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Abstract

Background: T2 Lesion Volume (T2LV) has been an important biomarker for

multiple sclerosis (MS). Current methods available to quantify lesions from MR

images generally require manual adjustments or multiple images with different

contrasts. Further, implementations are often not easily or openly accessible.

Objective: We created a fully unsupervised, single T2 FLAIR image T2LV quan-

tification package based on the popular open-source imaging toolkit FSL.

Methods: By scripting various processing tools in FSL, we developed an image

processing pipeline that distinguishes normal brain tissue from CSF and lesions.

We validated our method by hierarchical multiple regression (HMR) with a

preliminary study to see if our T2LVs correlate with clinical disability measures

in MS when controlled for other variables. Results: Pearson correlations

between T2LV and Expanded Disability Status Scale (EDSS: r = 0.344,

P = 0.013), Six-Minute Walk (6MW: r = �0.513, P = 0.000), Timed 25-Foot

Walk (T25FW: r = �0.438, P = .000), and Symbol Digit Modalities Test

(SDMT: r = �0.499, P = 0.000) were all significant. Partial correlations control-

ling for age were significant between T2LV and 6MW (r = �0.433, P = 0.002),

T25FW (r = �0.392, P = 0.004), and SDMT (r = �0.450, P = 0.001). In HMR,

T2LV explained significant additional variance in 6MW (R2 change = 0.082,

P = 0.020), after controlling for confounding variables such as age, white mat-

ter volume (WMV), and gray matter volume (GMV). Conclusion: Our T2LV

quantification software produces T2LVs from a single FLAIR image that corre-

late with physical disability in MS and is freely available as open-source

software.

Introduction

Lesions, or white matter hyperintensities, have long been

a defining feature of the clinical diagnosis and tracking of

multiple sclerosis (MS), becoming incorporated into the

McDonald criteria in the 2010 revisions (Montalban et al.

2010; Polman et al. 2011). Lesions further have been a

primary end point of trials examining the efficacy of dis-

ease-modifying therapies in MS (Sormani et al. 2010; Sor-

mani and Bruzzi 2013). Such lesions presumably reflect

periods of immune-mediated disease activity within the

CNS (Bjartmar and Trapp 2001; Hemmer et al. 2006;

Trapp and Nave 2008).

The identification and measurement of lesions on T2

MRI images has been an important aspect of research in

MS, enabling direct viewing of impact on brain tissue

through T2 lesion volumes (T2LV) (Filippi et al. 2011).

Imaging contrast and lesion delineation have improved

with recent advances in MRI acquisition sequences

(Miller et al. 2014) to include high resolution, 3D acqui-

sitions of T2-weighted flow attenuated inversion recovery

(FLAIR) imaging, which result in a T2-weighted image

with suppression of CSF according to its T1 constant

(Paniagua Bravo et al. 2014). However, reliable and auto-

mated methods for quantification of lesions, along with

open-source methods for reproducible research, are

severely lacking in this area. This inhibits more direct

comparisons of measures across imaging sites or studies.

Several computational methods have been proposed to

quantify T2LV, yet they often are proprietary, require
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human intervention, or require multispectral (or multi-

contrast) imaging data sets (Mortazavi et al. 2011; Llad�o

et al. 2012). Our goal was to create robust, fully auto-

mated T2LV quantification using an approach that is

openly available and easy to use. We have built upon the

open-source image processing toolkit FSL (fMRIB Soft-

ware Library, fMRIB, Oxford, http://fsl.fmrib.ox.ac.uk/fsl,

Smith et al. 2004) to create lesion-measuring software

that requires only the T2 image. We demonstrate the util-

ity of this approach by estimating associations between

T2LV and metrics of clinical disability in a group of MS

subjects. This tool will benefit research in MS by provid-

ing a common approach to quantify lesions and help to

make methods and results of studies more comparable

with one another.

Methods

Subjects

Of 64 total subjects recruited for this study, 52 (11 male,

41 female, see Table 1) completed the imaging study and

all clinical disability measures, and remained after exclu-

sion of outliers. The subjects included 40 with relapsing–
remitting MS (RRMS), seven with secondary progressive

MS (SPMS), and three with primary progressive MS

(PPMS). The average age was 51 years and average disease

duration was 12 years. MS subtype and disease duration

were unavailable for two subjects. Potential subjects were

recruited through a database of participants from our

previous studies and flyers distributed among patients in

the North American Research Committee on Multiple

Sclerosis (NARCOMS) registry. The following inclusion

criteria were utilized: (1) MS diagnosis, verified by physi-

cian; (2) relapse-free for at least 30 days; (3) age 18–
64 years; (4) ambulation with or without assistive device;

and (5) physician’s approval for participation. All partici-

pants provided informed consent in accordance with the

Institutional Review Board.

MRI acquisition

Volunteer subjects were scanned on a Siemens (Erlangen,

Germany) Trio 3 T MRI scanner with a 12-channel head

coil. Two structural acquisitions were used to assess the

performance of the T2LV quantification method: a fluid

attenuated inversion recovery (FLAIR) sequence to

obtain T2LVs, and a magnetization prepared rapid

acquisition of gradient echo (MPRAGE) T1-weighted

scan to obtain atrophy measures for comparison. These

were standard sequences provided by Siemens. The

FLAIR scan was a 3D turbo spin echo (TSE) using a

variable flip angle. The scan was used to acquire 1 mm

isotropic resolution with coverage of the whole brain in

7 min with a sagittal prescription. Relevant parameters

for the FLAIR sequence were 2.2 sec inversion time, TE/

TR of 388 msec/6 sec, and parallel imaging with a gener-

alized autocalibrating partial parallel acquisition

(GRAPPA) factor of 2 (Griswold et al. 2002). The T1

MPRAGE scan was a 3D gradient echo, using an inver-

sion time of 900 msec. The scan was used to acquire

0.9 mm isotropic resolution with coverage of the whole

brain in 4.5 min with a sagittal prescription. Relevant

parameters of the T1 MPRAGE sequence are TE/TR of

2.32 msec/1.9 sec, and a parallel imaging acceleration

factor of 2.

Table 1. Descriptive statistics.

N Min Max Mean SD

T2LV (% Brain Volume) 52 0.01 4.01 0.86 1.01

Age (Years) 25 64 51.0 8.4

WMV (Normalized mm3) 566,690 849,671 721,215 56,756

GMV (Normalized mm3) 525,955 783,608 662,147 52,034

EDSS (Score) 0.0 7.5 5.51 2.841

6MW (Feet) 47 2479 1131 620

T25FW (Feet/second) 0.37 7.62 3.87 1.92

SDMT 20 77 46.06 12.16

Disease duration (Years) 50 1 29 12.24 8.44

Disease subtype

RRMS 40

SPMS 7

PPMS 3

T2LV, T2 Lesion Volume; WMV, White Matter Volume; GMV, Gray Matter Volume; EDSS, Expanded Disability Status Scale; 6MW, 6 Minute Walk;

T25FW, Timed 25 Foot Walk; SDMT, Symbol Digit Modalities Test; RRMS, Relapsing–Remitting MS; SPMS, Secondary Progressive MS; PPMS, Pri-

mary Progressive MS; SD, Standard Deviation.
1For EDSS, median and interquartile range are reported instead of mean and SD.
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Image analysis

Quantification of lesion volumes

We developed a new, unsupervised, single-image method

for generating lesion masks and volumes, based on the

commonly used open-source software FSL. This software

package is used in many neuroimaging labs to perform

structural and functional image processing (Smith et al.

2004). In particular, we used the following tools: Brain

Extraction Tool (BET) (Smith 2002a), FMRIBs Auto-

mated Segmentation Tool (FAST) (Zhang et al. 2001),

FMRIBs Linear Image Registration Tool (FLIRT) (Jenkin-

son and Smith 2001; Jenkinson et al. 2002), FMRIBs

Nonlinear Image Registration Tool (FNIRT) (Smith

2007), and FSLmaths. We scripted these tools to create a

lesion map and T2LV from the FLAIR image (Fig. 1).

We started with skull stripping via BET on the FLAIR

image. Then, the image was slightly blurred

(r = 0.5 mm) using FSLmaths to reduce false positives

resulting from noise. Most central to our method was

FAST, which uses Gaussian fitting of the intensity his-

togram to segment brain images by tissue type (gray mat-

ter (GM), white matter (WM), and nonbrain/CSF)

(Zhang et al. 2001). The basis for our method stemmed

from noticing that because voxels making up T2 hyperin-

tensities are much brighter than other voxels in the brain,

they lie outside the fitted Gaussian distribution of brain

tissue on the histogram, and therefore were erroneously

labeled as nonbrain/CSF. If one then looked only at the

voxels classified as nonbrain, it was trivial to separate

these hyperintense regions from CSF, blood, and dura,

which are dark in this fluid-attenuated sequence. We

accomplished this by simply iteratively removing the

darkest bin from the histogram until an empty bin was

found. This bin value was then used to threshold the

“nonbrain” voxels, removing true nonbrain tissue, leaving

the hyperintensities.

This process sensitively marked lesions, but also erro-

neously marked the septum pellucidum, small regions of

peripheral GM, and several midbrain GM structures that

are consistently bright. We ran two additional steps to

remove these. First, we created a FLAIR-like standard

space image by subtracting the ICBM CSF mask from the

ICBM T2 standard mask. We used FLIRT (Jenkinson and

Smith 2001; Jenkinson et al. 2002) and FNIRT (Smith

2007) with this standard to nonlinearly warp the ICBM

WM mask to subject space. Voxels with WM probability

above 0.7 were included in the mask. We then selected

lesions that had at least one voxel within the WM mask,

thereby eliminating false positives from outside the WM.

Next, we removed midline false positives such as the sep-

tum pellucidum by eliminating any lesions that touch or

come close (within 4 mm) to touching the mid-sagittal

plane. This was also accomplished with standard space

masking. Because some subjects had periventricular

lesions that were contiguous with the false-positive sep-

tum, removal was truncated to a maximum distance from

midline (9 mm), beyond which lesion-labeled pixels were

not removed. Final T2LV was expressed as a percentage

of brain volume as calculated from FAST results.

Gray and white matter atrophy

Since we were interested in the ability of the estimated

T2LVs from our method to uniquely correlate with dis-

ability status in MS, we compared the T2LVs with other

MRI measures that have demonstrated success in predict-

ing behavior and performance: gray matter volume

(GMV) and white matter volume (WMV) (Grassiot et al.

2009). These measures were produced by the FSL (Smith

(A) (B) (E)

(C) (D)

Figure 1. Illustration of lesion mapping

method. (A) Representative axial slice, after

brain extraction and smoothing. (B)

Nonbrain mask from FAST segmentation.

Bright hyperintensities (blue outline) are

trivial to distinguish from dark CSF (red

outline). (C) Nonbrain image (blue outline)

has been thresholded to remove CSF from

mask. (D) Lesions (blue outline) touching

the mid-sagittal mask (green outline) or

not overlapping with the white matter

mask (red outline) are removed. (E) Final

lesion map (blue outline).
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et al. 2004) tool SIENAX, which we modified to accept

the FLAIR image in addition to the T1-weighted image,

in order to improve delineation between brain matter and

CSF. GMV and WMV were normalized to intracranial

volume by multiplying by the ratio between each subject’s

intracranial volume and that of a standard. The result of

this is a volume measure in standard space rather than

subject space (normalized mm3) such that a smaller value

corresponded to a smaller portion of the intracranial

space, and therefore a greater degree of atrophy of that

tissue type (Smith et al. 2002).

Clinical outcomes

To determine the ability of our T2LVs to predict disease

severity, we assessed its correlation with four commonly

used measures of clinical disability: Expanded Disability

Status Scale (EDSS), Six-Minute Walk (6MW), Timed 25

Foot Walk (T25FW), and Symbol Digit Modalities Test

(SDMT).

Timed 25-foot walk

The T25FW is a measure of walking speed. The T25FW

consisted of the participant walking 25 feet as quickly and

safely as possible in a hallway clear of obstacles (Hobart

et al. 2013). Two trials were performed, and the main

outcome measure was mean speed, reported in feet/sec-

ond (Goodman et al. 2009).

Six-minute walk

The 6MW is a measure of walking endurance. It was per-

formed in a rectangular, carpeted corridor with hallways

exceeding 50 m length and clear of obstructions and foot

traffic. We provided standardized instructions and

emphasized walking as far and fast as possible for 6 min

on a surface consistent with the original validation work

in MS (Goldman et al. 2008). One researcher followed

alongside for safety, while another followed 1 m behind

recording distance traveled (feet) using a measuring wheel

(Stanley MW50, New Briton, CT) (Motl et al. 2012);

longer distances reflect better walking endurance (Gold-

man et al. 2008).

Expanded disability status scale

Expanded disability status scale is based on an evaluation

of eight functional systems (FS), including visual, brain-

stem, pyramidal, cerebellar, sensory, bowel/bladder, cere-

bral, and other as well as ambulatory function (i.e.,

500 m walk). The FS scores receive “step” scores which

are combined with ambulatory function into an overall

score. The EDSS score can range between 0 (no disability)

and 10 (death from MS) (Kurtzke 1983).

Symbol digit modalities test

We included the Symbol Digit Modalities Test (SDMT)

(Smith 2002b) as a measure of information processing

speed (IPS) consistent with previous research; (Batista

et al. 2012) the measure was administered by personnel

who were not involved in the MRI acquisition or analy-

ses. The oral response form of the SDMT provides a rela-

tively quick assessment and is valid in persons with MS

(Benedict et al. 2006). The SDMT captures visual/spatial

processing speed and working memory. The main out-

come measure of the SDMT was the total number of cor-

rectly provided numbers (maximum of 110) in the 90-sec

period (Smith 2002b; Benedict et al. 2006) with higher

scores reflecting better IPS.

Statistics

Data analysis was performed using statistical package for

the social sciences version 21.0 (SPSS, IBM Corp,

Armonk, NY). All dependent variables (DV: EDSS, 6MW,

T25FW, and SDMT) and independent variables (IV: age,

WMV, GMV, and T2LV) were examined for normality

and outliers by visual inspection of histograms and nor-

mal Q–Q plots. Non-normal variables were transformed

by square root, logarithmic, or inverse functions to result

in a normal distribution, and outliers were defined as

being at least three standard deviations from the mean.

Pearson correlations were computed between all vari-

ables. Age had significant correlation with all other DVs

and IVs except SDMT, and so it was identified as a nui-

sance variable. To exclude the effects of age from further

analysis, we examined partial correlations between the

DVs and IVs, controlled for age. If no significant correla-

tion existed between IV and DV after correction for age,

then the pairing was dropped from further analysis.

We next performed hierarchical multiple regression

(HMR) (Tabachnick and Fidell 2012) to answer two ques-

tions: First, is a significant amount of additional variance

explained by adding T2LV to a model already containing

the other significant IVs? Second, how much additional

variance is explained when these other IVs are added to a

model of age only? Examination of normalized ß coeffi-

cients in the final model also yielded the relative impor-

tance of each IV in explaining that clinical measure for MS.

Results

Our T2LV script ran successfully without human inter-

vention on all 52 subjects. Average T2LV was 0.86% of
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total brain volume. Average WMV was 721,215 normal-

ized mm3 and average GMV was 662,147 normalized

mm3. Median EDSS was 5.5, while average 6MW,

T25FW, and SDMT were 1131 feet, 3.87 feet/second, and

46 correct numbers, respectively (Table 1). Average com-

putation time for our T2LV measurement was 3.6 h per

subject with the nonlinear registration steps taking the

majority of this time, at 2.5 h per subject. Figure 2 shows

a few representative examples of output lesion maps.

Statistical analysis

All measures were normally distributed except T2LV,

which became normal after a log10 transform. One sub-

ject was removed from analysis as an outlier due to an

SDMT score of 102, which was 3.8 standard deviations

above the group mean. Significant Pearson correlations

(Table 2) were found between all MRI and disability mea-

sures except GMV versus EDSS (P = 0.166) and GMV

versus T25FW (P = 0.056). Age was significantly corre-

lated with all MRI and disability measures except for

SDMT (P = 0.068), so we examined partial correlations

(Table 3) between DVs and IVs, controlled for age. MRI

measures were still significantly correlated with each

other, but GMV was no longer significantly correlated

with any disability measure except SDMT (P = 0.006).

WMV and T2LV continued to be significantly correlated

with all disability measures except for EDSS (P = 0.051

and P = 0.060, respectively).

We performed HMR (Table 4) to examine the specific

contribution of lesion volume on the disability metrics

when controlled for other variables. EDSS was excluded

because statistical significance was not achieved in the

previous step. For 6MW, T25FW, and SDMT, a three-

stage regression was performed. The first model contained

age as the only predictor. The second model added WMV

for all three disability measures, as well as GMV for

SDMT. T2LV was added in the final model. This revealed

how much additional variance WMV (and GMV in the

case of SDMT) accounts for after controlling for age, and

then how much additional variance T2LV accounts for

after controlling for all nuisance variables. ß coefficients

were then examined in the final models to determine the

relative importance of all predictors (Table 5).

For 6MW, HMR showed that 14.3% (P = 0.006) of

variance was explained by age alone, an additional 9.8%

(P = 0.015) by adding WMV, and an additional 8.2%

(P = 0.020) by adding T2LV. T2LV (ß = �0.255;

P = 0.020) had the highest ß and was the only significant

predictor of 6MW in the final model. The complete

model accounted for 32.2% (28.0% adjusted, P = 0.000)

of variance in 6MW.

For T25FW, HMR showed that 16.4% (P = 0.003) of

variance was explained by age alone, with an additional

13.5% (P = 0.003) by adding WMV. Adding T2LV

explained an additional 4.3%, but was not statistically sig-

nificant (P = 0.083). The complete model accounted for

34.1% (P = 0.000).

For SDMT, 6.5% (P = 0.068) of variance was explained

by age alone, but it was not significant. Adding WMV

and GMV explained an additional 44.2% (P = 0.000).

Adding T2LV explained an additional 2.8%, but this was

not significant (P = 0.098). The complete model

accounted for 53.5% (P = 0.000).

Discussion

Quantification of lesions has been important in the diag-

nosis and monitoring of MS (Montalban et al. 2010; Pol-

man et al. 2011), and as a measure of efficacy in drug

trials (Sormani et al. 2010; Sormani and Bruzzi 2013), yet

automated methods have been lacking. Further, by build-

ing our method upon widely used open-source software,

our technique will be highly accessible to neuroimaging

and MS researchers.

In our analysis of the clinical utility of our T2LV mea-

sure, we observed that it was a significant predictor of

clinically relevant disability measures. This indicates that

(A) (B)

(C) (D)

Figure 2. Representative examples of lesion mapping output (blue

outline). (A) A coronal slice showing a lesion in peripheral white

matter. (B) A sagittal slice showing large periventricular lesions. (C) An

axial slice showing both periventricular and peripheral white matter

lesions. (D) A case where severe atrophy caused midline false positives

to not be removed, as they were further from midline than expected.
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our measure captured specific information about the dis-

ease state in our MS subjects. Significant correlations were

observed between T2LV and metrics of clinical disability

(Table 2) even when controlling for age (Table 3). The

correlations of T2LV with the clinical and behavioral

measures were all statistically significant with coefficients

ranging from r = 0.266 to r = 0.513, except for EDSS

after controlling for age (P = 0.060).

Though significant (P < 0.05) and highly significant

(P < 0.01) Pearson correlations were found between

T2LV and all predictors, significance levels decreased as

we progressed to more advanced statistical analyses, con-

trolling for age and brain volume measures. As T2LV was

marginally significant (P < 0.10) in these later analyses, it

is possible that significance could be demonstrated in a

future study with a larger sample size. It can be difficult

Table 2. Pearson correlation coefficients.

Variable 1 2 3 4 5 6 7 8 9

1: LOG(T2LV) 1

2: WMV �0.532** 1

3: GMV �0.582** 0.693** 1

4: EDSS 0.344* �0.334* �0.195 1

5: 6MW �0.513** 0.406** 0.324* �0.779** 1

6: T25FW �0.438** 0.466** 0.267 �0.796** 0.917** 1

7: SDMT �0.499** 0.704** 0.442** �0.511** 0.556** 0.588** 1

8: Age 0.373** �0.280* �0.410** 0.289* �0.378** �0.404** �0.255 1

9: Gender 0.099 0.205 0.024 �0.110 0.070 0.054 �0.018 �0.134 1

LOG(T2LV), Log-transformed T2 Lesion Volume; WMV, White Matter Volume; GMV, Gray Matter Volume; EDSS, Expanded Disability Status Scale;

6MW, 6 Minute Walk; T25FW, Timed 25 Foot Walk; SDMT, Symbol Digit Modalities Test.

Significance tests between groups (2-tailed): *P < 0.05, **P < 0.01.

Table 3. Partial correlation coefficients, controlled for age.

Variable 1 2 3 4 5 6 7

1: LOG(T2LV) 1

2: WMV �0.480** 1

3: GMV �0.507** 0.660** 1

4: EDSS 0.266 �0.275 �0.087 1

5: 6MW �0.433** 0.338* 0.200 �0.756** 1

6: T25FW �0.392** 0.402** 0.121 �0.775** 0.903** 1

7: SDMT �0.450** 0.682** 0.382** �0.472** 0.513** 0.548** 1

LOG(T2LV), Log-transformed T2 Lesion Volume; WMV, White Matter Volume; GMV, Gray Matter Volume; EDSS, Expanded Disability Status Scale;

6MW, 6 Minute Walk; T25FW, Timed 25 Foot Walk; SDMT, Symbol Digit Modalities Test.

Significance tests between groups (2-tailed): df = 49, *P < 0.05, **P < 0.01.

Table 4. Hierarchical multiple regressions.

Model Predictor variables R R2 Adj. R2 R2 change F change Sig. F Change

6MW 1 Age 0.378 0.143 0.126 0.143 8.319 0.006

2 +WMV 0.490 0.240 0.209 0.098 6.299 0.015

3 +LOG(T2LV) 0.568 0.322 0.280 0.082 5.788 0.020

T25FW 1 Age 0.404 0.164 0.147 0.164 9.781 0.003

2 +WMV 0.546 0.298 0.270 0.135 9.419 0.003

3 +LOG(T2LV) 0.584 0.341 0.300 0.043 3.136 0.083

SDMT 1 Age 0.255 0.065 0.046 0.065 3.476 0.068

2 +WMV, GMV 0.712 0.507 0.476 0.442 21.529 0.000

3 +LOG(T2LV) 0.732 0.535 0.496 0.028 2.847 0.098

LOG(T2LV), Log-transformed T2 Lesion Volume; 6MW, 6 Minute Walk; T25FW, Timed 25 Foot Walk; SDMT, Symbol Digit Modalities Test; WMV,

White Matter Volume; GMV, Gray Matter Volume.
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to show statistical significance in multivariate analyses

with underpowered preliminary studies such as ours

(Tabachnick and Fidell 2012). Despite the limited number

of subjects, we did find significance in the predictive

power of T2LV on 6MW even when controlling for all

other variables, showing promise for future, larger stud-

ies.

It is important to note that white matter atrophy is

also highly associated with disability in MS, as we have

shown with our WMV measure. We note that our WMV

measure was not the standard output that would be

obtained by running SIENAX in FSL, but instead, we

leveraged both the T1 and T2 images in order to segment

brain and identify GM/WM borders. In addition, our

WMV measure benefits from our lesion mapping as an

accurate lesion mapper is required in order to restore vol-

ume to WM that was misclassified as GM due to the MS

lesions. With these corrections, we obtained an impressive

predictive power for white matter volume: we saw a ß

coefficient of 0.713 with significance P = 0.000 in the

final model for SDMT with three other predictor vari-

ables. This further demonstrates the value of our lesion

mapping method, as the change in contrast of lesions on

T1-weighted imaging means good lesion maps are

required for accurate measures of gray and white matter

volumes.

This method in its current form is not without draw-

backs. There are three parameters (WM probability

threshold, and two distance measures related to midline

false-positive removal) whose default values were chosen

based on manual inspection of a relatively small number

of images. If desired, these parameters can be set to other

values at runtime, which can affect the sensitivity and

specificity of the result. As an example, Figure 2D shows

a case where midline false-positives were not removed

because severe ventricular enlargement caused them to

appear further from the midline than expected. Future

work could include more rigorous tuning of these param-

eters, or devising a way to automatically tune them for

each subject based on that subject’s specific anatomy,

which could further improve associations with disability.

Also, though obtaining T2LV from a single FLAIR image

is cost-effective, convenient, and useful, FLAIR is known

to be less sensitive to lesion detection in the posterior

fossa (Filippi et al. 2011). Future modification to our

method to include analysis of a non-FLAIR T2-weighted

image could potentially improve correlations.

Despite these caveats, the correlation our T2LV mea-

sure achieved with EDSS (r = 0.344, P = 0.013) compares

favorably with previously published studies, which have

produced correlations from 0.19 to 0.47 (Mammi et al.

1996; Gawne-Cain et al. 1998; Bonneville et al. 2002;

Bonati et al. 2011; Cohen et al. 2012; Kearney et al.

2014), with one study failing to achieve a significant cor-

relation (Miki et al. 1999). It is interesting to note that

the studies that reported simple correlations chose to

report Spearman coefficients, while we have reported

Pearson coefficients. Spearman coefficients are generally

higher because, based on rank order, they are not penal-

ized by lack of a linear relationship. Our use of Pearson

correlations, which indicate the degree of linear relation-

ship between two variables, is more conservative and sup-

ports stronger conclusions.

Our method proceeded automatically without requiring

manual intervention. While fully automated methods for

T2LV measurement have been previously described (Mor-

tazavi et al. 2011; Llad�o et al. 2012), none of these studies

reported correlations with clinical metrics to evaluate the

sensitivity of the methods to disease. Previous studies that

reported correlations with clinical metrics have instead

used time-consuming methods that were at least partially

manual (Gawne-Cain et al. 1998; Miki et al. 1999).

Conclusion

T2LV in persons with MS has been a hallmark feature

of clinical diagnosis and tracking of disease progression

and the effectiveness of clinical interventions, indicating

the need for an accessible tool to better facilitate its

measurement. We have created an intuitive, fully auto-

mated lesion mapping, and quantification package based

on the open-source, readily available neuroimaging soft-

ware package FSL. To the best of our knowledge, we

have provided the first fully automated package that

requires only a single image, a 3D FLAIR. We have

validated the method by demonstrating its ability to

predict clinical disability. To the best of our knowledge,

this is the only fully automated tool validated in this

way. We have made our package and its source freely

Table 5. Final models from multiple regressions.

Dependent variable Sig. (ANOVA) Predictor ß Sig.

6MW 0.000 Age �0.201 0.125

WMV 0.163 0.255

LOG(T2LV) �0.351 0.020

T25FW 0.000 Age �0.235 0.070

WMV 0.264 0.063

LOG(T2LV) �0.255 0.083

SDMT 0.000 Age �0.058 0.607

WMV 0.713 0.000

GMV 0.201 0.190

LOG(T2LV) �0.215 0.098

LOG(T2LV), Log-transformed T2 Lesion Volume; WMV, White Matter

Volume; 6MW, 6 Minute Walk; T25FW, Timed 25 Foot Walk; SDMT,

Symbol Digit Modalities Test.
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available (http://mrfil.bioen.illinois.edu) in hopes that it

will lower costs and enable better comparability across

studies using modern high-resolution FLAIR MRI of

MS subjects and in normal aging.
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