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Investigating associations between metabolites and late midlife cognitive function could reveal potential markers and mechanisms re-
levant to early dementia. Here, we systematically explored the metabolic correlates of cognitive outcomes measured across the seventh
decade of life, while untangling influencing life course factors. Using levels of 1019metabolites profiled by liquid chromatography–mass
spectrometry (age 60–64), we evaluated relationships between metabolites and cognitive outcomes in the British 1946 Birth Cohort (N
=1740). We additionally conducted pathway and network analyses to allow for greater insight into potential mechanisms, and sequen-
tially adjusted for life course factors across four models, including sex and blood collection (Model 1), Model 1+ body mass index and
lipid medication (Model 2), Model 2+ social factors and childhood cognition (Model 3) and Model 3+ lifestyle influences (Model 4).
After adjusting for multiple tests, 155 metabolites, 10 pathways and 5 network modules were associated with cognitive outcomes. Of
the 155, 35 metabolites were highly connected in their network module (termed ‘hub’ metabolites), presenting as promising marker
candidates. Notably, we report relationships between a module comprised of acylcarnitines and processing speed which remained ro-
bust to life course adjustment, revealing palmitoylcarnitine (C16) as a hub (Model 4: β=−0.10, 95% confidence interval=−0.15 to
−0.052, P= 5.99×10−5). Most associations were sensitive to adjustment for social factors and childhood cognition; in the final model,
four metabolites remained after multiple testing correction, and 80 at P,0.05. Two modules demonstrated associations that were
partly or largely attenuated by life course factors: one enriched in modified nucleosides and amino acids (overall attenuation=39.2–
55.5%), and another in vitamin A and C metabolites (overall attenuation=68.6–92.6%). Our other findings, including a module en-
riched in sphingolipid pathways, were entirely explained by life course factors, particularly childhood cognition and education. Using a
large birth cohort study with information across the life course, we highlighted potential metabolic mechanisms associated with cog-
nitive function in late midlife, suggesting marker candidates and life course relationships for further study.
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Graphical Abstract

Introduction
Cognitive function in the seventh decade of life is indicative
of future cognitive trajectories and risk of dementia.1 As de-
mentia is proposed to have a long prodrome, where pathol-
ogy is accumulating but clinical criteria are not yet met,
there presents a promising window to prevent or delay
pathology.1 However, a lack of clinically significant symp-
toms impedes our ability to identify individuals for potential
risk reduction and treatment strategies. As such, our

understanding of early disease mechanisms are not well es-
tablished and no effective disease-modifying treatments are
currently used in the clinic.2

Comprehensive longitudinal studies are required to detect
earlymechanisms andmarkers preceding diagnosis, for which
studying metabolic correlates may be fruitful. Metabolites,
such as fatty acids and amino acids, are low molecular weight
compounds derived from cellular metabolism. Lying in clos-
est proximity to the phenotype, they can reflect upstream
biological systems (e.g. genetics, transcriptomics, proteomics)
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as well as environmental and lifestyle influences, allowing for
a holistic insight into the physiological status of an indivi-
dual.3 Additionally, they are accessible and potentially mod-
ifiable, and thus present as promising targets of intervention.4

The biological relevance of metabolic alterations in
cognitive function and dementia has been established.
Contextually, genome-wide association studies (GWAS) have
highlighted enrichment in lipid metabolism pathways in the
genetic underpinnings of Alzheimer’s disease.5 Further, many
studies have linked metabolites to cognitive function and
Alzheimer’s disease, consistently highlighting species such as
sphingolipids, phospholipids, fatty acids, cholesterol and
amino acids,6–11 although replication of specific metabo-
lites has proved challenging. Inconsistencies in accounting
for lifestyle and environmental influences, potential con-
founding by reverse causation and heterogeneity in clinical
states have been suggested to contribute to replication
issues.8 Genetic approaches such as Mendelian randomiza-
tion (MR) have provided further insights into causality12

but require well-powered GWAS in order to avoid weak
instrument bias, which are not always available.

Looking at associations of single metabolites can allow
for granular insights into the molecular correlates of cogni-
tive outcomes. However, metabolites are highly correlated,
and biological processes are likely to involve a coordinated
effort of many metabolites. Systems-level analyses, which
are able to capture the complex interactions between meta-
bolites, are required to guide our understanding and iden-
tify potential marker candidates for future studies. One
such approach is weighted gene correlation network ana-
lysis (WGCNA), which can be applied to other -omics mod-
alities, whereby data are organized into modules based on
pairwise correlations.13–15 Relationships between modules
and outcomes can be subsequently explored, and metabo-
lites that are highly connected in their module (hereby
named ‘hub’ metabolites) can be identified. As these meta-
bolites are influential in module structure and likely to play
key roles in biological function, they present as promising
marker candidates for further study.

A number of studies, including ours, have appliedWGCNA
to identify molecular profiles associated with Alzheimer’s dis-
ease and Alzheimer’s disease endophenotypes.16–18 However,
studies linking metabolites to cognitive outcomes have typi-
cally been directed towards clinical phenotypes where irrever-
sible damage has already occurred. To our knowledge, the
molecular correlates of cognitive function relevant to this pro-
dromal window are yet to be explored using a systems ap-
proach, and the influence of life course factors has not been
previously considered. It is hoped that this could highlight in-
dependent associations as well as suggest relationships for fur-
ther study—a potentially invaluable layer in untangling early
pathology.

Using the Medical Research Council (MRC) National
Survey of Health and Development (NSHD)—the British
1946 Birth Cohort—we aimed to comprehensively
investigate associations between metabolites and cognitive
function at ages 60–69 using a life course approach (see

Graphical Abstract). Integrating the depth and breadth of
metabolite-level, pathway-level and network-level ap-
proaches, we aimed to identify metabolites that may show
merit as markers of early pathology. With lifelong informa-
tion available, we explored the influence of life course fac-
tors to untangle these associations further.

Materials and methods
Participants
The MRC NSHD originally consisted of 5362 participants
born in mainland Britain during 1 week of March in
1946.19 Twenty-four waves of data have been collected since
birth, with the most recent follow-ups at ages 60–64 (n=
2229) and 68–69 (n= 2148). The study sample remains
broadly representative of the British-born population at
the same age.19,20 Participants with full cognition, metabo-
lite and blood clinic data at age 60–64 were included for
this analysis (N= 1740, 50.9% female). Blood samples
and age 60–64 cognitive measures were collected during
the same clinic visit.

Ethical approval was obtained from the Multicentre
Research Ethics Committee (for data collections up to
2010), and the Scotland A Research Ethics Committee (14/
SS/1009) and Queen Square Research Ethics Committee
(13/LO/1073) (for data collections between 2014 and
2015). Research was conducted in accordance with the
Declaration of Helsinki and participants provided written
informed consent at each wave.

Metabolomics
Blood samples were collected by a research nurse at age
60–64 (96% fasted). Samples were aliquoted and stored at
−80°C.

Levels of 1401 plasma metabolites were profiled by
Metabolon (Durham, NC, USA) using Ultrahigh
Performance Liquid Chromatography-Tandem Mass
Spectrometry (UPLC-MS/MS) (Supplementary Methods).
Metabolites were assigned to nine families and further orga-
nized into pathways by Metabolon based on their proposed
biological function informed by the KEGG (Kyoto
Encyclopaedia of Genes and Genomes) database (see
Supplementary Table 1). The identity of 291 metabolites
was unknown; these metabolites were allocated numbers
prefixed by an ‘X’ and were not assigned to any family.

Our data quality control pipeline is presented in
Supplementary Figure 1. Briefly, metabolites with .20%
of missing data were excluded, leaving 1019 for further ana-
lysis. The remaining missing data were then imputed using
k-nearest-neighbours (k= 10), as recommended else-
where.21 Imputed data were then log10 transformed to
achieve approximately normal distributions.
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Cognitive outcomes
Cognitive outcome measures were recorded at ages 60–64
and 69. Four aspects of cognitive function were assessed.

Short-term memory (ages 60–64 and 69)
Participants were asked to recall a 15-item word list, devel-
oped by the NSHD, after being presented with each word
for 2 s. The task was repeated over three trials and the number
of accurately recalled words was recorded (max score= 45).22

Processing speed (ages 60–64 and 69)
Participants were asked to cross out the letters P andW, ran-
domly distributed on a page containing other letters. One
minute was given to complete the task and participants
were scored by the number and accuracy of the letters
crossed out (max score= 600).22

Delayed memory (age 60–64)
After the processing speed task, participants were asked to
recall the 15-item word list presented for the short-term
memory measure (max score= 15).22

Addenbrooke’s cognitive examination-III (age 69)
The Addenbrooke’s Cognitive Examination-III (ACE-III)
captures cognitive state, and is also a screening tool for cog-
nitive impairment, comprised of five domains: attention and
orientation, verbal fluency, memory, language and visuospa-
tial function. Scores represent the total over all domains
(max score= 100), with lower scores indicating poorer cog-
nitive function.23

Cognitive change
For outcomes with available data at two time points—short-
term memory and processing speed—we additionally inves-
tigated change in cognition, represented by the standardized
residuals of a regression model fit between scores at ages 60–
64 and 69.

Covariables
As with previous analyses,6 covariables included the follow-
ing: sex, blood clinic information (age at blood collection,
clinic location and fasting status), body mass index (BMI),
lipid medication, childhood cognition, educational attain-
ment, childhood socioeconomic position (SEP), midlife
SEP, lifetime smoking, alcohol intake, systolic blood pres-
sure, physical activity and diet.

BMI was calculated using height and weight measures col-
lected during the nurse visit at ages 60–64. At blood collection,
the self-reported use of lipid medication was recorded and
coded as a binary variable reflecting use in the previous 24 h.

Childhood cognition was represented as a standardized
composite score of four tests at age 15, including the Heim
AH4 (measuring non-verbal and verbal ability),24 the
Watts Vernon reading test (measuring reading comprehen-
sion)25 and a test of mathematical ability.25 Educational at-
tainment represented the highest level of educational

qualification by age 26, grouped into three categories: no
qualifications, ordinary (‘O’) level secondary qualifications
or advanced (‘A’) level secondary and higher. SEPwas repre-
sented in childhood and midlife, coded using the current or
last known occupation of the father at age 11 and the study
member at age 53, respectively. These categories corre-
sponded to those specified in the UK Registrar General’s
classification: unskilled, partly skilled, skilled manual,
skilled non-manual, intermediate or professional.

For lifestyle, lifetime smokingwas represented by pack years
per person between the ages of 20 and 60–64. Physical activity
was coded as three categories depending on the self-reported
frequency of participation in sports, exercises or intense leisure
activities in the month prior to the age 60–64 interview: none,
1–4 times per week or .4 times per week. Where data were
present for at least three of four timepoints, average daily alco-
hol intake duringmidlife was curated from 3 to 5 day diet diar-
ies at ages 36, 43, 53 and 60–64. This measure was then used
to assign participants into three categories: no consumption (0
units per day), light-to-moderate consumption (females: ,3
units per day, males:,4 units per day) and heavy consumption
(females: .3 units per day, males: .4 units per day). Systolic
blood pressure was represented by the second measurement
(mmHg) taken at age 60–64. Finally, the diet variable repre-
sented adherence scores for the Dietary Approaches to Stop
Hypertension (DASH) diet, estimated from 3 to 5 day diet
diaries at age 60–64.26 The DASH diet is based on a high in-
take of fruits, vegetables, low-fat dairy products and whole-
grains, and a low intake of saturated fat and refined
sugars.27 Participants were assigned to sex-specific quintiles,
with lower quintiles indicating lower adherence, as described
previously.26

Apolipoprotein E (APOE) genotype was determined from
blood samples collected at age 53 or 69 and analysed as de-
scribed previously.28 The proportion ofAPOE genotypes re-
presented among participants is described in Supplementary
Table 2. Due to potentially opposing effects of e2 and e4 al-
leles on dementia risk, participants with e2/e4 were excluded
(n= 48) and APOE genotype was coded as homozygous e4
(n= 46), heterozygous e4 (n= 361) or non e4 (n= 1068).
Genotypes were treated as continuous variables.

Statistical analyses
Analyses were carried out in R version 3.6.0 (packages:
impute,29 WGCNA,14,15 mice,30 VIM,31 dplyr,32 ggplot2,33

ComplexUpset,34 gridExtra35). Missing covariable data
were imputed using multiple imputation chained equations,
resulting in 50 imputed data sets. Prior to statistical analysis,
all predictors and outcomes were standardized to a mean of 0
and standard deviation of 1 to allow for direct comparisons.

For all regression analyses, assumptions of linearity were
checked by examination of the residuals. Due to high inter-
correlation between cognitive outcomes, Bonferroni correc-
tions were applied to the metabolite data only, to control for
the number of independent metabolites and hence the num-
ber of independent tests performed.
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Single-metabolite analyses
Associations between metabolites and cognitive outcomes
were evaluated using multiple linear regression. Regression
analyses were performed on each imputed data set, and esti-
mates were pooled using Rubin’s rules. To investigate asso-
ciations in the context of life course influences, a series of
statistical models were performed:

1. Model 1 (basic covariables): sex, blood clinic, age at blood clin-
ic, fasting status;

2. Model 2 (common metabolite confounders): Model 1+BMI, li-
pid medication;

3. Model 3 (social factors and childhood cognition): Model 2+
childhood cognition, attainment, SEP (childhood and midlife);

4. Model 4 (lifestyle influences): Model 3+blood pressure, physi-
cal activity, alcohol, smoking, diet.

As liquid chromatography–mass spectrometry (LC–MS)
is highly sensitive and able to capture different conforma-
tions of the same metabolite species (correlations between
metabolites in the full data set ranged from −0.68 to
0.998), we applied a multiple testing correction using an ap-
proach applied previously.6 A Bonferroni-adjusted signifi-
cance threshold was set to P, 1.15× 10−4; 0.05/435 (the
number of principal components explaining.95% variance
in the 1019 metabolites).

Pathway analyses
Metabolites were assigned to pathways based onMetabolon
pathway definitions. Those containing ,5 metabolites were
excluded, resulting in 53 pathways.

Quantitative pathway analyses were performed using an
approach reported previously.36 Briefly, we derived pathway
scores for each participant, representing the mean standar-
dized expression of metabolites in the pathway. To do
this, metabolites were z-standardized, and the mean expres-
sion was computed for each pathway. Associations between
pathways and outcomes were evaluated using linear regres-
sion, adjusting for the basic (Model 1) covariables listed
above. A Bonferroni-corrected significance threshold was
set at 0.05/53 pathways; P, 9.43× 10−4.

Network analyses
Network construction
To define metabolic networks, we applied WGCNA to meta-
bolite data.13–15 Metabolites were first adjusted for Model 1
covariables and the standardized residuals were used for sub-
sequent analysis. Next, the standardized connectivity (Z.k)
for each sample was computed to identify outliers, resulting
in the exclusion of 10 individuals with a Z.k of , −4. We
then derived a pairwise correlation matrix using biweight
midcorrelations between all metabolites. From this, a
weighted, signed adjacency matrix was constructed by raising
correlations to a soft thresholding power of 9, chosen to meet
a scale-free topology threshold of ≥0.85 while maximizing

mean connectivity (Supplementary Figure 2). Subsequently,
the adjacency matrix was transformed into a topological
overlap matrix (TOM), representing the network connectiv-
ity of metabolites. Metabolites were then hierarchically clus-
tered into a dendrogram using an average linkage method
based on their dissimilarity (1−TOM), and the dendrogram
was cut using a dynamic hybrid tree cutting algorithm37

[parameters—minModuleSize= 20 (default), deepSplit= 4
(to allow for more granular modules) and mergeHeight=
0.25 (default)], resulting in 15 metabolite modules. Of these,
the ‘grey’module, comprised of metabolites that were not as-
signed to any particular module, was dropped from further
analysis. Module eigenvalues were computed for the remain-
ing 14 modules.

Overrepresentation analyses using the hypergeometric
test were performed on modules to identify pathways ex-
pressed more than expected by chance. For all module ana-
lyses, a Bonferroni-corrected significance threshold was set
at 0.05/14 modules; P, 3.57× 10−3.

Regression analyses
Modules were subject to the same series of regression models
listed in 2.5.1, using module eigenvalues as predictors. As
modules were adjusted for Model 1 covariables, these
were not additionally included.

Module hubs
To identify hubs, we evaluated associations between meta-
bolites and their assigned module (module membership;
kME) using correlations between metabolites and module
eigenvalues. Metabolites with a kME.0.65 were defined
as hubs, and additionally filtered for those identified in
single-metabolite analyses.

Additional analyses
In our preliminary analysis, we investigated associations be-
tween all covariables and metabolites, and all covariables
and outcomes (adjusting for Model 1 covariables)
(Supplementary Table 3). To further investigate whether
particular covariables may be driving attenuations, we re-
peated single-metabolite and module regression analyses,
adjusting for Model 1 covariables and each additional cov-
ariable individually (Supplementary Tables 4 and 5).

For significant results, analyses were rerun additionally
adjusting for APOE genotype to investigate whether rela-
tionships were independent of APOE (Supplementary
Table 6). We additionally repeated our analyses excluding
participants below the clinical threshold (,82/100) for
ACE-III22 (n= 65) (Supplementary Table 7).

Data availability
Data used in this publication are available to researchers
upon request, review and approval by the NSHD Data
Sharing Committee. Further details can be found at https://
www.nshd.mrc.ac.uk/data/data-sharing/.
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Results
Participant characteristics
Complete metabolite, cognition and blood clinic data at age
60–64 were available for 1740 study participants. Repeated
measures at age 69 were present for 1482 (short-term mem-
ory) and 1496 (processing speed), and ACE-III scores were
present for 1255. Participant characteristics are shown in
Supplementary Table 2.

Single-metabolite analyses
Overall, we identified 155 metabolites to be associated with a
least one cognitive outcome after adjusting for multiple tests
(Supplementary Figure 3; see Supplementary Table 1 and
Supplementary Figure 4 for full summary data). Correlations
between the 155 metabolites ranged from −0.40 to 0.93. No
metabolites were associated with cognitive change.

The bulk of associations attenuated after adjusting for so-
cial factors and childhood cognition (Model 3), with seven
metabolites remaining significant at the adjusted threshold.
In the final model, four of these remained [X—17676, pal-
mitoylcarnitine (C16), margaroylcarnitine (C17)* and imid-
azole propionate; see Table 1], and 80 metabolites were
nominally significant.

Pathway analyses
Results of our pathway analyses are presented in Fig. 1 and
Supplementary Table 8. After adjusting for multiple tests, 10
pathways showed associations with cognitive outcomes. No
pathway was significant for processing speed (69 years), nor
for cognitive change (P. 9.43× 10−4). For all other out-
comes, positive relationships were seen for the Vitamin A
metabolism pathway, as well as the ascorbate and aldarate
metabolism pathway and short-term memory at both time
points.

We observed negative relationships between the purine me-
tabolism (adenine containing) pathway and the ACE-III and
memory outcomes (short-term and delayed). Associations
were additionally seen between various pathways belonging
to amino acid, lipid, nucleotide and peptide families and short-
term memory at each time point, although these pathways
were nominally associated with other outcomes (Fig. 1).

Network analyses
WGCNA analysis identified 14 modules comprising 22–192
metabolites; five of these were associated with cognitive out-
comes in Model 1 at the adjusted threshold (P, 3.57×
10−3) (Fig. 2). All but one module were enriched in a bio-
logical pathway (Fig. 3 and Supplementary Table 9), and
no relationships were seen for cognitive change measures
(P.3.57× 10−3). Key results are presented in Figs 2–4
and summary statistics in Supplementary Table 10. T
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Positive relationships (cyan and yellow)
After adjusting for multiple tests, the cyan module—en-
riched in ascorbate and aldarate metabolism, vitamin A me-
tabolism and food/plant consumption—was associated with

all memory outcomes, processing speed (64 years) and
ACE-III (Model 1: β range= 0.11– 0.23, P range≤2.16×
10−16 to 3.52× 10−6). In the final model, no relationships
were significant at the adjusted threshold, but associations

Figure 1 Plot representing pathway–outcome associations, organized by metabolite family. Bonferroni-significant pathways (P,
9.43× 10−4) are represented by a solid fill and nominal metabolites by no fill (P, 0.05). Source data are present in Supplementary Table 8. Carb,
carbohydrates; Cof & Vit, cofactors and vitamins; Ener, Energy; PCM, partially characterized molecules; Pep, peptides.
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for short-term memory remained nominally associated (60–
64 years: P= 4.10× 10−3; 69 years: P= 0.015). Overall at-
tenuations ranged from 68.6 to 92.6%.

We similarly found the yellow module—enriched
in sphingolipid metabolism and related pathways—to
display positive associations with ACE-III and age
60–64 memory outcomes at the adjusted threshold
(Model 1: β range= 0.085 to 0.10, P range=
3.64× 10−5 to 2.85× 10−3). These findings were sub-
stantially or fully attenuated in the final model
(87.0–116%).

For both the cyan and yellow modules, relationships were
most sensitive to Model 3 adjustments, with childhood cog-
nition and education resulting in the biggest attenuations
(Supplementary Table 5).

Negative relationships (turquoise, purple and
brown)
Negative associations were identified between the purple
module—enriched in fatty acid (acyl carnitine) metabolism
—and processing speed (age 69) [Model 1: β=−0.086,
95% confidence interval (CI)=−0.14 to −0.034, P= 1.15
× 10−3]. This relationship remained significant at the ad-
justed threshold in the final model, demonstrating an effect
size reduction of 6% overall and a final effect size of β=
−0.080 (95% CI=−0.13 to −0.029, P= 2.33× 10−3).

The turquoise module—enriched in several amino acid
metabolism pathways—displayed negative associations
with ACE-III, short-term memory and delayed memory
(Model 1: β range=−0.12 to −0.09, P range= 5.23×
10−7 to 2.05× 10−4). All relationships remained at the nom-
inal threshold in the final model, but none passed multiple
testing correction (overall attenuation= 39.2–55.5%, P
range= 0.0060–0.043). The majority of reductions came
from Model 2 and 3 adjustments, with childhood cognition
and education resulting in the largest attenuations
(Supplementary Table 5).

Finally, we identified the brown module—enriched in dia-
cylglycerol and phosphatidylethanolamine pathways—to be
negatively associated with short-term memory at age 60–64
(Model 1: β=−0.075, 95% CI=−0.12 to −0.028, P=
1.85× 10−3). Associations attenuated inModel 2, which ap-
peared to be mainly driven by BMI (Supplementary Table 5).
Subsequent model adjustments resulted in full attenuation.

Hub metabolites
Thirty-five metabolites identified in single-metabolite ana-
lyses were revealed to be hubs (kME.0.65), and 28 of these
belonged to the five modules that were associated with cog-
nitive outcomes (Fig. 5 and Supplementary Table 1). Hubs
further represented 8 of the 10 pathways identified in path-
way analyses: gamma-glutamyl amino acid; methionine,
cysteine, SAM and taurine metabolism; purine metabolism,

Figure 2Module dendrogram and heatmap of module–outcome associations (basic model). Effect sizes and unadjusted P-values are
presented in the tiles and significant associations (P, 3.57× 10−3) are highlighted in bold. For clarity purposes, only outcomes demonstrating a
Bonferroni-significant result are shown. STM, short-term memory; DM, delayed memory; ACE-III, Addenbrooke’s Cognitive Examination-III; PS,
processing speed.
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(hypo)xanthine/inosine containing; purine metabolism, ad-
enine containing; pyrimidine metabolism, uracil containing;
ascorbate and aldarate metabolism; vitamin A metabolism
and fatty acid (monohydroxy). In Model 4, one hub belong-
ing to the purple module—palmitoylcarnitine (C16)—re-
mained significant at the adjusted threshold and 17 were
nominally significant. A correlation matrix of hub metabo-
lites can be found in Supplementary Figure 5: correlations
ranged from −0.35 to 0.91.

Additional analyses
Due to sample size differences (above ACE-III threshold: n=
1190;APOE: max n= 1475; whole sample: n= 1740), results
were examined for changes in significance from Bonferroni to
non-significance (P. 0.05). For both single-metabolite and
module analyses, additionally adjusting for APOE genotype
did not change the pattern of results (Supplementary
Table 6). Further exclusion of participants below the threshold
for ACE-III resulted in changes to 15/155 metabolite associa-
tions, but all effect directions were preserved (highlighted in
Supplementary Table 7). Of these, none were the four metabo-
lites remaining in Model 4, but six were turquoise module
hubs. For network analyses, associations were lost (P. 0.05)

for the brown module and short-term memory (60–64 years),
and the turquoise module and ACE-III, but no other changes
were seen (Supplementary Table 7).

Discussion
Using the British 1946 Birth Cohort, we systematically eval-
uated the metabolic correlates of cognitive function in late
midlife while untangling influencing life course factors.
Overall, we identified 155 metabolites, 10 pathways and 5
network modules to show associations with cognitive out-
comes. Integrating these, 35 hub metabolites were revealed
to show potential as markers for further study. Some of
these relationships were independent of life course influ-
ences; however, consistent with our previous analyses in
the MRC 1946,6 as well as a previous lipidomics study in
the Lothian Birth Cohort,38 many were sensitive to child-
hood cognition and education, suggesting important consid-
erations for future studies.

Most notably, we report independent relationships
between the purple module—enriched in medium- and
long-chain acylcarnitines—and processing speed, with our
pathway analyses largely in support of this. These

Figure 3 Overrepresented pathways in network modules. Only pathways significant at the adjusted threshold (P, 9.43× 10−4) are
shown. P-values are unadjusted. Source data are present in Supplementary Tables 9 and 10.
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relationships were specific to processing speed, indicating a
possible association unique to this outcome. One metabo-
lite, palmitoylcarnitine (C16) (a long-chain acylcarnitine),
appeared to be a key driver of these associations, suggesting
a potential candidate for further investigation.

Biologically, medium- and long-chain acylcarnitines are
derivatives of fatty acid metabolism and known to be pivotal
in mitochondrial fatty acid oxidation.39 Increased abun-
dances in serum have thus been regarded as proxies for mi-
tochondrial dysfunction and impairments in subsequent
energy production.39 Perturbations in acylcarnitine levels
have been reported in early cognitive impairments and
Alzheimer’s disease,7,40,41 as well as other outcomes related
to mitochondrial dysfunction, such as insulin resistance,42,43

obesity43 and cardiovascular disease.44 More specifically,
palmitoylcarnitine has also been linked to the induction
and regulation of apoptotic events.45 Both apoptosis
and mitochondrial dysfunction have been implicated in
neurodegeneration, indicating a plausible biological me-
chanism behind our observations.46,47 Future studies will
seek to establish whether these changes lie on the causal
pathway.

The turquoise module—comprised of nucleotides and
amino acids—demonstrated negative associations with the
ACE-III and memory outcomes; these were partly explained
by life course factors, attenuating by 39.2–55.5% overall
and nominally significant in the final model. Module hubs

were amino acids and nucleosides that were unified by the
presence of modifications, and included in these were several
markers of RNA turnover and oxidative stress.48–50

Interestingly, many hubs have been reported together in a
variety of outcomes, ranging from telomere length50 to
chronic kidney disease.51 More recently, these metabolites
were associated with a higher risk of multiple non-
communicable diseases and all-cause mortality, with the
top driver of the module—DMTPA (previously known as
X-11564)—linked to eight different adverse outcomes.52

These widespread associations presents the possibility that
they may reflect converging aetiologies, with a previous
study hypothesizing that they may represent an ‘accelerated
ageing’ phenotype.53

Next, a module enriched in vitamin A and C metabolites,
cyan, showed positive associations with most cognitive out-
comes, displaying the largest overall effects across all stages
of analysis. Vitamin A and C metabolites are known antiox-
idants that may inhibit deleterious processes resulting from
oxidative stress, which is thought to be involved in the
pathogenesis of neurodegenerative diseases.54,55 Due to
this, their involvement in ageing, cognitive decline and
Alzheimer’s disease has been discussed, with epidemiologic-
al studies showing conflicting results.56,57 Here, associations
were sensitive to adjustment for life course factors, namely
social factors and childhood cognition, providing a possible
explanation for differing findings. Relationships were

Figure 4 Forest plot showing associations between modules and outcomes in Models 1–4. Bonferroni-significant modules (P, 3.57
× 10−3) are represented by a solid fill, nominal modules (P, 0.05) by a fainter fill and modules that are not significant at either threshold are
represented by the faintest fill. For clarity purposes, only outcomes demonstrating a Bonferroni-significant result are shown. Source data are
present in Supplementary Table 10.
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largely explained for processing speed and ACE-III in the fi-
nal model, but remained at the nominal threshold for short-
term memory.

Finally, we report relationships between sphingolipids
and improved cognitive function which were entirely ex-
plained by life course factors, particularly childhood cogni-
tion and education. Sphingolipids are a lipid family
comprised of sphingomyelins, ceramides and glycosphingo-
lipids, and are present in large quantities in the CNS.58

Forming important components of cell membranes, they
are highly dynamic and are thought to display essential roles
in cognitive development and function.59 Supporting this,
previous research has implicated disturbances in sphingoli-
pid balance in cognitive development,59,60 function,59

ageing59,61 and Alzheimer’s disease.58 Given these observa-
tional findings linking sphingolipids and cognitive function
at several stages of the life course, unravelling the precise
nature of these attenuations is warranted.

An important finding here is that many associations were
attenuated after adjusting for social factors and childhood
cognition. When following up on particular factors that

may be driving this, we observed a large impact on child-
hood cognition and education, indicating that these factors
may confound associations through influences on
health-related traits that can, in turn, alter metabolite le-
vels.38 Therefore, without prior adjustment for these
measures, relationships with cognition later in life may be
overestimated. Although many of our findings show at-
tenuations, this does not necessarily indicate they are unim-
portant when looking at cognitive health and dementia risk;
particularly for those that show biological relevance. In the
case of relationships that show partial attenuations, this in-
dicates possible lifelong bi-directional relationships between
these metabolites and cognitive function, with education
likely showing similar attenuation patterns via shared com-
ponents. Nevertheless, with no earlier life metabolite data
available, it is possible that later life metabolite levels may
be a proxy for those in earlier life. As such, we cannot rule
out the possibility that childhood cognition and education
are influenced by prior metabolite levels. Alternatively,
both metabolites and cognitive function could have shared
genetic or environmental causes. When well-powered LC–

Figure 5 Heatmap showing associations between hub metabolites and cognitive outcomes in Models 1–4. Panels on the right
indicate the pathways (text) and modules (colour) represented by metabolites. Pathways are suffixed with an asterisk if they were previously
identified in our pathway analyses (**P, 9.43× 10−4, *P, 0.05). Bonferroni-significant metabolites (P, 1.15× 10−4) are represented by a solid
fill, nominal metabolites by a faint fill (P, 0.05), and non-significant metabolites by no fill (P. 0.05). Tiles are coloured by effect direction and
effect sizes are noted in the centre. For clarity purposes, only outcomes demonstrating a Bonferroni-significant result are shown. Source data are
present in Supplementary Table 1. STM, short-term memory; PS, processing speed; DM, delayed memory; ACE-III, Addenbrooke’s Cognitive
Examination-III.
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MS GWAS are available, we will dissect the relationships
highlighted here using MR to further understand potential
cause and effect.

Findings should be considered in the light of several lim-
itations. First, our results may be subject to residual con-
founding and a lack of longitudinal metabolomic data
precludes the investigation into lifelong relationships and
directionality. Next, cognitive change measures were cu-
rated from data collected within a narrow time window,
which could explain the lack of relationships observed.
Change measures were also represented by residualized
change scores, which can be subject to bias, and our findings
should be interpreted with this in caution. Finally, as seen with
many cohort studies, individuals remaining in the study at this
stage were generally of higher cognitive ability in childhood
andmore socially advantaged compared to the sample initially
recruited at birth. Further, the study sample was ethnically
homogenous. For generalization, it will be paramount to repli-
cate this work in more diverse populations.

In summary, we conducted one of the largest LC–MS stu-
dies to date on cognitive outcomes in late midlife and are
the first to evaluate systems-level associations in the context
of life course factors. We integrated metabolites, pathways
and networks, offering biological interpretation while retain-
ing granularity, and highlighted molecular correlates of cogni-
tive outcomes in late midlife. Our results illustrate the
importance of incorporating life course influences, with
many relationships largely explained by childhood cognition
and education. Finally, we identified several metabolites (e.g.
palmitoylcarnitine C16) that were both key in their module
and associated with our outcomes, presenting as potential
marker candidates for additional study.
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