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Hypoxia-inducible factor-1a restricts the anabolic actions of

parathyroid hormone

Julie L Frey1, David P Stonko1, Marie-Claude Faugere2 and Ryan C Riddle1,3

The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control
homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis
necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid
accumulation of bone. These findings suggested thatHif-1 exerts distinct developmental functions and acts as a
negative regulator of bone formation. To investigate the function of Hif-1a in osteoanabolic signaling, we
assessed the effect of Hif-1a loss-of-function on bone formation in response to intermittent parathyroid
hormone (PTH). Mice lacking Hif-1a in osteoblasts and osteocytes form more bone in response to PTH, likely
through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this
effect, exposure of primarymouse osteoblasts to PTH resulted in the rapid induction ofHif-1aprotein levels via
a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of
Hif-1a-mediated suppression of b-catenin transcriptional activity. Together, these data indicate that Hif-1a

functions in themature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents
that reduceHif-1a function suggests the value in further exploration of this pathway to optimize the therapeutic
benefits of PTH.
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INTRODUCTION
Parathyroid hormone (PTH), an 84-amino-acid polypep-

tide, is an essential regulator of mineral homeostasis and

bone remodeling. Released by the chief cells of the para-

thyroid gland in response to deviations in serum calcium

levels, PTH primarily acts on kidney and bone to increase

calcium reabsorption and liberate calcium from bone

matrix, respectively.1 Additionally, intermittent PTH admin-

istration is recognized for its anabolic effects in bone, and

the first 34 amino acids of the hormone form the basis for

the only Food and Drug Administration-approved ana-

bolic agent to treat osteoporosis.2–4

The anabolic actions of PTH have been extensively

studied in laboratory rodent models.5 Through its actions

on the PTH receptor,6 expressed by osteoblasts and osteo-

cytes, histological analyses suggest that intermittent PTH

increases bone acquisition by increasing the number of

bone-forming osteoblasts.7–9 More recent molecular ana-

lyses have attempted to identify signaling mechanisms

and components that allow PTH to reduce bone cell

apoptosis,9 stimulate progenitor cell recruitment10 and

activate formerly quiescent bone lining cells.11 In addition

to the activation of cyclic AMP (cAMP) and protein kinase

A signaling,12 components of the insulin-like growth factor

pathway,13–15 the transforming growth factor-b path-

way10,16 and Wnt/b-catenin signaling17–18 have all been

demonstrated to be required for the full osteo-anabolic

response to PTH. The identification of factors or signaling

mechanisms that inhibit bone formation after PTH admin-

istration has been less common,19–20 but examining such

mechanisms could facilitate the development of strat-

egies to increase the therapeutic efficacy of intermittent

PTH.

Hypoxia inducible factor-1 (Hif-1) is most widely recog-

nized for its role in the cellular response to molecular

oxygen levels.21–22 A basic helix–loop–helix transcription

factor, the activity and cellular abundance of Hif-1 is regu-

lated by an oxygen-dependent proteolysis mechanism.

At normal oxygen tensions, the a-subunit of the protein

(Hif-1a) undergoes prolyl hydroxylation, which initiates

1Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2Division of Nephrology, Bone & Mineral

Metabolism, University of Kentucky, Lexington, KY, USA and 3Veterans Administration Medical Center, Baltimore, MD, USA.

Correspondence: RC Riddle (rriddle1@jhmi.edu)

Received: 30 November 2013; Revised: 24 December 2013; Accepted: 1 January 2014; Uncorrected proof published 9 April 2014

OPEN Citation: Bone Research (2014) 2, 14005; doi:10.1038/boneres.2014.5
� 2014 Sichuan University. All rights reserved 2095-4700/14

www.boneresearch.org

http://dx.doi.org/hortres
www.nature.com&sol;boneres


recognition by the von Hippel–Lindau (Vhl) tumor sup-

pressor protein, a component of the E3 ubiquitin ligase that

targets Hif-1a for proteasomal degradation. When oxygen

tensions fall below 5%, prolyl hydroxylation is inhibited; Hif-

1a accumulates and translocates to the nucleus where it

forms a dimer with the Hif-1b subunit. In vitro studies suggest

that Hif-1 regulates the expression of several hundred

genes involved in angiogenic and metabolic responses,21

and utilizes both direct promoter binding23 as well as indir-

ect mechanisms to alter gene expression.24

Within bone, Hif-1 exerts distinct developmental func-

tions. In developing bone, Hif-1 generated signals are

required for angiogenesis, which appears to be necessary

for initial specification of bone-forming osteoblasts.

Consistent with this idea, mice lacking Hif-1a in osteoblasts

and osteocytes develop poorly vascularized bones with

reduced cortical and trabecular bone volume, while Hif

overexpression results in highly vascularized and dense

bone.25–26 As Hif-1a mutant mice mature, a second inhib-

itory function emerges such that Hif-1 acts as a negative

regulator of bone formation. In this regard, cortical and

trabecular bone volume normalize with age and Hif-1a

mutants are more sensitive to mechanical stimuli.27

In this study, we investigated the function of Hif-1a in

osteo-anabolic signaling by assessing the effect of Hif-1a

loss-of-function on bone formation in response to parathy-

roid hormone. In addition to hypoxia, Hif-1a expression is

induced by a number of stimuli and signaling pathways

critical for normal osteoblast function, including some

that are used by PTH to increase bone formation.27–29

Moreover, PTH stimulates vascular remodeling in bone,30

which suggests two potential mechanisms by which Hif-1

might impact PTH-induced anabolism. Here, we dem-

onstrate that PTH administration results in Hif-1a expression

by osteoblasts both in vivo and in vitro, and that by inter-

acting with b-catenin, Hif-1a suppresses the anabolic res-

ponse. As a result, the removal of Hif-1a from osteoblasts

and osteocytes sensitizes bone to PTH treatment by enhan-

cing the activity of osteoblasts. These findings indicate

that Hif-1a is a more general suppressor of osteo-anabolic

signaling and acts to inhibit signals beyond those asso-

ciated with mechanical loading.

MATERIALS AND METHODS
Generation of transgenic mice

The generation of mice lacking Hif-1a in osteoblasts and

osteocytes (DHif-1a) was described previously.26–27 Briefly,

OC-Cre mice31 were crossed with mice in which the sec-

ond exon of Hif-1a is floxed.32 Mice containing Hif-2a-floxed

alleles,33 Vhl-floxed alleles34 and mTOR-floxed (mTOR:

mammalian target of rapamycin) alleles35 have been

described previously. All mice were maintained on a

C57BL/6 background. PCR analysis from ear or tail biopsies

was used to confirm genotypes. The Institutional Animal

Care and Use Committee of the Johns Hopkins University

School of Medicine approved all animal procedures.

Administration of human PTH in vivo

Female DHif-1a and control mice were grown until

10 weeks of age at which point daily (7 day per week)

subcutaneous injections of 100 mL vehicle or human PTH

1–34 (Bachem Inc., Torrance, CA, USA) were initiated. PTH

concentrations (20 mg?kg21 or 40 mg?kg21) were adjusted

weekly based on body mass measurements. All mice were

sacrificed at 16 weeks of age. Blood samples were col-

lected at sacrifice for analysis of serum markers of bone

resorption and formation. Serum was collected and imme-

diately stored at 2806C. Serum concentrations of C-terminal

telopeptide (RatLaps; IDS Inc., Scottsdale, AZ, USA) and

N-terminal propeptide of type 1 procollagen (P1NP; IDS

Inc.) were determined via commercially available ELISA.

Two additional groups of female DHif-1a and control mice

were treated with PTH (40 mg?kg21 subcutaneous) for 4

or 16 h and then sacrificed. Femurs were dissected and

prepared for immunohistochemical analysis of Hif-1a

expression (sc-10790; Santa Cruz, Dallas, TX, USA) accord-

ing to standard techniques or homogenized in TRIzol

(Invitrogen, Grand Island, NY, USA) for RNA analysis after

flushing the bone of marrow.

Skeletal analysis

To examine bone architecture, the mouse femur was

scanned using a desktop microtomographic imaging sys-

tem (Skyscan 1172; Skyscan, Kontich, Belgium) in accord-

ance with the recommendations of the American Society

for Bone and Mineral Research.36 The femur was scanned

at 50 keV and 200 mA using a 0.5 mm aluminum filter

with an isotropic voxel size of 10 mm. The resulting two-

dimensional images are shown in gray scale. Trabecular

bone parameters were assessed in the distal femur 500 mm

proximal to the growth plate and extending for 2 mm (200

CT slices). Cortical bone parameters were assessed at the

femoral midshaft and represent an average of 50 CT slices

(500 mm). Dynamic measures of bone formation were

assessed by injection of two sequential 0.2 mL doses of

calcein (0.8 mg?mL21) delivered 3 and 10 days prior to

sacrifice. The femur was fixed in ethanol, dehydrated

and embedded in methylmethacrylate. Three micron sec-

tions were cut with a Microm microtome and stained with

Mason-Goldner trichrome stain. The number of osteoblasts

and osteoclasts per bone perimeter were measured at

standardized sites under the growth plate at a magnifica-

tion of 3200 using a semi-automatic method (Osteoplan II;

Kontron, Munich, Germany). These parameters comply

with the guidelines of the nomenclature committee of

the American Society for Bone and Mineral Research.37–38
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Osteoblast isolation and culture

Osteoblasts were isolated from the calvaria of newborn

Hif-1a-floxed, Hif-2a-floxed, mTOR-floxed and Vhl-floxed

mice by serial digestion in 1.8 mg?mL21 collagenase type

I and maintained in a-MEM (minimum essential medium,

alpha modification) supplemented with 10% FBS (Fetal

bovine serum) and 1% penicillin/streptomycin. To disrupt

Hif-1a, Hif-2a, mTOR or Vhl expression, osteoblasts were

infected with control adenovirus expressing green fluor-

escent protein or adenovirus expressing Cre recombinase

(Vector Biolabs, Philadelphia, PA, USA) at an MOI (multipli-

city of infection) of 100. Osteoblasts were harvested 48 h

after adenoviral infection and deletion efficiency was

assessed in a portion of the cell population by real-time

PCR. The remaining cells were replated for stimulation

with PTH. Pharmacological agents were obtained from

Sigma Aldrich, dissolved in DMSO and added to cell cul-

tures with appropriate vehicle controls 30–60 min before

PTH treatments.

Quantitative real-time PCR and chromatin

immunoprecipitation

Total RNA was extracted from osteoblasts or homogenized

femurs using TRIzol (Invitrogen) and 1 mg was reverse tran-

scribed using the iScript cDNA synthesis system (Bio-Rad,

Hercules, CA, USA). Two microliters of cDNA was subjected

to PCR amplification using the iQ SYBR Green Supermix (Bio-

Rad). Primer sequences were obtained from PrimerBank

(http://pga.mgh.harvard.edu/primerbank/index.html).

Reactions were normalized to endogenous b-actin refer-

ence transcript.

Chromatin immunoprecipitation assays were per-

formed using an Agarose ChIP Kit (Pierce, Rockford, IL,

USA) according to the manufacturer’s instructions and a

ChIP-qualified antibody specific for b -catenin (PAS-16192;

Thermo Scientific, Waltham, MA, USA). Precipitated DNA

(2 mL) was subjected to PCR amplification by qPCR and

normalized to reference reactions utilizing input DNA.

Primer sequences for the Axin2 promoter are available

upon request.

Protein isolation and assays

Protein was extracted from cultured osteoblasts in 0.1%

Triton X-100 containing protease and phosphatase inhibi-

tors. The extracts were separated on 10% SDS/polyacryla-

mide gels and transferred to PVDF (polyvinyl difluoride)

membranes. Antibodies for Hif-1a (NB100–105), Hif-2a

(NB100–122) and Hif-1b (NB100–124) were obtained from

Novus Biological. Antibodies for phospho-Akt (S473, 9721),

Akt (9272), phospho-p70 S6 kinase (9206), p70 S6 kinase

(9202), phospho-Creb (9198), Creb (9197), phospho-Erk

(9101), Erk (9107) and b -catenin (2698) were obtained

from Cell Signaling Technologies, Danvers, MA, USA.

Bound antibodies were visualized using either the Super-

signal West Femto or West Pico Substrates (Pierce). Co-

immunoprecipitation was performed overnight at 46C in

a reaction containing 2 mg of antibody specific for Hif-1a

(Novus) or b-catenin (Cell Signaling Technologies, San

Diego, CA, USA).

Statistical analysis

Results are expressed as mean6s.e.m. All statistical tests

were two-sided. A P-value less than 0.05 was considered

significant. Comparability of two groups of data was

assessed using a Student’s t-test.

RESULTS
PTH stimulates Hif-1a expression in osteoblasts

Mice that lack Hif-1a in osteoblasts and osteocytes (Hif-

1aflox/flox; Oc-CreTG/1, hereafter referred to as DHif-1a)

exhibit early deficits in both cortical and trabecular bone

architecture that are at least partially attributable to

impairments in skeletal vascularization.25–26 As the mutant

mice mature, bone architecture normalizes,27 indicating

that Hif-1a exerts distinct developmental functions and

likely acts to suppress osteo-anabolic signaling. To assess

this inhibitory function, we examined the influence of Hif-1a

on the response of osteoblasts to PTH.

To establish that Hif-1a regulates osteo-anabolic signal-

ing in response to PTH, we first examined the ability of

the hormone to induce the expression of Hif-1a in osteo-

blasts. In cultures of normoxic calvarial osteoblasts, PTH

(10 nmol?L21) rapidly increased Hif-1a protein levels, with

expression levels peaking between 2 and 4 h after stimu-

lation and remaining elevated through 8 h of treatment

(Figure 1a). Protein levels of Hif-2a and Hif-1b were not

affected. However, desferoxamine, an iron chelator that

inhibits the activity of the prolyl-hydroxylase enzymes that

initiate the targeting of Hif-a subunits for proteasomal

degradation, induced the expression of both Hif-1a and

Hif-2a (Figure 1b), indicating that the effects of PTH are

specific for Hif-1a. PTH administration also increased Hif-

1a expression in vivo as PTH treated mice (40 mg?kg21)

exhibited robust expression of Hif-1a in osteoblasts lining

trabecular bone surfaces, a subset of osteocytes, and

marrow components (Figure 1c), while saline treated ani-

mals exhibited only weak expression in these cell popula-

tions. Both in vitro (Figure 1d) and in vivo (Figure 1e), the

levels of Hif-1a mRNA were unaffected by PTH stimulation,

suggesting that the induction of Hif-1a protein occurs via a

post-transcriptional mechanism.

cAMP/protein kinase A (PKA) signaling induces Hif-1a

expression in response to PTH

PTH could increase Hif-1a protein levels without affecting

Hif-1a transcription by specifically enhancing Hif-1a trans-
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lation or by inhibiting proteasomal degradation. Since PTH

retained the capacity to increase Hif-1a protein levels in

osteoblasts deficient for Vhl (data not shown), we focused

on the induction of new Hif-1a synthesis. As expected, pre-

treatment of osteoblast cultures with cycloheximide, to

inhibit new protein synthesis, abolished the effect of PTH

on Hif-1a protein levels (Figure 2a and 2d). Moreover,

increases in the phosphorylation of Akt (S473) and p70 S6

kinase (Figure 2b) indicated that PTH activates mTOR, a

key regulator of Hif expression in response to anabolic sig-

nals.39–40 Adenoviral Cre-mediated disruption of mTOR

expression in osteoblasts containing mTORflox/flox alleles,

via an 83% reduction in mTOR mRNA levels, completely

inhibited the effect of PTH on Hif-1a protein (Figure 2c

and 2d).

We next explored the signaling mechanisms by which

PTH activates mTOR and ultimately increases Hif-1a pro-

tein. Because an increase in cellular cAMP signaling is a

primary response to PTH binding to its receptor,6,12 we ini-

tially assessed the effect of pharmacologically raising

cAMP levels on mTOR activity and Hif-1a expression.

Forskolin, which activates adenylyl cyclase, dose-depen-

dently stimulated the phosphorylation of Akt and p70 S6

kinase (Figure 2e and 2f), indicating that mTOR was

activated, and increased the levels of Hif-1a protein

(Figure 2g and 2h). To confirm these results, we pre-treated

osteoblast cultures with H-89 to antagonize the activity of

PKA, the downstream mediator of cAMP signaling. This

approach greatly impaired the ability of PTH to stimulate

the phosphorylation of Akt and p70 S6 kinase (Figure 2i–

2k), even though baseline levels of p70 phosphorylation

were increased by H-89, and abolished the increase in

Hif-1aprotein (Figure 2l and 2m). Together, these data sug-

gest a mechanism whereby PTH activates cAMP/PKA sig-

naling which in turn activates the mTOR pathway to

regulate Hif-1a expression.

DHif-1a mice are more sensitive to anabolic PTH treatment

To directly assess the effect of Hif-1aexpression on the ana-

bolic response of bone to PTH, we generated cohorts of

10-week-old female control and DHif-1a mice and admi-

nistered daily injections of PTH or saline, as a control, for

6 weeks. MicroCT analysis revealed equivalent trabecular

bone architecture in the distal femur of saline treated

control and DHif-1a mice, which is consistent with our pre-

vious study27 that demonstrated a normalization of bone

volume in Hif-1a mutants (Figure 3a–d). PTH injections

(40 mg?kg21 BW, Body weight) produced the predicted

anabolic response and increased trabecular bone

volume by 155.41% in control mice (Figure 3a and 3b) by
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increasing trabecular number (Figure 3c) and thickness

(Figure 3d). In Hif-1a mutants, PTH increased bone volume

an additional 22.86% relative to the treated control mice

(182.19% increase versus DHif-1a, saline-treated controls),

due to significantly larger increases in trabecular thickness

and slightly larger increases in trabecular number. PTH also

significantly increased cortical bone thickness, but the

effect was indistinguishable between control and Hif-1a

mutant mice (data not shown). Likewise, increases in body

weight were equivalent among control and Hif-1a mutant

mice (data not shown). When we reduced the daily dose

of PTH to 20 mg?kg21, the increase in trabecular bone

volume in the mutant mice (182.79% increase versus DHif-

1a, saline-treated controls) was identical to that of the

40 mg?kg21 treatment group, while the percent increase

in the control mice was reduced by 29.91% (Figure 3a

and 3b). Taken together, these data suggest that disrupting

the expression of Hif-1a increases the sensitivity of bone to

intermittent PTH.

To understand the cellular basis for the enhanced ana-

bolic response in DHif-1a mice, we performed dynamic

histomorphometric and serological analyses of bone

formation. Since all measures were equivalent in the

saline-treated control and DHif-1a mice, results are pre-

sented as the relative increase above this baseline level

(Figure 3e–3i). PTH increased the mineralizing surface per

bone surface to a similar extent in control andDHif-1amice

(Figure 3e), but the mutant mice exhibited a 23.2%

increase in mineral apposition rate while no effect of PTH

on this parameter was observed in the control mice

(Figure 3f). This led to a greater overall increase in bone

formation rate in the mutant mice relative to the control

mice (Figure 3g). Similarly, serum levels of P1NP (Figure 3h),

a marker of bone formation, were increased to a greater
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extent in the mutant mice relative to controls, while the

levels of C-terminal telopeptide (Figure 3i), a marker of

bone resorption, were increased to a similar degree.

Thus, the amplified sensitivity of Hif-1a mutant mice to PTH

and augmented bone formation response appear to be

due to an increase in the functional activity of individual

osteoblasts.

Hif-1a antagonizes the actions of b-catenin after PTH

stimulation

Finally, we assessed cellular signaling mechanisms that

might account for the increased responsiveness of Hif-1a

mutant mice to PTH. Calvarial osteoblasts were isolated

from Hif-1aflox/flox mice and infected with adenoviral con-

structs expressing Cre to eliminate Hif-1a expression

(Figure 4a) or green fluorescent protein as a control. We

next examined the effect of eliminating Hif-1a expression

on the activation of the primary PTH-responsive pathways,

but the increase in cellular cAMP levels (Figure 4b) and the

phosphorylation of Creb and Erk (Figure 4c) were similar in

control and Hif-1a deficient osteoblasts. By contrast, the

increase in Axin2 and Nkd2 mRNA levels was enhanced

after PTH treatment in DHif-1a osteoblasts relative to

those of controls (Figure 4d and 4e), suggesting that the
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activation of b-catenin was increased.41 To test the spe-

cificity of this apparent inhibitory effect of Hif-1aon b-cate-

nin activity, we overexpressed Hif-1a by eliminating the

expression of Vhl (Figure 4f), and as expected this genetic

manipulation impaired the ability of PTH to increase the

expression of Axin2 (Figure 4g). The expression of Hif-1a in

response to PTH did not alter the accumulation or nuclear

localization of b-catenin (Figure 4h), but rather Hif-1a

directly interacted with b-catenin (Figure 4i) and acted

to inhibit the binding of b-catenin to the promoter of target

genes (Figure 4j). We observed a similar effect in vivo as PTH

produced a significant increase in Axin2 mRNA levels in the

femurs of DHif-1a mice, but not those of control mice. These

data imply that the enhanced bone formation response
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evident in Hif-1a mutant mice stems from the elimination of

Hif-1a-mediated suppression of b-catenin signaling.

DISCUSSION
In this study, we demonstrate that the transcription factor

Hif-1a acts to suppress the anabolic actions of parathyroid

hormone. Hif-1a protein levels were rapidly upregulated

both in vitro and in vivo by PTH stimulation and mice ren-

dered deficient for Hif-1a in osteoblasts and osteocytes

were more responsive to intermittent administration of

the hormone. The more dramatic increase in bone forma-

tion evident in Hif-1amutant mice appears to result from an

increase in the performance of individual osteoblasts sec-

ondary to an enhancement of b-catenin target gene

expression.

In addition to hypoxia, Hif-1a is induced by a number

of anabolic signals relevant to bone metabolism.

Mechanical loading,42 growth factors and paracrine

factors like prostaglandins43–45 all increase Hif-1a protein

levels. Some of these factors have also been implicated

in the anabolic response of bone to PTH. Insulin-like growth

factor-1, for instance, induces Hif-1a expression,46 and

removal of its receptor diminishes bone formation in res-

ponse to the hormone.13 While insulin-like growth factor-1

might partially contribute to the induction of Hif-1a after

PTH stimulation, the rapid effect we observed suggests

a more direct effect on Hif-1a synthesis. Indeed, our

data suggest that PTH activates cAMP/PKA signaling to

increase the activity of mTOR, which can directly regulate

Hif-1a translation.39–40,47 While not directly examined here,

studies in other tissues indicate that PKA can activate

mTOR signaling via a number of mechanisms, including

the engagement of PI3K/Akt signaling and the phosphor-

ylation of TOR complex components.48–49

As alluded to above, mTOR signaling has also been

demonstrated to be an important component of the ana-

bolic response of bone to PTH, as rapamycin treatment

inhibits the increase in trabecular bone volume resulting

from high-dose PTH administration by reducing osteoblas-

tic activity.29 In light of our data, it would appear that

mTOR plays a dual role in the response of bone to intermit-

tent PTH, facilitating anabolism while also establishing a

mechanism to suppress anabolic signaling via induction

of Hif-1a expression. We focused our analysis on the

effects of Hif-1a on b-catenin signaling because of its

well-documented anabolic role in the skeleton, but we

cannot rule out the possibility that Hif-1a also regulates

the expression of factors that inhibit mTOR signaling.50

Even though angiogenesis is a well-explored response to

increased Hif-1a signaling and PTH has been shown to

induce skeletal vascular remodeling,30 it does not appear

that this effect factors into the anabolic response we

observed. If vascular remodeling and the relocalization

of blood vessels to sites of new bone formation were regu-

lated by Hif-1a, we would have expected the disruption of

Hif-1a expression to impair the osteo-anabolic response.

However, we cannot completely rule out a compensatory

effect of the closely related Hif-2a. Rather, as we have

suggested previously,27 it is likely that Hif-1a assumes an

inhibitory role in the mature skeleton to prevent unchecked

anabolic signaling and the generation of signals that

impinge on cellular function. Hif-1a is induced by reactive

oxygen species, and Hif-1-generated signals in turn reduce

new oxidant production.51–54 Therefore, induction of Hif-1a

may ensure cellular longevity and facilitate cellular repair

after the generation of cellular stressors during an anabolic

response.

The results presented here are consistent with our pre-

vious finding that Hif-1a acts to inhibit the anabolic res-

ponse to a tibia-loading regime and potentially does so

by suppressing b-catenin activity.27 However, several

important differences exist when the cellular basis of each

response is considered. Our mechanical loading study

demonstrated that Hif-1a inhibited the anabolic response

in the cortical bone envelope, but in these studies, PTH

produced similar increases in cortical bone thickness in

control and mutant mice. Likewise, the number of osteo-

blasts activated by mechanical loading was greatly

increased in Hif-1a mutant mice, but the effect of PTH on

bone formation in these mice appears to be related to

a larger increase in the functional output of individual

osteoblasts. Here, the mineralizing surface was similarly

enhanced in control and mutant mice, but the mineral

apposition rate and P1NP levels were enhanced by the

genetic removal of Hif-1a. While we cannot exclude the

possibility that the differential effects are simply the result of

different bone compartments, these data suggest that

the suppressive actions of Hif-1a may be dependent on

the cellular context and the stimulus.

Nonetheless, the significant increase in the anabolic

effect of each of these stimuli suggests that Hif-1a activity

could be targeted in therapeutic paradigms. Previous

studies have identified pharmacological molecules that

impair Hif-1a transcriptional activity or interaction with

binding partners.55–57 While these studies have primarily

focused on the prevention of tumor growth and tumor-

induced angiogenesis, these agents or molecules with

similar functions could be adapted to enhance anabolic

therapies in bone. After prolonged treatment with inter-

mittent PTH, markers of bone formation begin to decline,

suggestive of the development of a resistance to the

anabolic effects of the therapy.58–59 Whether increased

expression of Hif-1a contributes to this effect will require

additional studies. However, our studies suggest that an

agent that inhibits the expression of Hif-1a or impairs the

interaction of Hif-1a and b-catenin could be used to lower
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the therapeutic dose of PTH necessary to decrease frac-

ture risk or increase the anabolic response.

In summary, our studies support a role for Hif-1a as a

negative regulator of osteo-anabolic signaling. In early

development, Hif-1a functions in bone cells to facilitate

the vascularization of long bones, a process that is required

for normal bone acquisition. As bone matures, Hif-1a

assumes a new function that likely acts to restrain osteo-

blast and osteocyte activity and does so by interfering with

a key component of the Wnt signaling pathway. Our stud-

ies provide a broader understanding of the molecular

physiology of Hif-1a in bone cells and may lead to the

design of strategies to augment skeletal therapeutics.
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