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Abstract: Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular mem-
branes. Therefore, membrane proteins bridge the different aqueous compartments separated by
the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The lat-
ter not only stabilizes membrane proteins, but directly impacts their folding, structure and function.
In order to be characterized with biophysical and structural biological methods, membrane proteins
are typically extracted and subsequently purified from their native lipid environment. This approach
requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic
the native bilayer, in order to maintain the membrane proteins structural and functional integrity.
In this review, we survey the currently available membrane mimetic environments ranging from
detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes.
We discuss their respective advantages and disadvantages as well as their suitability for downstream
biophysical and structural characterization. Finally, we take a look at ongoing methodological
developments, which aim for direct in-situ characterization of membrane proteins within native
membranes instead of relying on membrane mimetics.

Keywords: membrane protein; lipid bilayer; membrane mimetic

1. Introduction

The overwhelming majority of scientific articles on membrane proteins introduces this
class of proteins by mentioning their contribution of roughly 30% to organisms’ genomes,
thus, highlighting their importance and resulting self-explanatory relevance. In the interest
of avoiding a repetition of what has been written countless times before, let us instead
spend a moment of consideration on the endangered species of the polar bear. The polar
bear (Ursus maritimus) is perfectly adapted to life on the annual sea ice of the arctic circle,
a very specific habitat, which it roams as wide-ranging predator hunting seals [1]. When po-
lar bears are relocated from their natural environment to live in captivity in zoological
gardens, they have a high tendency to develop abnormal repetitive behavior, such as stereo-
typical pacing and head nodding [2], and have severely increased infant mortality rates [3].
Similar alterations of behavior and infant mortality in captivity have been reported for
several different species, whereupon the degree of these alterations is directly correlated to
the extent of the environmental difference, but rarely as pronounced as in polar bears [3].
Much like this admittedly farfetched example, membrane proteins evolved to reside in
the very specific amphipathic lipid bilayer environment of biological membranes and their
removal from this environment often results in pronounced structural and functional rami-
fications [4–6]. It is, thus, one of the great challenges of membrane protein biophysics to
characterize membrane proteins, while maintaining the specific nature of their lipid bilayer
environment to be able study this class of proteins in a biologically meaningful context.
The continuously progressing efforts to recreate this environment, in order to facilitate
the biophysical characterization of membrane proteins are the subject of this review.
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Lipid bilayers form the physical permeability barriers, which segregate cells and
cellular compartments. Driven by the hydrophobic effect, amphiphilic lipid molecules
self-assemble to form lamellar bilayers, with their hydrophobic moieties facing the core
of the bilayer and their hydrophilic head groups facing the surrounding aqueous envi-
ronment [7]. Cellular membranes are formed from a large variety of chemically very
diverse lipids [8], ranging from hundreds of different lipid species in “simple” prokaryotic
organisms like Escherichia coli to thousands in more complex eukaryotic organisms [9,10].
The diverse physiochemical properties of different cellular membranes are shaped by
their lipid composition [9]. Biological membranes obtain their functionality only through
the presence of specialized integral membrane proteins, which transmit molecules, energy
and stimuli across these physical barriers. To fulfil these crucial functions membrane pro-
teins depend on the properties of the surrounding membrane environment [11–13]. Factors,
such as the lipid composition and bilayer asymmetry, membrane curvature, tension as
well as the fluidity of the bilayer directly impact the structural and functional integrity of
membrane proteins [13–15].

Unfortunately, in their native cellular form, membrane proteins immanently defy
the requirements of biophysical experiments, which demand protein samples of high
purity and high concentration, often in form of a solution. In addition to being insoluble,
individual membrane protein species occur in rather low densities in cellular membranes.
To bridge this gap and make membrane proteins experimentally accessible a multitude of
membrane mimetics have been developed over the last decades. As implied by their name,
membrane mimetics attempt to imitate the environment of lipid bilayers. In their most
fundamental forms, as detergent micelles, this means simply to recreate the hydrophobic
core environment of a lipid bilayer [16]. However, more complex forms such as bicelles
and nanodiscs try to incorporate a certain number of lipid molecules (Figure 1). Moreover,
purified membrane proteins can be reconstituted into bilayers of synthetic lipids or lipid
extracts, attempting to closely resemble the original lipid bilayer a membrane protein was
purified from.
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Naturally, all these methods have their pros and cons and not all of them are compatible
with different biophysical methods. For example, solution NMR (Nuclear magnetic resonance)
spectroscopy, single-particle cryo-EM (electron microscopy), and X-ra/neutron solution
scattering methods demand membrane proteins in a solubilized form, typically in the form
of micelles, bicelles or nanodiscs. Solid-state-NMR, negative stain EM, and AFM (atomic
force microscopy) are suitable for larger membrane assemblies such as proteoliposomes,
whereas X-Ray crystallography requires samples in a three-dimensional (3D) crystalline
form. The hydrophobic contacts required to maintain the structural integrity of membrane
proteins within these crystals can either be satisfied by detergents or in case of lipidic cubic
phases (LCP) by lipid molecules. In this review, we survey the currently available mem-
brane mimetic systems, weigh their advantages, as well as their disadvantages, evaluate
how they impact the structural and functional states of membrane proteins and assess their
suitability for various biophysical methods.
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2. Detergent Micelles

The archetype of membrane mimetics are detergents, which are routinely used to
solubilize membrane proteins. Detergents are amphipathic molecules, which self-assemble
to form micelles in aqueous solutions. Based on their molecular structure and properties,
namely the charge of their hydrophilic head groups, detergent molecules can be subdi-
vided into ionic, non-ionic, and zwitterionic detergents. Thereby, ionic detergents such as
sodium dodecyl sulfate (SDS) are considered “harsh”, due to their (differently pronounced)
denaturing effect on membrane proteins, ranging from minor structural alterations [17] to
loss of function and complete unfolding [18]. Notably, some membrane proteins remain
rather unaffected by ionic detergents. In particular, bacterial outer membrane proteins
have shown to be very resistant to SDS denaturing, due to extensive hydrogen bonding
networks stabilizing the transmembrane β-barrels of these proteins. In fact, the resulting
altered migration behavior in SDS page is frequently used as an indicator of the folding
state of outer membrane proteins [19,20].

For the solubilization of membrane proteins in a functional form more widely used are
“mild” non-ionic detergents, such as Octyl-L-D-glucoside (OG) and Dodecyl-L-D-maltoside
(DDM), which tend to retain the structural integrity of solubilized proteins and leave inter-
and intra-molecular protein-protein interactions intact. The latter is particularly important
for the solubilization of multimeric membrane protein complexes and especially DDM has
proven quite useful for the purification of intact complexes [21–24]. The third group are
zwitterionic detergents, such as Lauryldimethylamine-N-oxide (LDAO), the hydrophilic
head groups of which have a positive, as well as a negative charge. While, the overall
electrically neutral, zwitterionic detergents form an intermediate between ionic and non-
ionic detergents, with a stronger solubilizing potential than non-ionic detergents and a less
pronounced deactivating effect than ionic detergents [25].

The solubilization of biological membranes usually occurs via two stages with increasing
detergent concentration (Figure 2). Initially, at low detergent concentrations, the detergent
molecules insert into the lipid bilayer, resulting in destabilization and fragmentation. At high
concentration, typically exceeding the detergents critical micellar concentration (CMC),
the lipid bilayer is dissolved, resulting in binary lipid-detergent or protein-detergent,
as well as ternary lipid-protein-detergent mixed micelles [26,27]. Thereby different de-
tergents vary in their capacity to solubilize different cellular membranes. For example
detergents like Triton X-100 and Sarkosyl have been shown to selectively solubilize in-
ner membranes of Gram-negative bacteria and mitochondria, while leaving their outer
membranes largely unaffected [28,29]. Lipid microdomains (sometimes referred to as
lipid rafts), which typically contain cholesterol and saturated sphingo- and glycerophos-
pholipids in a liquid ordered phase, are resistant to mild detergents, such as Triton X-100,
and thus, remain as detergent-resistant membranes after solubilization [30,31]. Likewise,
the amount of endogenous lipid molecules bound to membrane proteins varies greatly
depending on the detergent used to solubilize a membrane [32]. In this context, mass spec-
trometry and in particular tandem mass spectrometry (MS/MS) is a powerful method to
characterize not only the binding of lipids to membrane proteins, but also their effects on
membrane protein oligomerization [33,34]. The choice of detergent depends ultimately
on the planned downstream biophysical characterization and especially detergents with a
low CMC, despite effectively solubilizing most membranes, can be difficult to remove and
are, thus, of limited suitability for methods requiring detergent removal [35].
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The purification of a membrane protein from a cellular membrane typically begins
with the isolation and solubilization of the membrane of interest [36]. Due to the differences
in the way detergents interact with cellular membranes, their efficient solubilization in-
volves screening for a suitable detergent [37]. Finding a detergent that also stably maintains
a membrane protein and is suitable for downstream applications can require substantial
screening work [38,39]. Once solubilized, the purification of membrane proteins follows
similar principles as the routine purification of soluble proteins, relying on chromato-
graphic methods including affinity, gel filtration, and ion exchange chromatography [36].
An alternative route to obtaining solubilized membrane proteins in a pure and folded state
is refolding into detergent micelles. To this end, membrane proteins are transferred from a
fully unfolded state in concentrated solutions of chaotropic salts into a detergent containing
refolding buffer to adopt a folded state within the detergent micelles [40,41]. Interestingly,
it was shown that in a similar way the cellular chaperone machinery can be exploited and
refolding into micelles results in exactly the same folded protein state, regardless whether
folding was initiated from a chaperone or chaotropic reagents [42]. Combined with recom-
binant protein expression in inclusion bodies, this method can expedite protein purification
and can prove particularly useful when large amounts of a protein are required. However,
despite routinely used, membrane proteins do not necessarily fold into a native structure
and refolding can result in non-native multimers and structural intermediates [43,44].

Using NMR spectroscopy membrane proteins can be directly characterized in a de-
tergent solubilized form, without the need for additional downstream modifications [45].
Particularly useful when analyzing membrane proteins with NMR spectroscopy is the use
of deuterated detergents, which eliminate interfering proton signals originating from
the detergent [46]. While, a handful of membrane protein structures have been deter-
mined using NMR spectroscopy [47–50], the real strength of the method lies in its ability
to probe dynamic processes [51]. In the micellar state NMR spectroscopy determines
the residue-specific dynamics, can probe interactions with ligands and detect conforma-
tional changes in solution [45,52]. Moreover, unlike other structural techniques, NMR
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spectroscopy can yield detailed information on highly dynamic and unstructured regions
of membrane proteins, such as loops [53,54]. Therefore, NMR spectroscopy could capture
the subtle differences imposed on the structural conformation of membrane proteins by
different detergents [54]. In this context, it should be stressed that, despite often resulting
in high-resolution structural information, detergent stabilized states of membrane proteins,
especially in Dodecylphosphorylcholine (DPC), might often be non-functional states [55].

Actuated by the recent resolution revolution [56], single-particle cryo-EM emerged
as another powerful technique to characterize membrane proteins in detergent micelles.
Unlike NMR spectroscopy, which excels at characterizing small proteins, single-particle
cryo-EM is best suited for large proteins and protein complexes [57]. Several membrane
protein structures stabilized in detergent micelles could be solved by cryo-EM, including
bacterial β-barrel assembly machinery (BAM) complex, mitochondrial TOM core complex,
and the spinach cytochrome b6f complex [58–60]. However, despite efforts to streamline
the preparation of membrane proteins for cryo-EM, the methodology is far from being
routine work [61,62]. Detergent concentrations typically used in preparations of membrane
proteins tend to interfere with the controlled formation of thin vitrified ice, often resulting in
reduced image contrast [63]. Therefore, the preparation of membrane proteins for cryo-EM
requires thorough removal of excess detergent [64]. Moreover, the surface to volume ratio
of a sub-micrometer thin water film on an EM grid is much higher than in conventional
liquid droplets and it is not yet fully clear how the consequentially altered fluid dynamics
and the air-water interface impact solubilized macromolecules [61,65].

While, detergents arguably form a less than ideal environment for many membrane
proteins their usage remains in most cases unavoidable. With very few exceptions, the sol-
ubilization of membrane proteins from the membranes of an expression host is commonly
accomplished through the use of detergents [66,67]. The majority of membrane mimetics
require the reconstitution of a membrane protein, which naturally requires the prior solubi-
lization and purification of said membrane protein. Detergent micelles are therefore almost
always the starting point for additional downstream applications involving more complex
membrane mimetics.

3. 3D Crystals and Lipidic Cubic Phase

Despite a growing toolbox of alternative membrane mimetics, to date the majority
of membrane protein structures have been solved by X-ray crystallography, utilizing 3D
crystals of membrane proteins. The crystallization of detergent-stabilized solubilized
membrane proteins follows similar methods and principles as the crystallization of sol-
uble proteins based on vapor diffusion, microdialysis, and batch crystallization [68,69].
Crystals are, thereby, formed from a protein solution, supersaturated with precipitat-
ing agents such as salts or polyethylene glycol (PEG), which drive the aggregation of
protein-detergent-complexes into ordered crystals [68]. Within these type II crystals the hy-
drophobic surfaces of membrane proteins remain satisfied through the co-crystallized
detergent micelles, while the crystal lattice is preferentially formed by polar protein-protein
interactions [70,71]. Successful crystallization often depends on the choice and nature
of the detergent and high detergent concentrations or the use of detergents with a large
micelle size can impair crystal formation [69].

Following the first high-resolution crystal structure of a membrane protein, the photo-
synthetic reaction center from Rhodopseudomonas viridis [72], a great variety of membrane
protein structures could be solved using X-ray crystallography. These include ground-
breaking structures such as bacterial potassium channel KcsA [73] and lactose permease
LacY [74], which resulted in unprecedented insight into the molecular details of these pro-
teins in particular and membrane proteins in general. Nevertheless, it should be noted that
solving crystal structures of membrane proteins often only is possible due to substantial
molecular engineering. This includes the introduction of mutations, which arrest proteins
in a certain conformation [75]—an effect, which can also be achieved through the binding
of ligands or antibody fragments [76,77]—deletions of parts of the proteins to eliminate
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unfavorable crystal contacts [78], or chimeric modifications of proteins [79]. In addition,
ambiguities can inhere in crystal structures, imposed by the crystallization conditions,
together with uncertainties in the identity and position of atoms and molecules within
crystal structures [80]. Even similar sample preparations can lead to altered structures,
as for example evidenced in the translocator protein (TSPO) that yielded two different
α-helical bundles depending if the structure was determined in milder DM or DDM [81,82],
compared to the harsher zwitterionic DPC [83] and it remains unclear whether the differ-
ent structures represent simply alternative states of the protein. However, the structures,
obtained in the milder detergents, are in better agreement with known functional mutations
and the ligand binding site shows a larger degree of conservation [81].

A valuable alternative to detergent-micelle mediated 3D crystallization of membrane
proteins is crystallization in the lipidic cubic phase (LCP) [84]. LCP takes advantage of
the propensity of monounsaturated monoacylglycerols, such as monoolein, to form a
bicontinuous cubic mesophase, a single lipid bilayer organized into a three-dimensional
bilayer structure containing an aqueous channel system [85]. The cubic phase is formed
spontaneously when the lipid is mixed with solubilized or dispersed protein solutions,
while crystal formation is driven by the addition of a precipitant [86]. In addition to
monoolein, LCP can contain various accessory lipids, which can either remain from co-
purification with a membrane protein or can be specifically added during the crystallization
process [87]. Through the stabilization in a lipid bilayer, LCP is thought to provide a
more natural environment for membrane proteins and LCP has been successfully used,
particularly with membrane proteins which have small polar surfaces, such as the seven-
helix-bundles of rhodopsins [88–90] and G-protein-coupled receptors (GPCRs) [91,92].

One limitation of LCP crystallization is its propensity to result in microcrystals [85].
However, microcrystals grown in LCP are ideally suited to be studied using serial fem-
tosecond crystallography (SFX) [93]. The latter utilizes ultrashort pulses generated by an
X-ray free-electron laser (XFEL) [94] to sequentially collect data from a continuous stream
of microcrystals [95]. By the short duration of highly intense X-ray pulses the crystals are
vaporized before radiation damage can occur [94], thus facilitating the time-resolved char-
acterization of dynamic structural transitions in crystallized proteins [96]. These studies
have provided remarkable insight into the activation of different photoreceptors, by vi-
sualizing the so-called protein quake [97–99]. In addition to SFX, another method that
has been show to provide high-resolution structural data of microcrystalline membrane
proteins is so-called microcrystal electron diffraction (Micro ED) [100,101], which was
recently applied to study the tetrameric sodium channel NaK in DDM based crystals [102]
as well as the human adenosine A2A receptor in LCP [103].

4. Bicelles and Nanodiscs

The first attempt to incorporate a substantial amount of lipids into solubilized mem-
brane protein systems were bicelles. Bicelles (bilayered micelles; Figure 1) are formed by
phospholipids, traditionally dimyristoyl-phosphatidylcholine (DMPC), in a planar dis-
coidal bilayer assembly, which are surrounded by a scaffold of either a detergent, such as
CHAPS, or short-chained lipids, such as dihexanoyl-phosphatidylcholine (DHPC) [104].
Thereby, bicelles can be designed to adopt a variety of shapes, ranging from small bilayer
discs over wormlike structures to large perforated lamellar assemblies, dictated by the lipid-
to-detergent, or longchain-to-shortchain lipid ratio, respectively [105,106]. In order to re-
constitute membrane proteins into bicelles either a detergent-stabilized membrane protein
is integrated into preformed bicelles or the bicelles can be formed through the addition of
detergents to proteoliposomes that were assembled beforehand [106]. Through the incorpo-
ration of lipid molecules, bicelles have been shown to outperform micelles in their ability
to maintain membrane proteins in a functional state [107,108]. However, it has also been
shown that different lipid compositions of bicelles significantly influence membrane pro-
tein dynamics [109]. Moreover, molecular dynamics (MD) simulations indicate increased
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peptide solvation of transmembrane segments within small bicelles compared to larger
bilayer systems [110].

While, originally developed as a membrane system for solid state NMR spectroscopy [111],
bicelles found a broad audience in biophysics [106,112]. Due to the increased lipid content,
bicelles are larger than most purely detergent-based micellar systems. Yet, their molecular
tumbling permits detailed characterization of reconstituted membrane proteins by solution
NMR spectroscopy [113,114]. By stabilizing the transmembrane region of the HIV-1 enve-
lope spike (Env) in DMPC/DHPC bicelles the atomic resolution structure of the trimeric
assembly could be determined [115–117], which remained elusive in the previous cryo-EM
structure, possibly due to the detrimental influence of the DDM/sodium deoxycholate
micelles [118]. Likewise, a direct comparison of the dimeric transmembrane domain of
Glycophorin A in DPC micelles and DMPC/DHPC bicelles, respectively, showed reduced
conformational fluctuation and enhanced stability of the transmembrane α-helixes in
the bicellar lipid environment [119].

Bicelles have also been implemented as an alternative crystallization method trying
to combine the incorporation of lipids, as used in LCP, with the facility of detergent
based crystallization [120]. Bicelle crystallization exploits the temperature-dependent
ability of lipid/amphiphile mixtures to exchange between different three-dimensional
structural arrangements [121]. When this concept was initially introduced with studies of
bacteriorhodopsin, the protein was found to be embedded in bicelles as a stable monomer
instead of its usual trimeric assembly [120]. Bicelle-based 3D crystals have since these early
studies successfully been used with multiple membrane proteins, including the human G-
protein-coupled receptor (GPCR) β2 adrenergic receptor (β2AR) [122], and the eukaryotic
mitochondrial voltage-dependent anion channel (VDAC) [123].

Evolving from bicelles, the recent years have seen great development in the field of
nanodiscs. Collectively, the term nanodiscs refers to the lipid bilayer particles similar to
discoidal bicelles, which are surrounded by a scaffolding molecule (Figure 1). Yet, the size-
range in which scaffolded nanodiscs can be prepared is somewhat limited, compared to
bicelles. Following the first account of a lipid nanodisc surrounded by membrane scaffold
protein (MSP) [124], several other types of scaffolds have been described, including saposin
proteins (salipro) [125], as well as copolymer-scaffolded nanodiscs utilizing styrene-maleic
acid (SMA) and diisobutylene/maleic acid (DIBMA) [126,127]. The formation of nanodiscs
follows similar principles as the formation of bicelles, starting from a mixture of detergent-
solubilized lipid, detergent-solubilized protein, and MSP or saposin, respectively, and is
driven by subsequent detergent removal [125,128,129].

Unlike protein-based nanodiscs, which require the reconstitution of membrane pro-
teins from a detergent-solubilized micellar state, co-polymers have shown certain detergent-
like properties. When mixed with membrane preparations, these polymers can extract
“native nanodiscs” containing membrane proteins together with a fraction of the lipid
molecules surrounding the proteins [130,131]. While, nanodiscs certainly have the ability
to preserve the local lipid composition around a membrane protein, they cannot main-
tain membrane asymmetry [132]. The latter is due to the dynamic nature of the different
nanodisc systems. On the one hand equilibration between both leaflets can occur when
lipid molecules flip around the edges of the nanodisc and on the other through diffusional
as well as collisional transfer. Polymer-scaffolded nanodiscs have been shown to readily
exchange proteins, lipids, and polymer components at much higher rates compared to MSP-
scaffolded nanodiscs or unilamellar lipid vesicles [133,134]. In contrast, MSP-scaffolded
nanodiscs have been found to exhibit internal lipid dynamics, which are comparable to
lipids in liposomes [135].

Nanodiscs have been widely used with a wide range of biophysical methods, in-
cluding NMR spectroscopy [136–138], electron microscopy [139,140] and atomic force
microscopy [141]. Therefore, the use of nanodiscs has proven successful even with complex
systems. For example, individually MSP-nanodisc-stabilized inner and outer membrane
components of bacterial tripartite efflux pumps MexAB–OprM and AcrAB–TolC could be
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recombined to form stable intact complexes bearing two separate nanodiscs [142]. The open
pore state of bacterial Tc toxin complex TcdA1, which could not be sufficiently stabilized
in Tween-20 detergent micelles or liposomes [143,144], could be resolved in high detail
embedded in nanodiscs [145], whereas the corresponding crystal structure could only
reveal a closed pre-pore state [143]. Likewise, when characterized in nanodiscs, aforemen-
tioned HIV envelope protein Env showed substantial differences in its arrangement and
orientation to the membrane surface, compared to micellar and bicellar environments [146].

Direct comparisons of membrane proteins in micellar, bicellar and nanodisc systems
revealed distinct differences between these membrane mimetics. For example, the bac-
terial outer membrane protein OmpX has been shown to form a stable β-barrel in all
three environments, however, the dynamics and molecular motion differed substantially
between the mimetics [147,148]. Similarly, the comparison of outer membrane protein
BamA in LDAO micelles, DMPC/DHPC bicelles, and MSP-bounded DMPC nanodiscs
suggested altered dynamics between the three environments [149]. Likewise, the α-helical
tetrameric potassium channel KcsA has been shown to have reduced stability in nan-
odiscs, indicating altered dynamic properties, compared to DDM micelles [150]. In contrast,
the CC-chemokine receptor 5 (CCR5), a GPCR which is inherently instable in detergents,
such as DDM, could be stabilized in nanodiscs for prolonged NMR studies [151]. The hu-
man anion channel VDAC showed nearly identical folds in micelles, bicelles, and nanodiscs,
however, unlike the first two, nanodiscs incorporated not only monomeric VDAC, but mul-
timeric states, similar to the ones observed in native membranes [152].

5. Liposomes (and Polymersomes)

Native lipid bilayers contain a diverse blend of membrane proteins, interweaved with
additional components, such as lipoproteins and carbohydrates in the form of glycopro-
teins and glycolipids [7]. In most native membranes any membrane protein of interest is
vastly outnumbered by these additional components, making it inaccessible to biophysical
investigations. Few exceptions, such as the purple membranes from Halobacteria [153,154]
or disc membranes from vertebral rod cells [155], in fact allow proteins to be studied
in native membrane isolates, which are covered in the next section. For the vast ma-
jority of membrane proteins, the alternative lies in the bottom-up reconstruction of an
artificial lipid membrane. To this end, a membrane protein of interest is solubilized and
isolated from the membrane of a suitable expression system using detergents and, naturally,
the same principles and limitations of detergent micelles apply as covered above [156,157].
Following purification, in a subsequent step, membrane proteins are reconstituted into
an artificial lipid bilayer. Reconstitution is generally achieved via one of two alternative
routes (Figure 3). In one method the self-assembly of a lipid bilayer is driven by deter-
gent removal from a ternary mixture of micelles containing the protein and separately
detergent-solubilized lipids [158]. Alternatively, the solubilized membrane protein can be
inserted into preformed liposomes [159]. In both cases assembly and membrane insertion
are driven by the removal of the detergent and can be achieved by several means, all aim-
ing at reducing the detergent concentration (far) below the CMC. Thereby, the method of
detergent removal can have a strong influence on the resulting proteoliposomes. Dialysis
can result in homogeneous vesicles, but is time-consuming and limited to detergents with
high CMC. More rapid methods, such as size exclusion chromatography, rapid dilution,
and the use hydrophobic adsorbents often result in inhomogeneous protein distribution
and in-complete detergent removal [35].
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Self-assembled lipid bilayers allow better control over the lipid-to-protein ratio and
thus can result in a very dense protein packing within the bilayer, culminating in a 2D
crystalline assembly [160,161]. However, due to the rotational freedom during assembly,
membranes formed this way typically contain membrane proteins in a non-native up-down
configuration, with either half of the proteins inserted in the bilayer in opposite directions
(Figure 3). While random orientation can occur as well during insertion into preformed
liposomes, asymmetry between the two solvent accessible poles of a membrane protein,
for example in membrane proteins containing a soluble domain, can bias insertion with
the soluble domain facing outwards (Figure 3) [159,162,163]. In fact, by fusing a soluble
domain to one side of a membrane protein, this phenomenon can be utilized to drive
unidirectional insertion of the protein into liposomes [164].

Naturally, a reconstituted artificial lipid bilayer cannot fully reassemble the complexity
of a native membrane and features like membrane asymmetry or local variations in the lipid
composition, sometimes referred to as lipid rafts, are impossible to mimic. Nevertheless,
since artificial bilayers allow precise control over the lipid composition they are ideal
proxies for detailed studies on how different lipid composition of a membrane affect
membrane proteins. The utilization of reconstituted lipid bilayers for example allowed
detailed characterization of lipid-induced topological switches in proteins of the major
facilitator family [165,166], which could be confirmed in vivo [167]. Similarly, liposomes of
varying lipid composition are a valuable tool to understanding membrane protein folding
at a molecular level. Therefore, not only the folding process from chemically denatured
states is of interest [168,169], but much focus has been laid on chaperone-dependent protein
folding [170,171].

Until challenged by the advent of single particle cryo-EM, two-dimensional (2D) crys-
talline membrane protein assemblies were the system of choice for structure determination
by EM [172,173]. Unlike X-Ray crystallography, which requires 3D crystals that are some-
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times difficult to obtain from membrane proteins, electron crystallography is ideally suited
for the 2D crystals of membrane proteins. Electron crystallography revealed the first high
resolution structures of Bacteriorhodopsin [174], Aquaporin [175], and light-harvesting
complex [176]. A rather recent development is the use of protein-containing liposomes in
cryo-electron tomography combined with subtomogram averaging for the high-resolution
reconstruction of membrane proteins [177–179]. Moreover, liposomes have been increas-
ingly used to investigate membrane proteins using solid-state NMR spectroscopy. Recent
advances in fast and ultra-fast (>100 kHZ) magic angle spinning (MAS) solid-state NMR
spectroscopy based on 1H-detection resulted in enhanced sensitivity and resolution com-
parable to solution NMR, required to facilitate high resolution NMR studies of membrane
proteins [180,181]. Solid-state NMR spectroscopy has, for example, been used to determine
structural the details and conformational rearrangements of α-helical transmembrane
proteins such as KcsA reconstituted in lipid bilayers [182,183], as well as bacterial β-barrel
outer membrane proteins such as OmpA and OmpG [184,185]. Importantly, all of these
structures revealed nuanced differences, such as structural alterations and altered dynamics
compared to previously reported structures.

Another powerful tool for characterizing the membrane proteins reconstituted in
lipid bilayers is atomic force microscopy (AFM), due to its ability to be operated in liquid
environments at physiological temperatures [186,187]. Adsorbed to atomically flat sur-
faces, such as muscovite mica or highly oriented pyrolytic graphite (HOPG), AFM allows
imaging of the membrane topographies of solid-supported planar lipid bilayers at molec-
ular resolution [188–190]. AFM could reveal ligand-induced conformational changes of
membrane proteins [191], details on the electrostatics of their accessible surfaces [192,193]
and their dynamic behavior in lipid bilayers [194,195]. Moreover, AFM allows the direct
physical manipulation of individual membrane proteins, facilitating detailed studies of
their behavior under force [196–198], their folding behavior [199–201], as well as their
interaction with tethered ligands [202].

In addition to being used for the structural characterization of membrane proteins,
lipid bilayers allow the functional examination of membrane proteins, in particular molec-
ular transport phenomena, which cannot be probed in solubilized states. Therefore,
electrophysiological measurements, either based on fused liposomes or utilizing black
lipid membranes, allow detailed characterization of diffusion through transmembrane
pores as well as probing their electrochemical properties [203–206]. Similarly, molecular
transport is routinely studied in intact liposomes based on osmotic swelling. The latter
is particularly powerful when combined with fluorogenic reactions conducted inside
the liposomes lumen in stopped-flow experiments [207,208].

The ability of artificial lipid bilayers to maintain membrane proteins in a functional
state is showcased by their use as a bottom-up platform for the assembly of nanocells in syn-
thetic biology, whereby membrane proteins are embedded in liposomes to create functional
systems with potential applications as nano-sized reaction compartments, drug deliv-
ery vehicles and novel therapeutics [209–211]. In this context, a biomimetic alternative
to lipid bilayers are membranes formed from amphiphilic block copolymers [212–214].
While the physical properties of these are very different from lipids, their bilayer forming
abilities are driven by the same principles, and polymersomes can effectively maintain mem-
brane proteins in a functional form [215,216]. In fact, in mixed polymer-lipid bilayers under
certain conditions membrane proteins have been shown to preferentially reside within
the polymer rather than the lipid fraction, depending on their relative fluidity [217,218].

6. Native Membranes

Whereas so far no mimetic entirely met the physiological requirements of membrane
proteins, native membranes, in the majority of cases, cannot meet the experimental re-
quirements of the modern biophysicist. Native membranes are notoriously difficult to
handle. Typically, they contain a particular protein of interest only in small quantities
over a much larger background of other membrane proteins. Nevertheless, native mem-
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brane preparations from E. coli, also known as Kabackosomes, were used to characterize
molecular transport through membrane proteins long before the first membrane protein
structures were uncovered [219,220]. Moreover, some specialized cellular membranes
natively contain high densities of distinct membrane proteins, which are sufficiently pure
to permit biophysical studies directly in the unaltered native membranes. The best example
are the purple membranes from archaea such as Halobacterium salinarum and Halobacterium
halobium, which naturally contain bacteriorhodopsin in a 2D crystalline form [154]. In
fact, the first structural models of bacteriorhodopsin were determined using native purple
membranes isolated from H. halobium [221]. While later preparations employing increased
2D crystals, obtained through detergent treatment of purple membranes, resulted in mod-
els with increased resolution [174,222], direct comparison of detergent treated crystals to
native membranes showed that lipid boundaries separating individual trimers within the
native membranes were removed [223]. A similar approach, based on partial de-lipidation
was used to observe crystalline assemblies of porins in situ, in bacterial outer membrane
sacculi [224].

While these early electron crystallographic studies required 2D crystalline assemblies
of membrane proteins, advancements in cryo-electron tomography nowadays allow di-
rect in situ analysis of membrane proteins in non-crystalline native membranes [225,226].
Although, data on integral membrane proteins so far remains sparse, the method has al-
ready proven its potential. Aided by membrane targeting nanoparticles, active preprotein-
carrying TOM–TIM23 supercomplexes could be localized and subsequently visualized in
situ in yeast mitochondrial membranes [227]. Intriguing examples showcasing the potential
of cryo-electron tomography are the in situ structures of envelope spanning bacterial secre-
tion systems, such as the structure of an intact primordial type III secretion system, which
could be determined in Chlamydia trachomatis elementary bodies [228]. Other examples
are the in situ structures of AcrAB–TolC efflux pump in intact E. coli cells [229], the type
IV secretion system in intact Legionella pneumophila cells [230], as well as the membrane
complex of a type VI secretion system in E. coli [231]. A very promising approach to study
membrane proteins in situ is the enrichment of secreted extracellular vesicles with specific
proteins, which could be exploited to study integral type I membrane proteins from C.
elegans as well as Herpes simplex virus [232].

In addition to electron microscopy, solid-state NMR spectroscopy has been successfully
employed to study membrane proteins embedded in native membranes. In this context,
native Escherichia coli inner membranes were used as a proxy to characterize Anabaena
sensory rhodopsin (ASR), which was found to form hexagonal packing in DMPC/DMPA
liposomes but a square lattice assembly in the E. coli membrane [233]. Furthermore, solid-
state NMR spectroscopy was used to characterize bacterial BAM complexes in native
outer membranes, suggesting increased structural disorder in the native environment [234].
Recently, a combination of cryo-electron tomography and of 1H-detected solid-state NMR
spectroscopy was employed to reveal different conformations of the bacterial membrane
protein YidC in native membranes [235].

One exceptional method to study native membranes is AFM, which does not depend
on the preparation of highly homogeneous samples [236,237]. The ability of AFM to
imaging native membranes at molecular resolution was initially demonstrated with native
purple membranes. Following initial topographies, which allowed discrimination of
individual proteins [238], AFM was optimized to reveal the submolecular details of single
bacteriorhodopsin molecules in great detail [239]. Using AFM, two-dimensional arrays
of aquaporin 0 (AQP0) could be observed in native lens core membranes, surrounded by
densely packed gap junction channels, and AQP0 array formation could be followed using
time-lapse AFM [240]. Similarly, AFM could reveal native supramolecular assembly of
VDAC in dense and sparse domains in native yeast mitochondrial outer membranes [241]
as well as the closely packed, paracrystalline dimeric arrangement of rhodopsin arrays in
native mouse disc membranes [242]. More recently, AFM was used to distinguish small and
large protruding proteins in dimeric photosystem II oxygen-evolving complexes within
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native spinach grana membranes [243]. In addition to high-resolution imaging, AFM-
based single-molecule force spectroscopy (SMFS) was used to probe the force response of
individual membrane proteins in native membranes [196]. In this context, protein-enriched
outer membrane vesicles from Escherichia coli were recently employed to reveal subtle
differences in the dynamics of outer membrane proteins between native membranes and
reconstituted lipid bilayers [244,245].

7. Conclusions and Future Perspectives

The last several decades have seen an enormous increase in efforts to optimize mem-
brane mimetics to facilitate the structural and functional characterization of membrane
proteins using biophysical methods leading to a constantly growing toolbox of diverse
options (Table 1). Multiple membrane proteins could be characterized in several differ-
ent mimetics, allowing the direct comparison and revealing the influence of the different
mimetics on the structure and dynamics of these membrane proteins. Whereas for some
membrane proteins these different tools are all in good agreement, for others vast differ-
ences have been observed, imposed by the respective mimetics used. For some membrane
proteins, only a small set of mimetics could stabilize their folded state sufficiently to permit
biophysical characterization, whereas other mimetics let to destabilization, impairing de-
tailed characterization. Only in very few cases could membrane proteins be characterized
in their native bilayer environment, some of which only revealed subtle, possibly neg-
ligible differences to mimetic systems, whereas others were substantially impacted by
the mimetic environment.

Table 1. Pros and cons of different membrane systems.

System Pro Contra Suitable methods

Detergent micelles Universally used; starting point
for downstream applications

Can have denaturing effects; may
disrupt complexes; de-lipidation
of membrane proteins

Single-particle Cryo-EM;
solution NMR; X-ray / neutron
solution scattering; MS/MS

3D crystals
Most prevalent system for
structure determination; can
include lipids (LCP)

Non-native crystal contacts; often
requires protein engineering;
proteins are “locked” in one state;
crystallization artifacts

X-ray crystallography; Micro-ED

Bicelles
Lipid system; can be used for 3D
crystallization; variety of shapes
and sizes

Limited lipid diversity; altered
lipid dynamics

Solution NMR; solid-state NMR;
(X-ray crystallography)

Nanodiscs
Lipid system; broad range of
lipid compositions; possible to
extract native lipid composition

Limited size range; altered lipid
dynamics; membrane asymmetry
is lost

Single particle Cryo-EM; solution
NMR; Cryo-electron
tomography; AFM

Liposomes

Lipid system; Broad range of
lipid compositions; high protein
density possible; facilitate
transmembrane transport studies

Often non-native protein
orientation; not possible to create
asymmetric bilayers

Electron crystallography;
Cryo-ET; solid-state NMR; AFM;
electrophysiology; fluorometry

Native membranes Native environment
Often difficult to handle; low
content of protein of interest over
“contaminants”

Cryo-ET; solid-state NMR; AFM

Unlike the case of the polar bear, which can in fact be observed in its natural en-
vironment, as well as in captivity, thus, allowing a direct comparison between the two
environments, for the majority of membrane proteins observations embedded in the na-
tive lipid environment are until now inexistent. Despite decades of studying membrane
proteins with exceptional effort and the development of a plethora of groundbreaking
sophisticated methods, we have only caught the first glimpses providing snapshots of their
structural details within artificial environments. For many membrane proteins, these stud-
ies yielded priceless insight into their molecular architecture, which are supported by
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a multitude of functional investigations in vitro, as well as in vivo, yet, their behavior
under native cellular conditions remains elusive. Clearly, to close this gap much more
research on membrane proteins embedded in their native environment is necessary in
the future. The recent trend towards in situ membrane protein biophysics will certainly
help to illuminate this blind spot and provide in-depth insight into the details underlying
membrane protein function.
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Abbreviations
AFM Atomic force microscopy
AQP0 Aquaporin 0
ASR Anabaena sensory rhodopsin
β2AR β2 adrenergic receptor
BAM β-barrel assembly machinery
CCR5 CC-chemokine receptor 5
CMC Critical micellar concentration
DM Decyl-L-D-maltoside
DHPC Dihexanoyl-phosphatidylcholine
DIBMA Diisobutylene/maleic acid
DMPC Dimyristoyl-phosphatidylcholine
DDM Dodecyl-L-D-maltoside
DPC Dodecylphosphorylcholine
EM Electron microscopy
ET Electron tomography
GPCRs G-protein-coupled receptors
HOPG Highly oriented pyrolytic graphite
LDAO Lauryldimethylamine-N-oxide
LCP Lipidic cubic phases
MAS Magic angle spinning
MS Mass spectrometry
MSP Membrane scaffold protein
MicroED Microcrystal electron diffraction
MD Molecular dynamics
NMR Nuclear magnetic resonance
OG Octyl-L-D-glucoside
PEG Polyethylene glycol
SDS Sodium dodecyl sulfate
SFX Serial femtosecond crystallography
SMA Styrene-maleic acid
SMFS Single-molecule force spectroscopy
Salipro Saposin lipo-protein
XFEL X-ray free-electron laser
VDAC Voltage-dependent anion channel
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