effect of cavitation, additives can be 
added to an ultrasonic system [26]. These additives can simply be inert 
solids to increase the cavitation nucleus and lower the cavitation 

threshold or can have catalytic action in terms of degrading oxides and 
generating ROS [26]. It is worth noting that even though the catalytical 
additives, such as FeSO4, can quickly degrade oxides, generate ROS, and 
enhance the inactivation efficiency of acoustic cavitation, the hydrogen 
peroxide produced by acoustic cavitation is insufficient for bacterial 
killing [26]. Alternatively, nano-sonosensitizers can not only lower the 
cavitation threshold as cavitation nucleus [27,28], increase the yield of 
ROS in the targeted area [29] but also further increase the ROS produced 
by acoustic cavitation through Fenton reactions [30]. Overall, nano- 
sonosensitizers can be added into the ultrasonic system as inert solids 
with catalytic action to enhance the antibacterial effect of cavitation. 
However, nano-sonosensitizers require a complicated process to be 
fabricated, and some nano-sonosensitizers are unstable and cytotoxic. 

Ultrasound has been applied to microbial inactivation for many 
years. With the continuous development of nano-sonosensitizers and 
sonocatalysts, ultrasound/catalyst inactivation strategies have been re-
ported since 2004 [31]. Relying on the library of web of science, we 
searched the relevant papers on ultrasonic / sonosensitizer for bacterial 
inactivation. To visually explain the effect of sonocatalysts on ultrasonic 
inactivation, Fig. 1 was produced. Sole ultrasonic inactivation is mainly 
reported from environment treatment and food hygiene, while medical 
treatment is relatively rare. Meanwhile, the ultrasonic parameters in 
these works are usually low-frequency (<100 kHz) high-power (>3W/ 
cm2) (Fig. 1a). With the addition of sonosensitizers and sonocatalysts, 
the ultrasonic parameters applied for UAT could be changed to high- 
frequency (>100 kHz) and low-power (<3W/cm2) (Fig. 1a). The 
reduction of energy consumption is beneficial to promote the practical 
application of ultrasonic technologies. With the reduction of re-
quirements for ultrasonic energy consumption, we hope that ultrasonic 
inactivation will also be well developed in the field of environment and 
food. 

With the assistance of catalysts, ultrasound can inactivate Gram- 
positive and Gram-negative bacteria including Staphylococcus aureus 
(S. aureus), Methicillin-resistant S. aureus (MRSA), Aggregatibacter acti-
nomycetemcomitans, Listeria innocua, Bacillus cereus, Escherichia coli (E. 
coli), Extended-spectrum β-lactamase (ESBL)-producing E. coli, Porphyr-
omonas gingivalis (P. gingivalis), Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Legionella pneumophila (Fig. 1b). Some of these bacteria 
are very difficult to be killed and prone to develop resistance. One of the 
best-known drug-resistant S. aureus is one major cause of hospital in-
fections worldwide [32,33]. Disease-associated serotypes such as E. coli 
O157:H7, O121, and O104:H4 are capable of producing lethal toxins 
which have been found in water and soil [34-36]. In fact, due to the 
excessive use of antibiotics, many resistant bacteria have been found in 
water and soil. With the development of ultrasound / sonocatalyst, 
resistant bacteria in the environment are expected to be effectively 
controlled. 

Some novel works reported that ultrasound could be used by the 
combination with catalyst and oxidant to kill bacterial cells [37]. Most 
studies using organic sonosensitizers tend to explore the inactivation 
path of bacteria rather than the number and types of free radicals from 
the aspect of sonochemistry (Fig. 1c). A typical example is the study of 
Xin et al. [38], maltohexaose-modified cholesterol and bacterial reactive 
lipid composition was used to establish a smart nanoliposome platform. 
This catalyst can specifically target the bacterial infection sites by acti-
vating bacterial specific maltose dextrin transport pathway. When 
different kinds of inorganic catalysts are applied, the types of free rad-
icals become diverse. In addition to singlet oxygen (1O2), which was 
generated using organic sonosensitizers, other free radicals such as hy-
droxyl radical (•OH), superoxide radicals (•O2

− ), and •HO2 were pro-
duced using ultrasound/inorganic sonocatalysts. These ROS have 
superior oxidation performance for bacterial inactivation. Interestingly, 
when organic sonosensitizers are combined with inorganic sonocata-
lysts, the main free radical produced is reported as 1O2 and •OH. It is 
worth further study whether the organic/inorganic composite can 
improve the bacterial inactivation efficiency by producing a variety of 
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free radicals in the ultrasonic field. In this regard, in the aspect of bac-
terial killing, we will discuss the ultrasonic activation mechanism of 
organic sonosensitizers and inorganic sonocatalysts, separately. We will 
then analyze the activation mechanism of the composite of organic/ 
inorganic catalysts. It is hoped to help the design of ultrasonic inacti-
vation catalysts. 

3. Sonosensitizers/sonocatalysts for ultrasonic inactivation of 
bacterial cells 

The cavitation effect refers to the process of rapid expansion, 
compression, and collapse of microbubbles in the liquid when sound 
pressure changes. It is one of the most important ultrasonic biological 
effects. According to different ultrasound parameters and organizational 
microenvironment, cavitation effects are divided into inertial cavitation 
and non-inertial cavitation. Inertial cavitation is closely related to ROS 
generation. Inertial cavitation bubbles absorb a large amount of sound 
energy, and the vibration of the bubbles causes violent collapse, 
generating high temperature (up to 10,000 K) and high pressure (81 
MPa), thereby releasing a large amount of energy. So inertial cavitation 
can induce hydrothermal dissociation to generate •OH, •OH further re-
acts with other molecules to generate ROS and other oxidation reaction 
substrates [17,25]. 

At the same time, when the microbubbles collapse under inertial 
cavitation, the local rapid temperature rise is often accompanied by a 
luminescence phenomenon, which is called sonoluminescence. Studies 
showed that ultrasound could activate sonosensitizers from the ground 
state to the excited state through sonoluminescence [39,40]. Sono-
sensitizers directly react with surrounding oxygen molecules or other 
substrate molecules to form free radicals or release energy when 
returning to the ground state. The released energy interacts with the 

surroundings oxygen molecules, resulting in the production of 1O2 
[39,41,42]. Take inorganic sonocatalysts ZnO nanofluids as an example, 
after sonoluminescence excitation, the sonocatalyst with the gas nucleus 
and semiconductor property generate carriers, which separate and 
diffuse to the sonosensitizer surface. The electrons on the conduction 
band are captured by O2 to generate a large amount of •O2

− (reaction 8) 
[24,43],  

O2 + e-→•O2
− (8) 

the holes in the valence band may react with molecules in water to 
form •OH (reaction 9) [44],  

H2O + h+→•OH + H+ (9) 

at the same time, part of •O2
− can also be reduced to •OH and 1O2 

through electron induction (reactions (10,11)) [45,46].  

•O2
− +H2O2→•OH + OH− +O2                                                        (10)  

2•O2
− +2H+→1O2 + H2O2                                                              (11) 

In this work, the sonosensitizers/sonocatalysts for ultrasonic inacti-
vation are divided into organic sonosensitizers and inorganic sonoca-
talysts. Organic sonosensitizers are often derived from sonodynamic 
therapy for tumor treatment [47]. Inorganic catalysts, due to their 
semiconductor properties, show a variety of free radical generation 
mechanisms and good inactivation performance [48]. 

3.1. Organic sonosensitizers 

Organic sonosensitizers used in UAT research mainly include 
porphyrin or its derivatives, xanthone, and the other organic sono-
sensitizers like curcumin (Cur) and hypocrellin B (Table 1). Porphyrin or 

Fig. 1. Published reports on ultrasonic inactivation of bacterial cells with/without catalysts. (a) Parameters of ultrasound used for inactivation. (b) Inactivated 
bacterial species. (c) Generated ROS by ultrasound/catalysts. 
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Table 1 
Review of ultrasonic inactivation using sonosensitizers and sonocatalysts reported in the literature.  

Types of sonosensitizers Names of the 
sonosensitizers 

Types of 
ROS 

Parameters of 
ultrasound 

Microorganism Processing 
time 

Highest 
inactivation 
efficiencya 

Ref. 

Porphyrin 
organic sonosensitizer 

Hematoporphyrin 
monomethyl ether  
(HMME) 

Not 
mentioned 

1 MHz 
100 Hz PRF 
6 W/cm2 

30% cycle 

Staphylococcus aureus  
(S. aureus) (G + ) 

30 min 95% [51] 

HMME Not 
mentioned 

1 MHz 
3 W/cm2 

Porphyromonas gingivalis  
(P. gingivalis) (G-) 

10 min 99.997%b [52] 

Fe@ upconversion 
nanoparticles (UCNP)- 
HMME 

1O2 2 W/cm2 Methicillin-resistant S. aureus (MRSA) 
(G + ) 
Extended-spectrum β-lactamase 
(ESBL)-producing Escherichia coli (E. 
coli) (G-) 

10 min 70%   

60% 

[65] 

Polymer-peptide- 
porphyrin conjugate 
(PPPC) 

Not 
mentioned 

1 MHz 
1.5 W/cm2 

MRSA (G + ) 0–9 min 100% [53] 

Pd @ Pt-T790 Not 
mentioned 

1 MHz 
0.97 W/cm2 

50% cycle 

MRSA (G + ) 8 min 100% [29] 

Xanthones 
organic sonosensitizer 

Rose Bengal (RB) Not 
mentioned 

28 kHz 
0.84 W/cm2 

S. aureus (G + ) 
E. coli (G-) 

1 h 99.999% 
99.998% 

[55] 

RB Not 
mentioned 

1 MHz 
2.5 W/cm2 

Candida albicans (C. albicans) 5 min 100% [66] 

RB–antimicrobial peptide 
conjugate 

Not 
mentioned 

1 MHz 
3 W/cm2 

50% cycle 

S. aureus (G + ) 
Pseudomonas aeruginosa (G-) 

30 min 99.997% 
99.999% 

[56] 

erythrosin B Not 
mentioned 

20 kHz 
0.86–0.90 W/ 
mL 

Listeria innocua (G + ) 10 s 99.874% [37] 

Other 
organic sonosensitizer 

Curcumin  
(Cur) 

Not 
mentioned 

1 MHz 
1.56 W/cm2 

MRSA (G + ) 5 min 99.999% [60] 

Cur Not 
mentioned 

1 MHz 
1.56 W/cm2 

Bacillus cereus (G + ) 
E. coli (G-) 

3 min 
5 min 

99.999% 
99.000% 

[61] 

Cur Not 
mentioned 

1 MHz 
3 W/cm2 

S. aureus (G + ) 32 min 99% [67] 

Cur Not 
mentioned 

1 MHz 
2 W/cm2 

Aggregatibacter 
actinomycetemcomitans (G + ) 

2 min 99.999% [68] 

Propyl gallate Not 
mentioned 

40 kHz 
0.092 W/mL 

Listeria innocua (G + ) 
E. coli (G-) 

10–45 min 
5–30 min 

99.999% [69] 

Nano-emodin Not 
mentioned 

1 MHz 
100 Hz PRF 
2 W/cm2 

S. aureus (G + ) 
P. gingivalis (G-) 
Acinetobacter baumannii (G-) 

5 min 99.999% [63] 

Photodithazine 1O2 1 MHz 
2.5 W/cm2 

C. albicans 5 min 100% [66] 

Chlorin e6 Not 
mentioned 

1 MHz 
1.56 W/cm2 

S. aureus (G + ) 
E. coli (G-) 

5 min 99.999% 
99.000% 

[64] 

Hypocrellin B Not 
mentioned 

1 MHz 
1.56 W/cm2 

MRSA (G + ) 5 min 99.999% [62] 

MLP18 1O2 1 MHz 
0.97 W/cm2 

MRSA(G + ) 
ESBL-producing E. coli(G-) 

5 min 95% 
80% 

[38] 

Amphotericin B Not 
mentioned 

42 kHz 
0.30 W/cm2 

C. albicans 15 min 99.65％ [70] 

Inorganic 
sonocatalysts 

TiO2 Not 
mentioned 

25 kHz 
50 W 

E. coli(G-) 60 min 95.6% [31] 

TiO2 
•OH 36 kHz 

300 W 
Legionella pneumophila (G-) 30 min 99.8% [71] 

TiO2 Not 
mentioned 

26 kHz 
1.5 W/mL 

total coliforms (G-) 
faecal coliforms (G-) 
Pseudomonas spp (G-) 
faecal streptococci (G + ) 
Clostridium perfringens species (G + ) 

60 min 99.9% 
99.9% 
99.9% 
72.8% 
87.1% 

[72] 

Non-woven TiO2 
•OH 36 kHz 

0.28 W 
E. coli (G-) 60 min 92.057% [40] 

Ti-S-TiO2-x 
1O2 
•OH 

1 MHz 
1.5 W/cm2 

50% cycle 

S. aureus (G + ) 15 min 99.995％ [73] 

ZnO nanofluids •O2
−

•HO2 
•OH 

20 kHz 
90 W/L 

E. coli (G-) 10 s 83% [17] 

ZnOext 
•OH 20 kHz S. aureus (G + ) 

E. coli (G-) 
Not 
mentioned 

90%b 

85%b 
[74] 

Au@barium titanate 1O2 
•OH 

1 MHz 
1.5 W/cm2 

S. aureus (G + ) 
E. coli (G-) 

4 min 99.23％ [24] 

UCNP@mSiO2(RB)-Ag 1O2 2 W/cm2 MRSA (G + ) 10 min 98.94% [75] 

(continued on next page) 
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its derivatives is an effective sonosensitizer in sonodynamic therapy 
with a stable structure, lower toxicity, higher 1O2 yield to induce cell 
apoptosis via the mitochondrial apoptotic pathway [49], and 1O2 is 
generated by energy transfer between the triplet excited state sensitizer 
and O2 [50]. Zhuang et al. [51] observed hematoporphyrin monomethyl 
ether (HMME) as a sonosensitizer for bacterial inactivation. When 
HMME was combined with ultrasound for inactivating P. gingivalis [52], 
the expression level of ROS in bacterial cells was significantly increased, 
suggesting that ROS could be the main cause of cell death. Sun et al. [29] 
bridged an organic sonosensitizer Meso-tetra (4-carboxyphenyl) 
porphyrin with Pd@Pt nanoplates. When the sonosensitizers were 
absorbed by cells, Pd@Pt promoted the decomposition of O2 by 
endogenous H2O2 to increase the production of endogenous ROS. Wang 
et al. [53] modified porphyrin with the bacterial targeting peptide to 
improve the inactivation efficiency. 

Xanthone compound Rose Bengal (RB) is not toxic [54], and under 
sonication, it could react with oxygen to produce 1O2. When RB was 
applied as a sonosensitizer to inactivate S. aureus and E. coli, E. coli 
showed stronger resistance to UAT than that of S. aureus [55]. Since the 
special outer membrane of E. coli can effectively prevent RB from 
entering the cell, it reduces the yield of endogenous ROS and inactiva-
tion efficiency. To enhance the inactivation efficiency of RB, Costley 
et al. [56] coupled bacterial targeting peptides with RB to prepare RB- 
antimicrobial peptide conjugates, which effectively inactivate Pseudo-
monas aeruginosa. 

Since Cur and hypocrellin B are natural pigments, Cur could be 
extracted from popular Indian spice turmeric and hyppcrellin B could be 
isolated from the parasitic fungus Hypocrella bambusae. Besides being 
used in clinical treatment, recent studies have found that they can also 
be used as sonosensitizers for ultrasonic inactivation [57-59]. Wang 
et al. [60,61] found that Cur has a good inactivation effect on S. aureus, 
E. coli, and Bacillus cereus, which does not depend on intracellular DNA 
damage. In addition, E. coli, as Gram-negative bacteria, has stronger 
resistance to Cur/ultrasound. It is probably due to its outer membrane 
effectively preventing Cur from entering the cell. Wang et al. [62] 
further investigated hypocrellin B combined with ultrasound for the 
inactivation of methicillin-resistant S. aureus. Interestingly, they found 
no DNA damage but the destruction of bacterial membranes which lead 
to the death of the bacteria. 

In addition, there are some other organic sonosensitizers such as 
nano-emodin [63], chlorin e6 [64], chrysanthemum B [62] (table 1) 
used for ultrasonic inactivation, and they have achieved good bacterial 
removal effects. However, organic sonosensitizers have poor water sol-
ubility, short blood circulation time, and they are relatively unstable in 
the environment. To overcome the above shortcomings, researchers are 
developing inorganic nanomaterials as sonocatalysts. 

3.2. Inorganic sonocatalysts 

Inorganic sonosensitizers are featured as stable physical and 

chemical properties [80]. At present, regulating the physical and 
chemical structure of sonocatalysts to generate more free radicals under 
ultrasound irradiation is a hotpot. Traditional inorganic sonocatalysts 
such as titanium dioxide and gold nanoparticles have been found to 
effectively assist ultrasonic inactivation. 

As a typical sonocatalyst, TiO2 NPs have been applied to microbial 
inactivation [31,71,72,81,82]. Ultrasound can excite the electrons in 
TiO2 NPs from the valence band to the conduction band which will form 
holes and makes some electron-hole pairs migrate to the surface of the 
nanoparticles and interact with the surrounding H2O or O2, and such 
interactions produce ROS such as •OH and 1O2 [25,83,84]. However, 
due to the fast electron-hole recombination speed of TiO2 NPs (50 ± 30 
ns), the yield of ROS is not high [85]. Moreover, the agglomeration of 
NPs prevents the separation of electron-hole pairs from the energy band, 
resulting in a further decrease in ROS yield [86]. Changing the structure 
of TiO2 NPs can also change their catalytic activity. Rahman et al. [40] 
synthesized a non-woven structure of TiO2 NPs (Fig. 2) combining with 
ultrasound to effectively inactivate E. coli. The production of •OH 
significantly increased when non-woven TiO2 NPs were activated by 
ultrasound. The authors suggested that non-woven TiO2 NPs can provide 
more cavitation bubbles to enhance the cavitation bioeffects. 

Due to its non-toxicity, Au NPs are widely used as nanocarriers for 
drug delivery [87,88]. Au NPs serve as nucleation sites, lower the 
cavitation threshold and further increase the cavitation rate [89]. Wu 
et al. [24] synthesized a piezoelectric nanocomposite material, barium 
titanate (BaTiO3, BTO) nanocubes loaded with Au NPs (Au@BTO NPs), 
resulting in the separation and migration of electron-hole pairs, which in 
turn increases the yield of ROS (•OH, 1O2) for inactivating S. aureus and 
E. coli. This work suggested that BTO has an excellent electromechanical 
conversion rate and high-voltage electrical coefficient. Au NPs are 
chemically reduced to loaded on the surface of BTO, forming a metal/ 
semiconductor Schottky junction. This may bend the energy band of 
BTO and promote the mechanical deformation and piezoelectric effect 
of BTO caused by the low-intensity ultrasonic mechanical wave. 

3.3. The combination of organic sonosensitizers and inorganic 
sonocatalysts 

The combination of organic sonosensitizers and inorganic sonoca-
talysts can overcome the shortcomings of a single material and even 
endow the catalyst to realize multi-mechanism inactivation. For 
example, the electron holes produced by titanium oxide will recombine 
rapidly, resulting in the decrease of free radical production. To conquer 
this issue, Wang et al. [78] chemically modified TiO2 NPs with organic 
substances to inactivate S. aureus. The hybrid catalyst can alleviate the 
agglomeration of TiO2 NPs, promote the separation of electron-hole 
pairs from the energy band during ultrasonic activation, and thus in-
crease the ROS yield. Zhao et al. [75] designed a new core–shell nano-
structure upconversion nanoparticles@mSiO2(RB)-Ag NPs. In this kind 
of NPs, RB, as a sonosensitizer, reacts with O2 in water to produce 1O2 

Table 1 (continued ) 

Types of sonosensitizers Names of the 
sonosensitizers 

Types of 
ROS 

Parameters of 
ultrasound 

Microorganism Processing 
time 

Highest 
inactivation 
efficiencya 

Ref. 

Organic sonosensitizer 
combined with inorganic 
sonocatalysts 

UCNP@SiO2- RB/HMME 1O2 2 W/cm2 MRSA (G + ) 
ESBL-producing E. coli (G-) 

10 min 70% [76] 

Chitosan Nanoparticles- 
Indocyanine green 

Not 
mentioned 

1 MHz 
1.56 W/cm2 

Aggregatibacter 
actinomycetemcomitans (G + ) 
P. gingivalis (G-) 
Prevotella intermedia (G-) 

1 min 99.999%  [77] 

TiO2-Sinoporphyrin 
sodium 

1O2 
•OH 

1 MHz 
1–5 W 

S. aureus (G + ) 60 s 92.41% [78] 

Dextran-coated Si Not 
mentioned 

1 MHz 
3 W/cm2 

E. coli (G-) 10 min 100% [79] 

a: Inactivation efficiency: defined as (1-NT/N0) *100%, where NT refers to the number of CFU/mL after treatment and N0 refers to the number of CFU/mL before 
treatment. 
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after being activated by ultrasound. It is worth noting that Ag has a long- 
term inhibitory effect on bacteria. Compared with metal nanomaterials, 
Si NPs show lower cytotoxicity and have proved to be biodegradable 
[90-92]. Shevchenko et al. [79] synthesized Dextran-coated Si NPs to 
inactivate E. coli, and all bacteria were killed after 10 min ultrasound 
irradiation. In addition, iron-based nanomaterials have good Fenton 
catalytic activity, which expedites the decomposition of H2O2 into O2 to 
provide a reaction substrate for ROS generation [93]. Following this 
idea, Wang et al. [65] synthesized Fe@UCNP-HMME NPs for the inac-
tivation of MRSA and ESBL-producing E. coli. 

Sonosensitizers/sonocatalysts are closely related to the ROS pro-
duction efficiency of the cavitation effect. Organic sonosensitizers often 
catalyze to produce •OH and 1O2. Due to the addition of inorganic 
sonocatalyst, there are more kinds of free radicals. By studying the 
physical and chemical structure of inorganic nanomaterials, the mech-
anism of ROS generation using ultrasound and inorganic sonocatalyst 
could list as below: 

The separation and recombination of electrons and holes at the 
surface of semiconductors could be mediated to promote the gener-
ation of ROS under ultrasonic activation [94,95]. 
Inorganic nanoparticles with oxygen defect structures can also 
improve the yield of ROS by efficiently adsorbing H2O2 and O2 in the 
microenvironment as reaction substrates to further raise ROS pro-
duction [96,97]. 
It is also possible to promote the production of ROS by Fenton cat-
alysts [30,98,99]. 
The combination of organic and inorganic sonocatalysts can produce 
a variety of free radicals. 

4. Cellular Oxidation ─ Antibacterial Mechanism of ROS 

The biological effects of ultrasound can be divided into extracellular 
oxidation and intracellular oxidation, the former damage the cell 
membrane through lipid peroxidation, and the latter causes gene and 
protein damage through oxidative stress (Table 2). It is worth exploring 
which kind of oxidation is more important in the bacterial inactivation 
process. 

4.1. Extracellular oxidation ─ cell membrane damage and lipid 
peroxidation 

For extracellular oxidation, the ROS produced by ultrasound or 
sonosensitizers can oxidize biological cell membranes [53], since ROS 
could react with phospholipids, enzymes related to the membrane, side 
chain of membrane receptor-associated polyunsaturated fatty and 

Fig. 2. Photograph of non-woven TiO2 fabric (a), surface view of non-woven TiO2 fabric by scanning electron microscopy with different magnifications (b–d).  

Table 2 
Mechanisms of UAT in different works.  

Sonosensitizers Purpose Mechanisms Ref. 

HMME Medical Increase in intracellular ROS [52] 
PPPC Medical Cell membrane damage [53] 
Fe@UCNP- HMME Medical Cell membrane damage [65] 
UCNP@SiO2-RB/HMME Medical Cell membrane damage [76] 
Pd @ Pt-T790 Medical Increase in intracellular ROS [29] 
Cur Food DNA damagea [61] 
Cur Medical DNA damagea [60] 
Cur Medical Downregulation in virulence 

genes 
[68] 

Cur Medical Cell membrane damage [67] 
Hypocrellin B Medical Cell membrane damage 

DNA damagea 
[62] 

Nano-emodin Medical Downregulation in virulence 
genes 

[63] 

Propyl gallate Food Lipid peroxidation [69] 
Amphotericin B Medical Increase in intracellular ROS [70] 
MLP18 Medical Cell membrane damage 

Increase in intracellular ROS 
Drug delivery 

[38] 

TiO2 Medical Oxidative stress response [71] 
Non-woven TiO2 Environment Lipid peroxidation [40] 
Ti-S-TiO2-x Medical Cell membrane damage [73] 
TiO2-Sinoporphyrin 

sodium 
Medical Cell membrane damage 

Increase in intracellular ROS 
[78] 

ZnO nanofluids Environment Cell membrane damage 
Drug delivery 

[17] 

ZnOext Medical Cell membrane damage [74] 
Dextran-coated Si Medical Cell membrane damage [79] 
UCNP@mSiO2(RB)-Ag Medical Cell membrane damage [75] 
Au@barium titanate Medical Lipid peroxidation [24] 

a: The authors conducted related research, but got negative results. 
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nucleic acid to form lipid peroxidation products [100]. As a result, the 
fluidity and permeability of the cell membrane are changed, ultimately 
leading to changes in the structure and function of bacteria, and even 
cell death. This chain reaction is called lipid peroxidation. Moreover, it 
provides a continuous supply of ROS, and the newly generated ROS 
further react with other surrounding cells. This results in apoptosis or 
death, therefore improving the efficiency of inactivation. Rahman et al. 
[40] studied the effect of non-woven TiO2 combined with ultrasound on 
lipid peroxidation of cell membranes and found that •OH produced by 
the reaction of non-woven TiO2 significantly increased the lipid perox-
idation level of bacteria membranes. Wu et al. [24] found that Au@BTO 
NPs combining with ultrasound had an excellent antibacterial efficiency 
against both Gram-negative E. coli and Gram-positive S. aureus, they 
deduced that the sonodynamic ROS generation induced lipid peroxida-
tion in cytomembrane, which enhanced the permeability of cell mem-
brane and finally led to the intracellular protein leakage and irreversible 
damage to bacteria. Martins et al. [101] got the same result in cancer 
cells, they studied the application of zinc phthalocyanine (ZnPc) as a 
sonosensitizer and discovered that the level of cellular lipid peroxidation 
increased three times after sonication. 

Studies have shown that the outer membrane of the Gram-negative 
bacteria will also be oxidized and destroyed by ROS. By cutting the 
glycoside backbone to break the biopolymer, the composition and 
function of these cells are changed, which causes bacterial death 
[102,103]. But the highly organized bacterial outer membrane of Gram- 
negative bacteria may inhibit the absorption of sonosensitizers, resulting 
in a lower inactivation effect than that of Gram-positive bacteria [38]. 

4.2. Intracellular oxidation ─ cellular oxidative stress response 

For intracellular oxidation, oxidative stress refers to the imbalance 
between the oxidation and anti-oxidation effects of biological cells. 
When the cells tend to be oxidized, the secretion of proteases increases, 
and a large amount of oxidative intermediate products are generated. 
Oxidative stress is a negative effect of oxygen free radicals intracellu-
larly, which is closely related to cell apoptosis and death [104]. In the 
process of sonication, ultrasound and sonosensitizers produce a large 
amount of ROS, leading to cellular oxidative stress response, which is 
also one of the main antimicrobial mechanisms. 

Studies have indicated that ROS produced in the cells can lead to the 
oxidation of intracellular proteins [105]. •OH attacks electron-rich sites, 
such as the double bond chain and main chain on the amino acid side 
[106,107]. So the specific function of the corresponding protein is 
inhibited, leading to dysfunction of the microbial cell and eventually 
death. In addition, •OH produced by microbial cells themselves can also 
damage intracellular nucleic acids, such as cutting the double helix 
structure of nucleic acids or modifying nucleic acids with nitrogen bases 
[108,109]. The normal physiological functions of microbial cells are 
interfered, causing cell death. Zhang et al. [52] used HMME combining 
with ultrasound to inactivate P. gingivalis, they found that UAT can in-
crease the intracellular yield of ROS, and cause the death of bacteria. 
The same phenomenon was observed by Yang et al. [70], they synthe-
sized amphotericin B-loaded nanoparticles combining with ultrasound 
to effectively inactivate Candida albicans by intracellular ROS produced 
by UAT. Pourhajibagher et al. further clarified that UAT can down- 
regulate specific genes in cells. They found that the Curcumin- 
decorated nanophytosomes-mediated ultrasound could reduce the cell 
viability, metabolic activity, and biofilm growth in Aggregatibacter acti-
nomycetemcomitans by downregulating the expression of rcpA, qseB, and 
qseC genes [68]. Meanwhile, nano-emodin-mediated ultrasound could 
significantly downregulate the expression levels of lasI, agrA, and abaI 
as the virulence genes in Pseudomonas aeruginosa, S. aureus, and Acine-
tobacter baumannii, causing the reduction of the formation of bacterial 
biofilms and the viability of bacteria [63]. 

To visually explain the importance of extracellular/intracellular 
oxidation on ultrasonic inactivation in different works, Fig. 3 was 

produced according to the studies listed in table 2. When inorganic 
sonosensitizers are used alone or in combination, Researchers pay more 
attention to extracellular oxidation (Fig. 3a), only a few studies include 
both extracellular oxidation and intracellular oxidation. Meanwhile, 
medical-related studies focus more on the oxidation effect on cells 
(Fig. 3b). 

Both extracellular and intracellular oxidation may play a very 
important role in the ultrasonic inactivation process. However, there are 
still disputes. For example, Wang et al. [61] clarified that ultrasound/ 
Cur did not damage the DNA of E. coli, while the outer membrane 
significantly affects the antimicrobial effect of UAT. Thus, it seems that 
intracellular and extracellular oxidation does not necessarily exist at the 
same time. 

5. Conclusion 

With the development of functional nanomaterials, ultrasonic inac-
tivation technology is gradually combined with nanomaterial technol-
ogy, which has brought about significant changes in this field. To cast 
more lights on the ultrasound in tandem with catalysts for bacterial 
killing, the key findings are summaries as below:  

(1) For bacterial inactivation, low-frequency high-power ultrasound 
is gradually replaced by high-frequency low-power ultrasound.  

(2) Organic sonosensitizers show the advantage of low biological 
toxicity and produce highly active singlet oxygen. However, the 
manufacturing cost of these organic sonosensitizers is high and its 
application field is narrowed in medical application. 

(3) With the development of inorganic sonocatalysts, the combina-
tion of ultrasound and inorganic sonocatalysts can be better used 

Fig. 3. Published reports on ultrasonic inactivation of bacterial cells with 
catalysts. (a) Mechanisms of different catalysts. (b) Mechanisms of different 
applications. 
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in the field of environment and food. Particularly, semiconductor 
catalysts produce free radicals through hole electron separation 
in the sound field, which is an interesting mechanism and opens 
the way for the design of unique inorganic catalysts.  

(4) Lipid peroxidation and oxidative stress may not exist at the same 
time during UAT. In different strategies of ultrasonic inactivation, 
intracellular and extracellular oxidation may work separately. So 
far, it is unclear how to accurately regulate intracellular and 
extracellular oxidation. 

In summary, oxidation is the key to ultrasonic inactivation using low- 
intensity ultrasound. Sonocatalysts can promote the application of UAT 
from the perspective of increasing the yield of ROS and reducing energy 
consumption, but it is essential to develop high-efficiency nano-sono-
sensitizers and/or sonocatalysts to increase the yield of ROS and clarify 
the relationship between ROS generation and the regulation of intra-
cellular and extracellular oxidation. The review could be helpful for the 
development of a controllable, efficient, and safe ultrasonic antimicro-
bial technology. 
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