
 International Journal of 

Molecular Sciences

Review

Tumor Microenvironment: A Metabolic Player that
Shapes the Immune Response

Shamir Cassim 1 and Jacques Pouyssegur 1,2,*
1 Department of Medical Biology, Centre Scientifique de Monaco, CSM, 98000 Monaco, Monaco;

shamir_cassim@yahoo.fr
2 University Côte d’Azur, IRCAN, CNRS, Centre A. Lacassagne, 06189 Nice, France
* Correspondence: Jacques.Pouyssegur@unice.fr

Received: 15 November 2019; Accepted: 6 December 2019; Published: 25 December 2019 ����������
�������

Abstract: Immune cells survey and patrol throughout the body and sometimes take residence in
niche environments with distinct cellular subtypes and nutrients that may fluctuate from those in
which they matured. Rooted in immune cell physiology are metabolic pathways and metabolites that
not only deliver substrates and energy for growth and survival, but also instruct effector functions
and cell differentiation. Unlike cancer cells, immune cells are not subject to a “Darwinian evolutionary
pressure” that would allow them to adapt to developing tumors but are often irrevocably affected
to local nutrient deprivation. Thus, immune cells must metabolically adapt to these changing
conditions in order to perform their necessary functions. On the other hand, there is now a growing
appreciation that metabolic changes occurring in cancer cells can impact on immune cell functionality
and contribute to tumor immune evasion, and as such, there is a considerable and growing interest in
developing techniques that target metabolism for immunotherapy. In this review, we discuss the
metabolic plasticity displayed by innate and adaptive immune cells and highlight how tumor-derived
lactate and tumor acidity restrict immunity. To our knowledge, this review outlines the most recent
insights on how tumor microenvironment metabolically instructs immune responsiveness.
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1. Introduction

Cancers evolve by multiple genetic/epigenetic processes of clonal selection, expansion, within
the adaptive landscapes of tissue ecosystems [1]. For several decades, neoplastic cells revealed
their capacity to exploit, hijack, and disrupt cellular programs that regulate cell division, survival,
and growth, leading to tumor formation and dissemination. The best-known causes of malignant
transformation are the genetic and epigenetic modifications that induce stem-cell-like properties,
such as unlimited cell division and blocked differentiation [2–4]. Metabolism and bioenergetics are
central to satisfy the multiple nutrient needs for anabolism and biomass production of malignant
proliferating cells [5–8]. In this context, fermentative glycolysis or “Warburg effect”, although low in
ATP yield/glucose molecule, represents the best fit for production of anabolic precursors required
by rapidly dividing embryonic tissues and tumors [9,10]. However, it becomes now evident that
cellular metabolism actively regulates tumorigenicity. For example, loss of the p53 tumor suppressor
may be involved in tumor transformation (independently of its well-established functions in DNA
repair and senescence), especially through the induction of anabolic pathways including glycolysis,
leading then to an early-onset metabolic tumor transformation [11]. Another example of a key role
of a mutation-driven metabolic rewiring that favors tumorigenicity is oncometabolites [12]. For
example, in human cancers, a consequence of gain-of-function mutations in isocitrate dehydrogenases
(IDHs) confers to the enzyme the ability to augment the production of D-2-hydroxyglutarate (D-2HG),
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an oncometabolite interfering with various α-KG (α-ketoglutarate)-mediated processes, ultimately
leading to the inhibition of mitochondrial ATP synthase and activation of a series of downstream
signals that involve mammalian target of rapamycin (mTOR) suppression [13,14]. The high glycolytic
flux compensates the low ATP yield by a rapid ATP formation and the synthesis of anabolic precursors,
nucleotides, amino acids, and lipids. It also induces, in rapidly growing tumors, hypoxic areas with
low glucose, and nutrients, and a unique acidic milieu with high lactate concentrations [10,15–17].
Importantly, observations from murine in vitro and in vivo models indicate that microenvironmental
depletion of glucose and accumulation of lactic acid can have harmful effects on the functionality of
the immune cells that were poised to infiltrate and eradicate tumors [15,18–20].

Cancers are highly heterogeneous, and a broad spectrum of immune cells can infiltrate human
tumor tissues [21]. Among adaptive immune cells, the tumor-infiltrating T cells are the best
documented. Various phenotypic sub-populations (CD4+ and CD8+), functional (effector, memory),
and differentiation (CD4+ T helper 1 (Th1), CD4+ T helper 17 (Th17), CD4+ Treg) states of T cells have
been described [22–24]. T cells can impact on tumor growth either through direct engagement or
through stimulation of other cells found in the tumor microenvironment. Notably, this feature has been
used in clinical settings that aim to enhance their anti-tumor effect, including T-cell-inhibitory PD-1
receptor blockade or by ex vivo engineered chimeric antigen receptor (CAR)-transduced T cells [25].

The interaction of innate and adaptive immune cells is fundamental for an effective response. The
first immune cells found in human tumors were innate cells and more specifically macrophages [26].
Although their normal role in physiological conditions is in promoting both innate and adaptive
immunity (phagocytosis of dead or dying cells and cell debris), tumors have largely reeducated them
to a phenotype that promotes tumor growth and spread [27]. Macrophages can polarize toward an
anti-inflammatory phenotype with pro-tumoral properties through alternative activation (M2) when
stimulated with IL-4 and IL-10—in contrast to M1 pro-inflammatory macrophages, which display
anti-tumor effects [27,28]. M1 and M2 macrophages are key players during inflammation as they
modulate tissue homeostasis and repair through these distinct functional specialties [29]. Growing
evidence indicates that macrophages use distinct metabolic pathways during M1 and M2 activation:
M1 macrophages boost their anabolic metabolism (anaerobic glycolysis, pentose phosphate pathway,
and fatty acid biosynthesis), whereas M2 macrophages favor catabolic metabolism and primarily
rely on oxidative phosphorylation (OXPHOS) to sustain their metabolic requirements [30]. These
characteristics provide interesting metabolic checkpoints to fine-tune macrophage deleterious behavior
in diseases, especially in the tumor microenvironment.

How metabolism regulates immune cells differentiation, function, plasticity, and how their
intracellular metabolism can affect their functionality is currently a very hot topic. As previously
introduced, tumor progression is characterized by a tangled network of relationships among different
cell types that collectively exploit metabolic rewiring and mutually influence their functionality [19,31].
Although the development of several monoclonal antibody-based therapies has shown unprecedented
responses in some cancer patients, the response rates still remain low and transient [32,33]. These
observations could potentially stem from multiple mechanisms suppressing anti-tumor immune
functions within an unfavorable tumor milieu and metabolism.

2. Tumor Cell Metabolic Features Impacts on Local Nutrients that are Critical for Immune
Cell Function

2.1. Glucose Metabolism

Maintenance of cellular bioenergetics is essential for all living cells, including immune cells
and more particularly lymphocytes [34]. As T effector cells have to move from a nutrient-replete
environment in the lymph node or spleen to distant sites of infection, they are likely to experience more
restrictive metabolic environments. Bioenergetic profiling of T cells has revealed that the metabolism of
T cells dynamically changes during activation (antigen encountering) to perform effector functions [35].
T cells switch to a program of anabolic growth and biomass accumulation, which by definition dictates
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increased demand for ATP and metabolic resources to generate daughter cells. Therefore, a shift of
activated T cells toward aerobic glycolysis has been noticed [35,36]. This rewiring is orchestrated by T
cell receptor (TCR) signaling, which promotes the coordinated up-regulation of glucose and amino acid
transporters to adjust nutrient uptake and facilitate T cell blastogenesis. In parallel, catabolic pathways
generating ATP such as fatty acid β-oxidation (FAO) are actively suppressed [37]. Consistent with the
metabolism of other non-proliferating cells, resting naïve T cells (that have not yet encountered antigen)
sustain, however, lower rates of glycolysis and predominantly oxidize glucose-derived pyruvate via
OXPHOS or engage FAO to produce ATP [31]. Similarly, long-lived antigen-specific memory T cells
are considered as a quiescent population. They adopt a metabolic profile similar to that of naïve
T cells: an increased reliance on OXPHOS and lower rates of nutrient uptake and biosynthesis, in
agreement with their increase in mitochondrial mass [31]. A recent report demonstrated that an
enhanced glycolytic metabolism of neonatal CD8+ T cells was sufficient to abrogate the formation of
memory CD8+ T cells [38]. Accordingly, this mitochondrial reliance has shown to provide a bioenergetic
advantage during secondary exposure to antigen through the rapid mitochondrial ATP production
upon TCR engagement [39]. Memory T cells may then be perceived as being metabolically primed,
with mitochondrial metabolism fueling the rapid recall response to reinfection.

Emerging evidences suggest: (1) that the metabolic alterations of T cells are critical to impair
anti-tumor immunity, and (2) that neoplastic cells are the most important players mediating this
immune suppression [40,41]. In fact, metabolic interplay and nutrient competition between cancer
cells and T cells exist and are recognized as key drivers of carcinogenesis. The increased glucose
addiction and glycolysis rate of rapidly growing cancer cells (Warburg effect) consume most nutrients
from the surrounding microenvironment [15,42,43]. As a consequence, the tumor-imposed metabolic
restrictions dramatically reduce T cell responsiveness. Importantly, a down-regulation of the glycolytic
machinery has been detected and these T cells became unable to produce cytokines and to develop
into tumor-specific T effector cells, leading to a state of anergy [44]. Glucose deprivation can prevent
tumor infiltrating CD8+ T cells function by altering interferon gamma (IFN-γ) production, a key
effector molecule having pro-inflammatory and enhanced anti-tumor properties [45] (Figure 1). It has
been proposed that these effects are mediated through the glycolytic glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) enzyme, by preventing translation of IFN-γ under low glycolytic flux [45].
AMP-activated protein kinase (AMPK), which is activated under poor nutrient conditions by an
increase of AMP:ATP ratio, also plays a key role in regulating Ifng mRNA translation [46]. Recent
findings demonstrated that the selective deletion of AMPK in T cells hampers IFN-γ and Granzyme B
production in intratumoral CD8+ T cells [47]. The absence of glucose can also suppress T cell receptor
(TCR)-dependent activation of Ca2+ and nuclear factor of activated T cells (NFAT) signaling through
phosphoenolpyruvate, which maintains Ca2+ and NFAT by blocking sarco/endoplasmic reticulum
Ca2+-ATPase, and leading then to T cell hypo-responsiveness [48].
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Figure 1. Metabolic competition in the tumor microenvironment is a driver of T cell responsiveness. 
As mentioned in the review's text, the increased metabolism displayed by tumor cells consumes most 
nutrients from the surrounding microenvironment, and as a consequence, impacts on the intrinsic 
metabolism of T cells, with a decreased ability to produce cytokines (especially IFN-γ) and to develop 
into tumor-specific T effector cells, leading to T cell hypo-responsiveness and increased tumor 
progression (nutrient-restricted T cells in red). Conversely, in a nutrient-enriched microenvironment, 
T cell metabolism increases (glycolysis) and leads to an improved IFN-γ production and immune 
response (T cells nutrient sufficient in green). IFN-γ: Interferon gamma. 

CD4+ Treg cells hamper inflammation and are (1) often associated with increased tumorigenicity, 
and (2) related to poor prognosis when detected in solid tumors of patients with cancer [49]. Indeed, 
tumor infiltrating Treg cells were shown to restrict local anti-tumor immunity. As a main contrast to 
T effector cells that suffer from the tumor microenvironment to sustain functionality, Tregs feel 
comfortable [50]. One possible explanation could stem from the modulation of their sensitive 
metabolic pathways. As reported in murine models, Treg cells express low levels of GLUT-1 and do 
not depend on glucose uptake and glycolysis [51]. Similar to non-proliferating memory T cells, they 
prefer to rely on OXPHOS and lipid oxidation to favor ATP production. Forkhead box protein P3 
(FOXP3), the lineage-defining transcription factor of murine Treg cells, was proposed to be a key 
regulator of this phenotype [52]. Mechanistically, FOXP3 can induce the expression of genes involved 
in lipid metabolism and down-regulate genes involved in glucose uptake and glycolysis. 
Importantly, the PI3K/AKT/mTORC1 axis, a major player in the induction of glycolysis, was 
abolished when expression of FOXP3 was forced [52]. Unexpectedly, glucose abundancy may be 
important for Treg induction, as glycolysis in conventional CD4+ T cells is crucial for the initiation of 
the regulatory phenotype via the translocation of Enolase-1 glycolytic enzyme to the nucleus, where 
it can bind to FOXP3 regulatory loci [53]. 

B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and by 
supporting the activation of T cells. B cells are highly metabolically active, but little is known about 
how global metabolism supports their activation. Similarly to what occurs upon T cell activation, an 
increase of glucose uptake and lactate production has been evidenced in naïve B cells after 
stimulation [54,55]. Also, a marked augmentation of glycolytic activity of germinal center B cells was 
described [54]. Surprisingly, a recent study from Waters et al. revealed an unexpected role of 
tricarboxylic acid (TCA) and OXPHOS in the activation of naïve B cells [56]. Indeed, although 
activated B cells have been shown to increase glucose uptake, glucose deprivation did not show to 

Figure 1. Metabolic competition in the tumor microenvironment is a driver of T cell responsiveness.
As mentioned in the review’s text, the increased metabolism displayed by tumor cells consumes
most nutrients from the surrounding microenvironment, and as a consequence, impacts on the
intrinsic metabolism of T cells, with a decreased ability to produce cytokines (especially IFN-γ) and to
develop into tumor-specific T effector cells, leading to T cell hypo-responsiveness and increased tumor
progression (nutrient-restricted T cells in red). Conversely, in a nutrient-enriched microenvironment,
T cell metabolism increases (glycolysis) and leads to an improved IFN-γ production and immune
response (T cells nutrient sufficient in green). IFN-γ: Interferon gamma.

CD4+ Treg cells hamper inflammation and are (1) often associated with increased tumorigenicity,
and (2) related to poor prognosis when detected in solid tumors of patients with cancer [49]. Indeed,
tumor infiltrating Treg cells were shown to restrict local anti-tumor immunity. As a main contrast
to T effector cells that suffer from the tumor microenvironment to sustain functionality, Tregs feel
comfortable [50]. One possible explanation could stem from the modulation of their sensitive metabolic
pathways. As reported in murine models, Treg cells express low levels of GLUT-1 and do not depend
on glucose uptake and glycolysis [51]. Similar to non-proliferating memory T cells, they prefer to
rely on OXPHOS and lipid oxidation to favor ATP production. Forkhead box protein P3 (FOXP3),
the lineage-defining transcription factor of murine Treg cells, was proposed to be a key regulator of
this phenotype [52]. Mechanistically, FOXP3 can induce the expression of genes involved in lipid
metabolism and down-regulate genes involved in glucose uptake and glycolysis. Importantly, the
PI3K/AKT/mTORC1 axis, a major player in the induction of glycolysis, was abolished when expression
of FOXP3 was forced [52]. Unexpectedly, glucose abundancy may be important for Treg induction, as
glycolysis in conventional CD4+ T cells is crucial for the initiation of the regulatory phenotype via the
translocation of Enolase-1 glycolytic enzyme to the nucleus, where it can bind to FOXP3 regulatory
loci [53].

B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and by
supporting the activation of T cells. B cells are highly metabolically active, but little is known about how
global metabolism supports their activation. Similarly to what occurs upon T cell activation, an increase
of glucose uptake and lactate production has been evidenced in naïve B cells after stimulation [54,55].
Also, a marked augmentation of glycolytic activity of germinal center B cells was described [54].
Surprisingly, a recent study from Waters et al. revealed an unexpected role of tricarboxylic acid (TCA)
and OXPHOS in the activation of naïve B cells [56]. Indeed, although activated B cells have been



Int. J. Mol. Sci. 2020, 21, 157 5 of 23

shown to increase glucose uptake, glucose deprivation did not show to impair neither their growth nor
functionality [56]. However, glutamine restriction or inhibition of OXPHOS with 10 nM Oligomycin
impaired B cell growth and differentiation [56]. This discrepancy is most likely due to the fact that the
augmentation of extracellular acidification observed upon B cell activation was not reflective of any
increase of extracellular lactate, but rather to the enhanced CO2 and carbonic acid production arising
from a highly active TCA cycle [56–58]. We speculate this nutrient competition between cancer cells
and adaptive immune B cells is crucial in the formation of an immunosuppressive milieu.

Natural killer (NK) cells are important anti-cancer effector cells. They have excellent potential for
immunotherapy although impaired functions during cancer limit their effectiveness. Upon activation,
NK cells increase aerobic glycolysis [59]. With high IL-15 stimulation, NK cells elevate the activity of
mTOR to favor bioenergetic metabolism, increase glucose uptake, and up-regulate the expression of
transferrin receptor CD71 and amino acid transporter chaperon CD98 [60]. This process was shown to
be essential for sustaining NK cell proliferation during development and the acquisition of cytolytic
potential. Accordingly, impairment of glucose metabolism and disruption of mTOR signaling leads to
a diminished cytotoxic activity in NK cells [61]. A recent report revealed that sterol regulatory element-
binding protein (Srebp) transcription factors play an important role in the cytokine-induced metabolic
reprogramming of NK cells by increasing both glycolysis and OXPHOS [62]. Furthermore, Srebp
inhibition prevented this phenotype and decreased NK cell cytotoxicity [62]. However, it remains
unclear whether metabolic alterations found in tumors may affect the metabolic activity and the
Srebp-mediated NK cell function.

Neutrophils are a vital component of immune protection. However, in cancer, they promote
tumor progression by increasing invasion and metastasis through releasing proteases, increasing
angiogenesis, and directly promoting tumor growth [63–67]. Furthermore, neutrophils have been
shown to limit anti-tumor immune responses by suppressing T cell and NK cell activity, partly by
generating reactive oxygen species (ROS) that disrupts lymphocyte functions [68,69]. Traditionally,
neutrophils have been thought to be a highly glycolytic population, dependent on glucose, with little
or no mitochondrial function except to drive apoptosis [70]. However, neutrophil metabolism has
recently gained interest as the importance of mitochondria in effector functions such as chemotaxis
and the generation of neutrophil extracellular traps (NETs) have come to light [71,72]. A recent report
showed that cancer-associated neutrophils employ their mitochondrial respiratory capacity to support
the generation of ROS in conditions where glucose utilization, and therefore pentose phosphate
pathway (PPP) derived NADPH, is limited [73]. These data suggest that oxidative neutrophils benefit
tumor growth as, unlike glycolytic-neutrophils from a healthy host, they can maintain ROS-mediated
suppression of T cells under nutrient restricted conditions, such as the low glucose environment
of advanced tumors. These results emphasize the promising role that neutrophil mitochondrial
metabolism may have for cancer therapy, and inexorably underlines the competition for fuels shared
by tumor cells and immune cells of the microenvironment.

2.2. Amino Acid Metabolism

Glutamine, a nonessential amino acid, is the most abundant nutrient in the blood and constitutes an
essential substrate for T cells activation and growth process. When T cells are activated through efficient
TCR signaling, the uptake and biosynthesis of amino acids are widely increased [74,75]. Glutamine
catabolism is intensely induced in active T cells supplying intermediate metabolites required for
different pathways of biosynthesis and substrates for mitochondria [76,77]. During glutaminolysis,
glutamine carbon backbone can be converted (1) to glutamate favoring cystine import via the xCT
antiporter, (2) to α-KG to maintain TCA cycle homeostasis, or (3) to lactate that generates NAD and
NADPH [78,79]. During T cell activation, glutamine can be used, providing pyruvates to overcome
intense aerobic glycolysis levels [46]. T cell glutamine uptake depends on the neutral amino acid
transporter type 2 (ASCT2) and its genetic ablation has been shown to prevent the induction of
Th1 and Th17 cells [80]. In line with this, glutamine deprivation supported the differentiation into



Int. J. Mol. Sci. 2020, 21, 157 6 of 23

Tregs and addition of α-KG reversed this effect and rescued Th1 differentiation under glutamine
deprivation through the induction of Tbet, a T effector cell transcription factor, which correlated
with increased mTORC1 signaling [81]. Moreover, 6-diazo-5-oxo-L-norleucine, a naturally occurring
antagonist of glutamine, inhibited glutamine metabolism in activated T cells and was able to inhibit
immune-mediated rejection of allografts in fully mismatched skin and heart allograft transplantation
models [82]. Similarly, glutamine was reported to be essential for B-cell proliferation and differentiation
into plasma cells [83]. Since many cancer types harbor mutated MYC, which transcriptionally
induces mitochondrial glutaminolysis and leads to glutamine addiction of cancer cells, we speculate
that glutamine could become a limiting metabolite that may have a pivotal role in tumor-induced
immunosuppression [84].

Tryptophan and arginine have also been proposed to be critical for T cell activation and function.
This concept has gained interest because of the tumor-induced extracellular depletion of these amino
acids, thereby altering T cell activity, and causing their anergy. Tryptophan is an essential amino
acid required for the production of several important molecules and its catabolism through the
kynurenine pathway generate metabolites such as kynurenine, kynurenic acid, 3-hydroxy-kynurenine,
and 3-hydroxy-anthranilic acid [85]. Several studies indicated that tryptophan plays a key role in T cell
survival and activation whereas its metabolites (1) eliminate T cell function and (2) are able to induce
T cell apoptosis [86]. In parallel, neoplastic cells often overexpress the amino-acid-catabolic enzyme
indolamine-2,3-dioxygenase (IDO), which can lead to extracellular depletion of tryptophan [87].
T effector cells then become affected by the local diminution in tryptophan concentrations and
decrease their functionality [86]. Mechanistically, tryptophan depletion activates general control
nonderepressible 2 (GCN2), a stress-response kinase that is activated by elevations in uncharged transfer
RNA (tRNA), leading to inhibition of T cell function, impaired Th17 differentiation and promotion
of Treg development [88,89]. Three enzymes have been recognized in modulating tryptophan
degradation through the kynurenine pathway: (1) tryptophan-2,3-dioxygenase, (2) indoleamine
2,3-dioxygenase 1, and (3) indoleamine 2,3-dioxygenase. Thus, tryptophan degradation remains one
of the resistance mechanisms adopted by tumors to avoid immune suppression, and in an hostile
tumor microenvironment context, such inhibition results in the suppression of anti-tumor immune
responses [90–92].

Arginine was also revealed as a central amino acid in the function of T cells. This multifunctional
amino acid is involved in protein synthesis and in generating several metabolites precursors including
polyamines and nitric oxide involved in immunometabolism [93]. The absence of extracellular arginine
or enzymes responsible of de novo synthesizing arginine (Argininosuccinate 1 (ASS1)) has been found
to impair T cell proliferation, aerobic glycolysis, and reduce cytokine production and expression of
activation markers such as CD25 and CD28 [94,95]. Importantly, deletion of ASS1 was shown to prevent
in vitro Th1 and Th17 cell polarization, even in the presence of extracellular arginine [96]. Further, a
recent report indicated that increased arginine levels promote survival capacity of T memory cells and
anti-tumor activity in an OVA-antigen-expressing B16 melanoma mouse model [93]. According to the
beneficial effects of arginine and tryptophan on T cell metabolic adaptation and anti-tumor activity,
both amino acids would be exploited as an attractive target for therapeutic intervention in anti-tumor
response [97,98].

Cysteine amino acid is widely used throughout the cell for diverse roles including catalysis,
protein folding, trafficking, and mediating the major antioxidant defense [99,100]. Although protein
synthesis accounts for the majority of cellular cysteine usage, another essential use of cysteine is
the production of the tripeptide glutathione (GSH) for antioxidant defense and maintenance of
thiol status [99,101]. Cysteine can be easily oxidized to form a dimer containing disulfide bridge
between two cysteines called cystine, and both are transported over the plasma membrane by ASCT1,
ASCT2 (although controversial), and by xCT (which together with CD98/Slc3a2 form system xc

−

cystine/glutamate antiporter), respectively [102,103]. Although it has been reported that T cells require
GSH for proliferation both in vitro and in vivo [104,105], previous studies have been conflicting as to
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whether T cells accumulate cysteine indirectly via uptake of cysteine secreted by antigen presenting
cells (APCs) or directly through xCT-mediated import of cystine [106,107]. Since prior results indicated
that T cells express ASCT1/ASCT2 transporters but not xCT, it was first proposed that a sufficient high
concentration of exogenous cysteine is provided to T cells by APCs, and that this dependency is needed
for T cell activation [108,109]. However, other studies showed (1) that purified T cells can be fully
activated in the absence of APC [104,110], and (2) that xCT expression can be induced following T cell
activation [111]. In line with these observations, Levring et al. confirmed that while naïve T cells express
very low levels of both cysteine and cystine transporters, activated T lymphocytes display a strong
up-regulation of these transporters, thus enabling T cell responsiveness independently of APC-released
cysteine [106]. These results support a T cell-autonomous requirement for ASCT1, ASCT2, and xCT
functions in cultured lymphocytes. Interestingly however, Arensmani et al. recently showed that
T cell-specific knockout of xCT does not disrupt the anti-tumor T cell response in vivo [112]. This
inherently different requirements for xCT in vitro versus in vivo may stem from the well-established
discrepancies between the tissue culture environment and the physiologic niches where T cells respond
to antigenic stimuli. Indeed, (1) T lymphocytes are exposed to much higher levels of oxygen under
standard tissue culture conditions than they experience in peripheral tissues [113], and (2) cysteine is
present at different levels in culture medium (where it is rapidly oxidized to cystine) in comparison to
in vivo peripheral tissues [7]. Thus, although cystine levels surpass those of cysteine found in plasma,
cysteine remains, however, present at low concentrations in blood, and the probability that circulating
cysteine is enough to support T cell proliferation in vivo cannot be rejected. In the same vein, a growing
body of evidence also revealed that cysteine is critical for cancer cell proliferation and survival [114,115].
The metabolic demands placed upon a tumor cell produce unique needs that must be met through
extracellular sources of cysteine [116]. In turn, when extracellular cysteine levels decrease and become
limiting, endogenous transsulfuration activity can support in vivo cancer cell growth and proliferation
through the generation of de novo cysteine [117]. Moreover, inhibiting transsulfuration pathway
activity of hepatocellular carcinoma (HCC) cells by methylation of cystathionine β-synthase promoter
resulted in an increased reliance of these cells to import cystine through xCT [116,118–120]. Hence,
acquisition of cysteine from extracellular cystine by tumor cells remains a vital strategy to maintain
GSH levels and buffer oxidative stress that would otherwise cause cell death [115]. Once again, these
last observations highlight the metabolic competition that exists between cancer and immune cells:
local cysteine can be metabolically used by tumors to enhance their aggressiveness, and as a result
repress T cell effectiveness leading to the suppression of anti-tumor immune responses.

Other limiting amino acids including serine and alanine also revealed their importance in
promoting T cell effector functions. Recently, it was reported that extracellular serine is required
to support de novo purine biosynthesis of proliferating T cells: when cultured without exogenous
serine, T lymphocytes failed to proliferate efficiently in vitro [121]. Moreover, following Listeria
infection, mice maintained on a serine-restricted diet also showed a significantly reduced number of
IFN-γ-producing CD8+/CD4+ T cells, indicating that antigen-specific T cell responses were identically
affected by serine restriction in vivo [121]. However, the quantity of cytokine produced on a per-cell
basis by T effector cells responding to LmOVA (Listeria monocytogenes expressing OVA) was not
affected by the restricted diet, suggesting that dietary serine deprivation did not actually affect the
functionality of the T cells that could respond to infection, but rather the quantity [121]. Similarly,
Ron-Harel et al. recently identified T cell reliance on extracellular alanine for initial activation and
protein synthesis [122]. Indeed, activated T cells cultured in alanine-free media displayed diminished
effector functions as evidenced by the reduced levels of secreted pro-inflammatory cytokines, such as
interleukin-17 (IL-17), IFN-γ, and interleukin-6 (IL-6) [122]. Concomitantly, alanine-labeled fraction
(using [U-15N13C]-alanine) in total cell proteome of activated T cells revealed that alanine deprivation
could prevent activation-induced protein synthesis [122]. Since reduced levels of alanine were depicted
in some tumors [123], one may suggest that the control of local alanine levels through the uptake or
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secretion of alanine by resident cells in the lymphatic tissue (or other tissues where resident memory T
cells can get re-activated) may impact T cell activation.

2.3. Oxygen

A common feature of most rapidly growing tumors is a low level of oxygen called hypoxia.
Indeed, in intensively proliferating and expanding tumor tissues, oxygen supply is often limited, by the
distance between cells and the existing vasculature creating even more hypoxic milieu [124]. Hypoxia
can function as a metabolic adjunct to further promote a malignant phenotype. Indeed, hypoxic
tumor cells display enhanced glucose uptake and glycolysis through induction of all glycolytic genes,
and elevated glycolysis is associated with sustained malignant growth [16,125,126]. Mechanistically,
hypoxia-inducible factor 1 (HIF1) actively suppresses TCA cycle metabolism by directly trans-activating
the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), leading then to inactivation of the pyruvate
dehydrogenase complex and subsequent loss of pyruvate oxidation [125,127].

The hypoxia-induced effects on immune cell activation have been conflicting as to whether low
oxygen tension favor or repress T cell responsiveness. On the one hand, hypoxic conditions lead
to less efficient TCR- and CD28-mediated T cell activation [128]. Also, HIF1α-deficient CD4+ and
CD8+ T cells from Lck-Cre/HIF1-floxed mice show an improved capacity to proliferate and to secrete
IFN-γ [129]. Conversely, it has been demonstrated that HIF1α does not impact on the proliferation of
T cells, but rather support the differentiation of Th17 cells via direct transcriptional induction of the
RAR-related orphan receptor gamma (RORγt) [130]. Unexpectedly, HIF1α was also shown to increase
the expression of CD137 costimulatory molecule on tumor infiltrating T cells [131].

Oxygen is necessary for OXPHOS and the production of ROS. At a low or moderate concentration,
ROS were found to be essential for T cell effectiveness and antigen-specific proliferation [132]. However,
a strong impairment in the functionality of immune cells could be evidenced at high levels of ROS
due to a down-regulation of the CD3ζ chain [133–135]. Considering the paradoxical effect of ROS
on T cell effector functions, a tight balance between production and consumption of ROS should be
accomplished to potentiate anti-tumor activity.

Macrophages are sensitive to variations in oxygen availability. It has been reported
that anti-inflammatory M2 macrophages accumulate in hypoxic tumor regions, whereas the
pro-inflammatory M1 macrophages reside in normoxic regions [136,137]. Indeed, M2 macrophages are
involved in matrix remodeling, tissue repair, and angiogenesis, and in promoting genetic instability,
whereas M1 macrophages display important microbicidal activity and cell proliferation inhibitory
capacity [138]. Mechanistically, intratumoral hypoxia-induced semaphorin 3A attracts tumor-associated
macrophages (TAMs) to hypoxic regions by triggering vascular endothelial growth factor (VEGF)
receptor 1 phosphorylation [136]. Additionally, hypoxic TAMs can up-regulate the expression of
REDD1 (regulated in development and DNA damage responses 1), thus inhibiting mTOR activity,
and leading to (1) a decrease of glycolysis, (2) abnormal blood vessel formation, and (3) promotion
of metastases [139]. Similarly, hypoxic TAMs are able to secrete proteolytic enzymes, such as matrix
metalloproteinases 1 and 7, and contribute to cell proliferation and tumor dissemination [140,141].
Importantly, the depiction of macrophages polarization has led scientists to reconsider their concept
on how immunity functions, as anti-inflammatory properties were usually shown to prevent tumor
growth—in this case, the anti-inflammatory phenotype of M2 macrophages is rather associated with
their capacity to repress anti-tumor immune functions, and the M1/M2 polarization should then
be considered as a simplified conceptual framework describing a continuum of different functional
states [142].
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3. Metabolic By-Products of Tumor Cells Impact on Immunity

3.1. Glucose Metabolism, Lactate, and Tumor Acidity

Although the concentration of essential nutrients may be poorer in the tumor microenvironment
when compared to normal tissues, several products of tumor cell metabolism accumulate and thereby
affect immune cell function. The most prominent metabolite in the microenvironment of highly
glycolytic tumors remains lactate that can reach up to 30–40 mM in some tumor areas [143,144].
Associated with lactate are protons (H+), both co-transported out of the cell by the monocarboxylate
transporters (MCT1 and 4) [145–147]. This leads to an accumulation of lactate and to a decreased pH
in the extracellular space. Brand et al. demonstrated that lactate dehydrogenase A (LDHA)-mediated
production of lactate in tumor cells and subsequent acidification can: (1) restrict IFN-γ production in
tumor infiltrating T cells, and (2) prevent NK cell activation, resulting in a loss of immune surveillance
and promoting tumor growth in a mouse melanoma model [20,148]. In connection with this last
observation, innate immune cells also showed sensitivity to tumor-generated lactate [149]. Indeed,
it has been shown that tumor-derived lactic acid can reduce the differentiation and effector function
of monocytes both in vitro and in vivo [148,150]. However, data on the effect of lactate itself on
macrophage polarization and function are still under debate. While it has been advocated that lactic
acid can augment toll-like receptor (TLR) 4-mediated signaling, nuclear factor (NF)-κB-dependent
gene regulation, and the pro-inflammatory function of macrophages [151], other studies have shown
opposite effects [143,152,153]. In particular, it has been demonstrated that high concentrations of
lactate could also stimulate the polarization of anti-inflammatory M2 macrophages through the
stabilization of HIF1α [153] or, as recently reported, by lactylation of histones [154]. Lactic acid can
also play a crucial role on the phenotype and functionality of dendritic cells (DCs) with: (1) reduced
basal CD1 expression (a major histocompatibility complex (MHC) class 1 molecule triggering the
immune response), (2) maintenance of a tolerogenic phenotype characterized by diminished IL-12
and increased IL-10 secretion in response to TLR stimulation, and (3) impaired migratory response to
lymph node-derived chemokine [155,156].

The deleterious impact of lactate on immune cells is often in concert with a decreased pH in the
tumor microenvironment and acidity was also reported to have distinct effects on a variety of immune
populations (Figure 2). This was first described by Fischer et al. who demonstrated that low extracellular
pH leads to decreased cytokine production and to a loss of cytotoxic effector functions without affecting
cell viability [157,158]. In 2001, Bosticardo et al. reported that pH as low as 6.6 leads to impaired
activation and proliferation of T cells as evidenced by altered expression of the high-affinity IL-2
receptor CD25, as well as diminished cytokine secretion and cell cycle progression [159]. Importantly,
providing stronger T cell activation was sufficient to restore complete function, indicating that acidity
might raise the activation threshold of T cells [159]. Similarly, a pH of 6.5 resulted in a declined
responsiveness of tumor infiltrating T cells from melanoma patients, with decreased expression of TCR
components (such as CD3ζ chain) and impaired secretion of IL-2, tumor necrosis factor-α (TNF-α), and
IFN-γ [160]. Consistent with these findings, high-dose administration of esomeprazole (a proton pump
inhibitor largely used in clinical setting for indigestion and gastric protection) was associated with
an increase of tumor pH, paralleled by a boost of T cell infiltration and anergy reversion that could
be selectively detected at tumor site of melanoma-bearing mice but not in tumor-free organs [160].
Accordingly, a recent report showed that neutralization of tumor acidity with bicarbonate therapy
increased T cell infiltration and impaired tumor growth [161]. Tumor-derived acidity also affects cells of
innate immunity as evidenced by the enhanced endocytosis capacity of DCs when cultured at a pH of
6.5 [149,162] (Figure 2). DCs pulsed with antigens at low pH values also displayed an improved efficacy
in inducing specific cytotoxic responses mediated by CD8+ T cells as well as specific antibody responses
in vivo [162]. Also, a role for acidic pH in regulating macrophage polarization recently appeared and
showed to be mediated by G protein-coupled receptors (GPCRs) and cyclic AMP production [163,164]
(Figure 2). Indeed, activation of GPCR signaling induced by tumor acidosis has been shown to
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increase expression of the transcription factor inducible cyclic AMP early repressor (ICER), which in
turn stimulated polarization of macrophages toward a non-inflammatory M2 phenotype, and thus
promoted in vivo tumor growth [164]. Importantly, mice with myeloid-specific deficiency of ICER
could resist the growth of highly glycolytic tumors [164]. Finally, along the line of this section, it was
reported that restricted glycolysis and acidosis of mouse melanoma preserves T cell effector functions
and augment checkpoint therapy [165].
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Figure 2. Tumor acidity impacts on immune cell function. As illustrated in the review’s text, tumor
acidity acts as an immune escape mechanism by which tumor cells (whose heterogeneity is depicted
by tumor cells of different colors) repress the activity of anti-tumor immune effectors (including T
cells, natural killer (NK) cells, and dendritic cells (DC)), and also favor the conversion of macrophages
toward a non-inflammatory M2 phenotype, potentiated by hypoxia and altered metabolism, thereby
creating an hostile milieu for T cells, NK cells, and DC. However, the possible effect of pH on antibody
activity is still controversial and not fully elucidated. IL-2: Interleukine 2, TNF-α: Tumor necrosis
factor-α, IFN-γ: Interferon gamma, TCR: T cell receptor, IL-12: Interleukine 12, IL-10: Interleukine 10,
DC: Dendritic cell, NK: Natural killer, Fc: Fragment crystallizable.

The possible effect of pH on antibody activity is still conflicting and no consensus on a unique effect
of these effectors in tumor immunosurveillance has been yielded [166] (Figure 2). Since monoclonal
antibodies (mAbs) represent a new class of therapeutic drugs broadly used for the treatment of many
solid tumors, understanding whether tumor acidity might influence their functionality could provide
novel insights leading to improved clinical efficacy of cancer treatments [167–169]. However, no direct
study addressing this topic is, to our knowledge, available in literature. For this reason, we prefer
not to go into more details, even if, based on the molecular and structural features of mAbs and their
biodistribution properties in the tumor microenvironment, some interesting speculations have been
made (for more information, please refer to Cairns et al. [170]).
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3.2. Amino Acid Metabolism

As previously introduced, glutamine metabolism is important for cancer cell survival and
proliferation [84]. Therefore, overexpression of tumor glutaminase might not only decrease extracellular
glutamine levels but could lead to high intratumoral glutamate levels. Briggs et al. showed that
triple-negative breast cancer cells were able to secrete glutamate, leading to paracrine induction of
HIF1α via inhibition of the xCT cystine/glutamate antiporter [171]. This report uncovered that the key
oxygen sensor PHD2 (EglN1) controlling HIF1/2 stability is also capable to sense intracellular cysteine
levels [171,172]. Furthermore, macrophages and DCs, which are often found in tumors and tumor
draining lymph nodes, can also release glutamate in concentrations up to 30 µM [173]. Since T cells
constitutively express the glutamate transporter mGlu5R, and that mGlu5R-induced adenylate cyclase
can impede TCR-mediated T cell activation and IL-6 production, release of extracellular glutamate
can therefore have a negative impact on T cell responsiveness [173,174]. A high concentration of
extracellular glutamate can also affect other transporters, such as xCT cystine/glutamate antiporter.
As aforementioned, xCT together with CD98/Slc3a2 form system xc

−, which transports cystine
(but not cysteine) into the cell in exchange for glutamate export. Consequently, high levels of
extracellular glutamate might impair the import of cystine, possibly leading to ROS dysregulation
and T cell dysfunction (as proposed by Siska et al. [175]). Glutamate receptors have also been
found on other immune cells, including B lymphocytes and DCs [176], and future studies of the
intratumoral glutamine/glutamate homeostasis may highlight new mechanisms of tumor-induced
immune dysregulation.

3.3. Nucleotide Metabolism

Hypoxia can have different roles and especially that of allowing the increase of adenine nucleotide
breakdown through the 5′ nucleotidase pathway, leading then to an accumulation of adenosine by
tumor cells [177]. It has been shown that ATP is rapidly degraded to adenosine by the ectonucleotidases
CD39 and CD73 expressed on tumor cells, which first convert ATP to AMP and then AMP to
adenosine, respectively [178,179]. The accrued extracellular adenosine then binds to A2AR and A2BR
(adenosine 2A and 2B receptors) expressed by T cells and NK cells, and induces intracellular cAMP
accumulation and signaling, thus inhibiting both TCR-induced proliferation of T cells and IL-2 receptor
expression [180,181]. In contrast, A2AR and A2BR blockade was shown to favor NK cell function
by increasing Granzyme B expression and Perforin secretion, thereby promoting the anti-metastatic
effects of NK cells [182,183]. Similarly, it was indicated that adenosine could enhance activation of
anti-inflammatory M2 macrophages via A2AR and A2BR, inhibit TNF-α and release of IL-6 and
IL-12, and augment IL-10 as well as VEGF production [184]. Notably, Young et al. recently showed
a significant combination advantage in controlling in vivo tumor growth and lung metastases when
A2AR and CD73 were both inhibited [185]. These encouraging observations led to the initiation of
several clinical trials with small-molecule inhibitors targeting A2AR, but further explorations are still
needed to prove the feasibility of such approaches in cancer patients [186].

4. Conclusions

In recent years, the field of cancer immunometabolism gained significant attention. Many of the
recognized mechanisms of tumor immune escape appear to be selectively tailored for defined molecular
immune pathways, as if tumor cells, through a “Darwinian evolutionary pressure”, were forced to
lose/gain specific features in order to survive immune attack. Therefore, for the benefit of proliferating
and expanding tumor tissues, a fine-tuned metabolic instrumentalization of the immune cells can occur
in the microenvironment. For example, tumor acidity was envisaged as a sort of “protection armor”, by
which cancer cells simultaneously abrogate the activity of all anti-tumor immune effectors and convert
regulatory immune cells to pro-tumor allies. Another relevant example is tumor microenvironmental
hypoxia, which dampens and neutralizes T cell functions and responsiveness. Thus, one may speculate
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that modulation of tumor microenvironment should contribute to a metabolic recovery of anti-tumor
immune cells, and a relief of the detrimental effects exerted by immunosuppressive stroma components.
Such an approach might be applied to improve spontaneous cancer immune control, or most likely to
potentiate the efficacy of tumor immunotherapy. Recently, it has been shown that in tumor-bearing
mice treated with checkpoint blockade therapy, such blockade increased the glucose concentrations in
the extracellular tumor milieu and T lymphocytes from these mice displayed increased glucose uptake
and glycolytic rates, augmented mTORC1 activity, and improved IFN-γ production [15]. Similarly, IDO
inhibitors entered clinical trials and its inhibition when combined with checkpoint blockade therapy
also showed promising results [187]. However, a recent Phase 3 study that combined the IDO inhibitor
epacadostat with pembrolizumab, an anti-PD1 (programmed cell death 1) antibody, showed that adding
epacadostat had no benefit [188]. Thus, since the number of mechanisms and possible targets is steadily
increasing, a key question arises: can modulation of one metabolic pathway influence the outcome of
immune cancer interaction to promote tumor regression? Although challenging, we speculate that
future studies will aim to address the metabolic complexity of tumor microenvironment in its globality
rather than target a specific gene or protein, especially through state-of-the-art technologies including
transcriptomics analysis or high-throughput platforms testing compound libraries.
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IDHs Isocitrate dehydrogenases
D-2HG D-2-hydroxyglutarate
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mTOR Mammalian Target Of Rapamycin
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TCR T cell receptor
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AMPK AMP-activated protein kinase
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GCN2 General control nonderepressible 2
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ASS1 Argininosuccinate 1
GSH Tripeptide glutathione
APCs Antigen presenting cells
HCC Hepatocellular carcinoma
LmOVA Listeria monocytogenes expressing OVA
IL Interleukin
HIF1 Hypoxia-inducible factor 1
PDK1 Pyruvate dehydrogenase kinase 1
RORγt RAR-related orphan receptor gamma
TAMs Tumor-associated macrophages
VEGF Vascular endothelial growth factor
REDD1 Regulated in development and DNA damage responses 1
MCT1/4 Monocarboxylate transporters 1/4
LDHA Lactate dehydrogenase A
TLR Toll-like receptor
DCs Dendritic cells
MHC Major histocompatibility complex
TNF-α Tumor necrosis factor-α
GPCRs G protein-coupled receptors
ICER Inducible cyclic AMP early repressor
mAbs Monoclonal antibodies
A2AR Adenosine 2A receptor
A2BR Adenosine 2B receptor
PD1 Programmed cell death 1
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