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Metal such as iron, zinc, manganese, and nickel are essential elements for bacteria. These
nutrients are required in crucial structural and catalytic roles in biological processes,
including precursor biosynthesis, DNA replication, transcription, respiration, and oxidative
stress responses. While essential, in excess these nutrients can also be toxic. The immune
system leverages both of these facets, to limit bacterial proliferation and combat invaders.
Metal binding immune proteins reduce the bioavailability of metals at the infection sites
starving intruders, while immune cells intoxicate pathogens by providing metals in excess
leading to enzyme mismetallation and/or reactive oxygen species generation. In this
dynamic metal environment, maintaining metal homeostasis is a critical process that must
be precisely coordinated. To achieve this, bacteria utilize diverse metal uptake and efflux
systems controlled by metalloregulatory proteins. Recently, small regulatory RNAs
(sRNAs) have been revealed to be critical post-transcriptional regulators, working in
conjunction with transcription factors to promote rapid adaptation and to fine-tune
bacterial adaptation to metal abundance. In this mini review, we discuss the expanding
role for sRNAs in iron homeostasis, but also in orchestrating adaptation to the availability
of other metals like manganese and nickel. Furthermore, we describe the sRNA-mediated
interdependency between metal homeostasis and oxidative stress responses, and how
regulatory networks controlled by sRNAs contribute to survival and virulence.

Keywords: Regulatory RNA, metal ions, metal homeostasis, nutritional immunity, oxidative stress
INTRODUCTION

Trace metals like iron, zinc, manganese, or nickel are essential nutrients for bacteria (Begg, 2019),
being cofactors and/or structural components of ~40% of proteins (Andreini et al., 2008). At the
same time, these essential nutrients can also be toxic. Since they cannot be synthesized or degraded,
bacteria, including pathogens, must adapt to their presence and absence, which is particularly
important in the context of infection. During infection, the host renders metals inaccessible to
invaders, a process termed “nutritional immunity” (Hood and Skaar, 2012; Nairz et al., 2018; Núñez
et al., 2018). This includes extracellular metal withholding through systemic and locally secreted
metal-binding proteins such as transferrin, lactoferrin and calprotectin, and metal depletion from
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phagosomes by host transporters such as NRAMP1. The host
also harnesses the toxicity of metals and intoxicates pathogens
with high metal levels (Imlay, 2003; Imlay, 2014; Djoko et al.,
2015). This mini review will focus on how pathogens adapt to
metal limitation and the role of regulatory RNAs in this response
and maintaining metal homeostasis. However, it is important to
note that the need to adapt changing metal abundance is not
restricted to pathogens and that common strategies are used by
both pathogenic and environmental microbes.

Bacterial Countermeasures
Bacteria have evolved multiple mechanisms to maintain metal
homeostasis in response to their ever-changing environments.
This includes metal importers and exporters, metal storage
proteins, and alternative enzymes/pathways to preserve critical
enzymatic and metabolic functions (Merchant and Helmann,
2012; Chandrangsu et al., 2017).

Metal import and export systems are critical for bacterial
survival and virulence. For instance, in Staphylococcus aureus,
the uptake of manganese is mediated by the NRAMP homolog
MntH and the ABC-type transporter MntABC, while its efflux is
carried out by MntE. These systems are crucial not only to
maintain manganese homeostasis, but also to resist oxidative
stress (Grunenwald et al., 2019; Radin et al., 2019). To efficiently
extract metal from their environment, many pathogens also
secrete metallophores, molecules having a higher metal-
binding affinity than host proteins. Siderophores, iron-
chelating secondary metabolites, are important virulence
factors used to obtain iron (Kramer et al., 2020; Khasheii et al.,
2021). More recently, metallophores that promote zinc uptake
and contribute to pathogenesis were identified in Pseudomonas
aeruginosa and S. aureus (Grim et al., 2017; Lhospice et al., 2017).
Another approach to obtain these essential nutrients is to steal
them from host metal-containing proteins like transferrin,
lactoferrin or hemoglobin for iron (Barber and Elde, 2015) and
calprotectin for zinc (Stork et al., 2013).

While important for pathogenesis, the expression of
importers is insufficient to enable infection. To cope with
metal limitation, bacteria can release iron from storage
proteins like ferritin and ferritin-related proteins (Chandrangsu
et al., 2017; Bradley et al., 2020). They also alter the composition
of the cytoplasm, which buffers metal ions, potentially facilitating
metal acquisition by metalloproteins. In response to scarcity,
bacteria also reduce their need for the limiting metal, by
switching to alternative isozymes or even entire pathways that
are not dependent on it (Merchant and Helmann, 2012). A
classic example is the use of paralogs of the superoxide dismutase
(SOD) associated with distinct metal cofactors to rescue the
reactive oxygen species (ROS) detoxification pathway (see below
and Figure 1).

While beneficial when metal availability is restricted, these
adaptations can be deleterious when metals are abundant.
Similarly, the adaptations used to overcome metal
intoxication, reviewed by Djoko et al. (2015) and Bradley
et al. (2020), can be detrimental when metals are limiting.
Thus, use of all above-mentioned mechanisms is carefully
coordinated by regulators.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
METAL-RESPONSIVE
TRANSCRIPTION FACTORS

Classically, the bacterial response to environmental metal
abundance is controlled by regulators that directly interact
with the target metal. These regulators can be divided into two
classes; those that coordinate the response to metal limitation
and those that respond to intoxication. Transcription factors that
coordinate the response to metal limitation generally repress
expression when their target metal is abundant, with converse
logic being used to respond to intoxication (Waldron and
Robinson, 2009). Metal limitation is frequently sensed by
members of either the Fur (Ferric uptake regulator) or DtxR
(Diphtheria toxin regulator) family of metal sensing regulators,
with divergence enabling the same family to be used to sense
different metals (Table 1). While primarily negative regulators,
positive regulation by these families can occur, for example two
MntRs that positively regulate the expression of manganese
efflux systems have been reported (Huang et al., 2017;
Grunenwald et al., 2019). The Fur family has also been co-
opted to coordinate their response to peroxide stress via PerR
(Bsat et al., 1998; Lee and Helmann, 2006; Pinochet-Barros and
Helmann, 2018). In addition, bacteria can leverage protein
scaffolds not generally considered metal-responsive to sense
metals such as the MarR family proteins, AdcR and ZitR
(Varela et al., 2019). While coordinating the response to metal
limitation was once thought to be the purview of metal sensing
regulators, it is now apparent that metal independent sensors
also critically contribute (Nairn et al., 2016; Radin et al., 2016;
Harper et al., 2018; Párraga Solórzano et al., 2019; Lonergan
et al., 2020). Similarly, there is a growing appreciation for post-
transcriptional regulation via small regulatory RNAs (sRNAs).
WHAT ARE BACTERIAL
REGULATORY RNAS?

To enable tighter and fine-tuned regulation, transcription factors are
frequently associated with sRNAs into so-called mixed regulatory
circuits (Nitzan et al., 2017). Regulatory RNAs in bacteria are
generally non-coding and range in size from ~30 to >1,000 nts
(Barrientos et al., 2021; Li and Stanton, 2021). Hundreds of sRNAs
have been identified in diverse bacteria (Boutet et al., 2022). These
critical post-transcriptional regulators control, amongst others,
bacterial physiology, stress responses and virulence in response to
specific internal or external stimuli such as nutrient availability,
oxidative stress, or antibiotics exposure (Chakravarty and Massé,
2019; Mediati et al., 2021).

Regulatory RNAs are mainly categorized in two classes, cis-
and trans-encoded. The cis-encoded sRNAs include antisense
RNAs and riboswitches that originate from genes located at the
same locus as the targeted mRNA. Antisense RNAs are encoded
on the opposite DNA strand and, consequently, regulate their
cognate mRNA target via perfect base-pairings. They are notably
involved in toxin-antitoxin systems (Sarpong and Murphy,
2021). Riboswitches are regulatory elements embedded within
July 2022 | Volume 12 | Article 952948
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the 5’ untranslated region (5’UTR) of mRNA targets (Breaker,
2022). Through their aptamer domain, riboswitches sense
metabolites or metal ions. Upon ligand recognition,
riboswitches are subject to structural modifications which
modulate the transcription and/or translation of downstream
gene(s).

Trans-encoded sRNAs and their respective targets are located
at distant loci. These regulatory RNAs usually regulate multiple
targets, from a few to several tens, through imperfect base-
pairings (Carrier et al., 2018; Jørgensen et al., 2020). A broad
range of regulatory mechanisms are used to control targeted
mRNAs positively or negatively. For instance, sRNAs can pair
with the Shine-Dalgarno sequence of a specific mRNA, which
restricts access to the ribosome binding site and thus blocks
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
mRNA translation. Conversely, sRNAs binding can mask
cleavage sites or induce conformational changes promoting
mRNA translation. Several RNA-binding proteins, such as
Hfq, ProQ and CsrA, play crucial roles in the sRNA-
dependent regulation, especially in Gram-negative bacteria.
Their roles have been widely discussed in Christopoulou and
Granneman (2021) and Quendera et al. (2020).
SRNAS AND METAL HOMEOSTASIS

A mere 20 years ago, Massé and Gottesman described the first
metal-responsive sRNA, RyhB, which helps reestablish iron
homeostasis in starved E. coli. Since then, accumulating data
FIGURE 1 | Mixed regulatory circuits between transcription factors and sRNAs to control SOD synthesis according to metal bioavailability. Fur (red), MntR (green)
and Nur (blue) boxes are indicated by a rectangle overlapping the promoter. sRNAs are indicated in purple. Dotted lines represent putative or indirect regulation in
need of further experimentation. See text for more details.
TABLE 1 | Transcription factors and sRNAs that respond to metal limitation.

Metala Cognate sRNA Exemplar species

Fur familyc

Fur Fe RyhB and analogs E. coli, S. Typhimurium, P. aeruginosa, B. subtilis...
Zur Zn NR
Mur Mn NR
Nur Ni s-SodF S. coelicolor
Irr Heme NR
PerR Fe, Mn, H2O2 NR
DtxR familyb,d

DtxR Fe NR
MntR Mn RsaC S. aureus
MarR familye

AdcR/ZitR Zn NR
Ribbon-helix-helix familyf

NikR Ni NikS H. pylori
NR. None reported. aMetal(s) or stimuli that modulate activity in the native organism. bThe nomenclature of the DtxR family is heterogeneous with considerable species specificity.
Reviewed by: cSevilla et al. (2021), dMerchant and Spatafora (2014), eVarela et al. (2019), fLi and Zamble (2009).
July 2022 | Volume 12 | Article 952948

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Charbonnier et al. Regulatory RNAs and Metal Homeostasis
revealed that sRNA-mediated adaptive responses to metal
fluctuations is not restricted to the model organism E. coli, or
to iron.

Iron Homeostasis and RyhB-like sRNAs
RyhB responds to intracellular iron levels as it is directly under
the control of Fur (Table 1). While Fe2+-Fur efficiently represses
ryhB expression, Fur becomes inactive upon intracellular iron
depletion (Masse and Gottesman, 2002). Once produced, RyhB
directly interacts with a large set of mRNAs to boost iron import,
reduce cellular demands, and redirect iron to essential biological
processes (e.g., respiration, DNA synthesis). For more details
about this sRNA-dependent iron-sparing response, please refer
to Chareyre and Mandin (2018).

Multiple analogs of RyhB have been discovered among
bacteria [e.g., PrrF1/2 in P. aeruginosa (Wilderman et al.,
2004) and FsrA in Bacillus subtilis (Gaballa et al., 2008)].
While RyhB-like sRNAs share little to no sequence similarities,
they remarkably control a similar set of transcripts and belong to
the Fur regulon. In pathogens, RyhB-like sRNAs interlink iron
homeostasis and virulence. Porcheron et al. (2014) demonstrated
that the deletion of ryhB gene in the uropathogenic E. coli strain
CFT073 leads to a significant reduction of bladder colonization.
In Salmonella Typhimurium, RyhB-1/2 sRNAs modulate
bacterial replication within macrophages and presumably
promote immune evasion (Peñaloza et al., 2021). Additional
examples are provided by Porcheron and Dozois (2015) and
Chareyre and Mandin (2018).

Similar to other adaptations to metal limitation, the synthesis
of RyhB sRNA can cause adverse effects on cell physiology and
colicin resistance (Lalaouna et al., 2015). Therefore, its
production is tightly controlled at both transcriptional and
post-transcriptional levels. Lalaouna et al. (2015) identified a
tRNA-derived fragment, which protects E. coli cells from
deleterious effects by “sponging” the transcriptional noise of
ryhB gene in non-inducing conditions. Other RyhB-like
sponging mechanisms have been thereafter described in E. coli
(AspX; Chen et al., 2021) and in P. aeruginosa (SkatA; Han
et al., 2016).

Fur-Independent sRNAs Involved in
Iron Homeostasis
In addition to RyhB, several other sRNAs including CsrB/C,
CyaR and FnrS have been linked with iron homeostasis.

The RNA-binding protein CsrA and its homologs are
pleiotropic post-transcriptional regulators, which control
multiple cellular processes including carbon metabolism, stress
response, mobility, and virulence (Romeo et al., 1993; Pourciau
et al., 2020). In E. coli, CsrA also plays a role in iron homeostasis
(Pourciau et al., 2019). CsrA reportedly modulates iron storage
protein synthesis to remobilize iron during the exponential phase
of growth. CsrA also seems to lower RyhB sRNA level via an
unknown mechanism (Potts et al., 2017). The activity of CsrA is
modulated by two sRNAs, named CsrB and CsrC (Liu et al.,
1997; Weilbacher et al., 2003), in response to short-chain
carboxylic acids and carbon nutritional status (Pannuri et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2016; Alvarez et al., 2021). In stark contrast with above-
mentioned mechanisms of action, CsrB/C sRNAs bind the
CsrA protein via recognition motif mimicry, preventing it
from interacting with its ‘true’ targets. Noteworthy, both CsrB/
C and CsrA are not responsive to iron bioavailability (Pourciau
et al., 2019). Hence, CsrA, and by extension, CsrB/C sRNAs
could link cellular responses to iron homeostasis notably by
integrating additional signals.

Other sRNAs control specific iron-related mRNA targets as
recently exemplified by Sy and Tree (2022). The chuAS operon
encodes a haem receptor and haem oxygenase, involved in haem
uptake, and then iron dissociation. This operon is not only
regulated by RyhB and Fur in enterohemorrhagic E. coli, but
also by CyaR and FnrS sRNAs. CyaR activates ChuA translation
in response to high cyclic AMP levels, while FnrS sRNA represses
ChuS translation during anaerobiosis. Hence, chuAS expression
is fine-tuned at the infection site by integrating distinct
parameters such as oxygen and nutrient bioavailability.

Manganese-Responsive RNAs
Investigations into metal-responsive RNAs has largely focused on
the intersection with iron homeostasis. However, it is now apparent
that sRNAs broadly contribute to metal homeostasis. The
manganese-responsive sRNA RsaC originates from the 3’UTR of
mntABC transcript coding for the main manganese ABC
transporter in S. aureus and is tightly repressed by Mn2+-MntR
(Table 1) (Lalaouna et al., 2019). When S. aureus faces manganese
starvation, both the MntABC transporter and RsaC sRNA are
produced. Lalaouna et al. (2019) demonstrated that, after its
release from its precursor through an endonucleolytic cleavage,
RsaC modulates the switch between manganese-dependent and
iron-utilizing superoxide dismutases (SODs), linking manganese
homeostasis to oxidative stress response. More details are provided
below and in Figure 1. While further investigation is necessary,
RsaC could also be a bridge between distinct metal-related
networks. In response to manganese limitation, RsaC potentially
regulates the transcription factor Zur, the zinc transporter AdcABC,
the Fe3+-siderophore transporter SstABCD and the iron-sulfur
cluster biosynthesis system Suf (Lalaouna et al., 2019).

Regulatory RNAs also contribute to resisting intoxication as
the synthesis of bacterial manganese tolerance/efflux systems are
controlled by MntR and/or the Mn2+-sensing yybP-ykoY
riboswitch (Dambach et al., 2015; Zeinert et al., 2018; Waters,
2020). Upon Mn2+ binding, the yybP-ykoY riboswitch either
releases the ribosome binding site or forms an antitermination
structure allowing the translation or transcription of the
downstream gene, respectively. Remarkably, this riboswitch is
highly conserved, as over 1,300 bacterial genomes contain one or
two yybP-ykoY motifs (Zeinert et al., 2018).

Nickel Homeostasis and Virulence
Regulatory RNAs also contribute to nickel homeostasis and
pathogenesis. Helicobacter pylori, responsible for benign to
severe stomach pathologies, must survive the acidic conditions
encountered in the stomach. To that end, H. pylori neutralizes
acid by producing a nickel-dependent urease, converting urea
July 2022 | Volume 12 | Article 952948
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into ammonia and bicarbonate. The transcription of ureAB
mRNA encoding the two structural subunits of urease is
activated by NikR in presence of Ni2+. To prevent advert
effects of alkalinization, an antisense RNA to ureB is produced
in response to elevated pH to lower urease synthesis (Wen et al.,
2011; Wen et al., 2013).

More directly connecting nickel-responsive sRNAs and
virulence, in 2017, (Vannini et al. (2017) identified three
putative NikR-regulated sRNAs. One of these, HPnc4160,
renamed NikS, especially controls major virulence and
colonization factors including the vacuolating cytotoxin
VacA and the carcinogenic protein CagA (Eisenbart et al.,
2020; Kinoshita-Daitoku et al., 2021). These examples
highlight the role of metal-responsive sRNAs in cell survival
and virulence, but also the necessity to integrate multiple
environmental signals via mixed regulatory circuits to adapt
to the host environment.

A conserved metal-sensing riboswitch, named czcD and
located upstream genes encoding putative cation efflux pumps,
has been described as nickel, cobalt and iron-responsive.
However, the nature of its ligand is under debate and its
physiological role still needs to be clarified in vivo (Furukawa
et al., 2015; Xu and Cotruvo, 2020).

The Regulation of Superoxide Dismutases,
an Illustrative Example
Superoxide dismutases are ubiquitous enzymes that detoxify
superoxide, a toxic compound generated either by aerobic
respiration or by immune cells (Abreu and Cabelli, 2010).
SODs rely on diverse metal cofactors to function (i.e.,
manganese, iron, nickel, or zinc/copper). Many bacteria
have more than one SOD, each reliant on a different metal
cofactor, to cope with fluctuations in metal bioavailability.
Regulatory RNAs (RyhB, RsaC and s-SodF) and their cognate
transcription factors (Fur, MntR and Nur) (Figure 1; Table 1)
have critical roles in coordinating expression of these multiple
SODs in response to metal abundance.

E. coli possesses two cytoplasmic (SodA and SodB) and one
periplasmic SODs (SodC), which differ in their metal needs and in
their temporal regulation. The iron-dependent SodB and the
manganese-dependent SodA enzymes are tightly and divergently
controlled in response to iron and oxygen abundance (Fee, 1991;
Compan and Touati, 1993). As mentioned above, RyhB directly
targets several mRNAs coding for non-essential iron-containing
proteins such as sodBmRNA to spare intracellular iron (Masse and
Gottesman, 2002) during iron limitation (Figure 1). Under these
conditions, the manganese-dependent SOD enzyme, SodA, is
induced due to loss of Fe2+-Fur mediated repression (Niederhoffer
et al., 1990; Compan and Touati, 1993), reestablishing the ROS
detoxification pathway. However, RyhB also seems to negatively
regulate sodA mRNA (Jacques et al., 2006; Argaman et al., 2012).
While the molecular rationale for this contrasting regulation is
unknown, Semsey (2014) proposed that regulation by both Fur and
RyhB allows a faster SodA-dependent response to superoxide stress
during iron starvation. This paradoxical regulation of SodA for an
sRNA as well studies as RyhB highlights the broader need for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
continued investigation into the role of sRNAs in metal
homeostasis. It should be also noted that there is no evidence that
RyhB could control sodC mRNA, even in large-scale analyses
(Lalaouna et al., 2015; Melamed et al., 2016).

The S. aureus genome encodes two SOD enzymes (Figure 1),
the manganese-dependent SodA and the cambialistic enzyme
SodM using either manganese or iron to function (Garcia et al.,
2017). As discussed above, the MntR-dependent RsaC sRNA
directly blocks SodA synthesis during manganese starvation and
facilitates its substitution by the iron-associated SodM (Lalaouna
et al., 2019). RsaC likely enables S. aureus to spare manganese for
essential manganese-containing proteins, avoid the synthesis of a
non-functional enzyme and reestablish the ROS detoxification
pathway. It is noteworthy that both rsaC and sodM genes have
been acquired exclusively by S. aureus and closely related strains,
a clear advantage under harsh and selective conditions compared
to other staphylococcal species.

SOD regulation also highlights the broad importance of
sRNA mediated regulation to non-pathogenic microbes.
Indeed, two distinct SODs are encoded in Streptomyces
coelicolor genome, the nickel-containing SodN and the iron-
containing SodF (Kim et al., 2014). These enzymes are
antagonistically regulated in response to the cellular level of
nickel (Ahn et al., 2006). The nickel-responsive transcriptional
regulator of the Fur family, Nur, directly binds to sodF
promoter and switches its transcription off, while indirectly
turns on SodN production (Figure 1). Kim et al. (2014) raised
the veil on this mystery by identifying s-SodF, an sRNA
originating from the 3’UTR of sodF mRNA during nickel
starvation. This 3’UTR-derived sRNA pairs with sodN
transcript, induces its degradation and impedes its
translation, favoring a nickel-dependent detoxification
pathway. Consequently, Nur activates sodN transcription via
the negative regulation of sodF transcription.
CONCLUSIONS

Metal-responsive transcription factors and associated sRNAs
are involved in intricate regulatory networks, enabling to finely
regulate metal homeostasis in response to environmental
fluctuations and metal-based immune strategies. This
phenomenon is not restricted to E. coli and is rather widely
distributed among bacteria. These mixed regulatory circuits
also play important roles in the virulence and survival of
pathogenic strains.

As exemplified above, sRNA-dependent regulations are not
limited to iron homeostasis. Manganese and nickel intracellular
levels are also tightly regulated via trans-encoded RNAs and
riboswitches. It is also very likely that other sRNA-dependent
metal-sparing responses exist due to the imperative need to
balance the import and export of zinc, cobalt or copper. We also
highlighted that virulence, metal homeostasis and oxidative
stress responses are intimately linked via transcription factors
and their cognate sRNAs, allowing bacteria to cope with
multifactorial environmental fluctuations.
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