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Abstract

Purpose

To assess the effect of computer-aided detection (CAD) of brain metastasis (BM) on radiolo-

gists’ diagnostic performance in interpreting three-dimensional brain magnetic resonance

(MR) imaging using follow-up imaging and consensus as the reference standard.

Materials and methods

The institutional review board approved this retrospective study. The study cohort con-

sisted of 110 consecutive patients with BM and 30 patients without BM. The training data

set included MR images of 80 patients with 450 BM nodules. The test set included MR

images of 30 patients with 134 BM nodules and 30 patients without BM. We developed a

CAD system for BM detection using template-matching and K-means clustering algo-

rithms for candidate detection and an artificial neural network for false-positive reduction.

Four reviewers (two neuroradiologists and two radiology residents) interpreted the test set

images before and after the use of CAD in a sequential manner. The sensitivity, false posi-

tive (FP) per case, and reading time were analyzed. A jackknife free-response receiver

operating characteristic (JAFROC) method was used to determine the improvement in the

diagnostic accuracy.

Results

The sensitivity of CAD was 87.3% with an FP per case of 302.4. CAD significantly improved

the diagnostic performance of the four reviewers with a figure-of-merit (FOM) of 0.874

(without CAD) vs. 0.898 (with CAD) according to JAFROC analysis (p < 0.01). Statistically
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significant improvement was noted only for less-experienced reviewers (FOM without vs.

with CAD, 0.834 vs. 0.877, p < 0.01). The additional time required to review the CAD results

was approximately 72 sec (40% of the total review time).

Conclusion

CAD as a second reader helps radiologists improve their diagnostic performance in the

detection of BM on MR imaging, particularly for less-experienced reviewers.

Introduction

Metastatic brain tumors are the most common brain tumors in adults [1]. Unfortunately,

brain metastasis (BM) carries a dismal prognosis, with a median survival of only 1 month if

left untreated [2]. With the use of whole-brain radiation therapy (WBRT), which has been the

primary treatment modality of BM for over 50 years [3], the prognosis of patients with BM

remains poor, with a median survival of 4 to 6 months [4]. Because WBRT may induce neuro-

cognitive function impairment in some patients [5, 6], stereotactic radiosurgery alone has

been increasingly considered the first-line treatment for patients with limited BM [7, 8].

Additionally, growing evidence suggests that stereotactic radiosurgery can be safely used for

patients with up to 10 BM nodules [9, 10]. Thus, the accurate determination of the number,

size, and location of metastatic lesions on brain imaging has become crucial for selecting the

most appropriate treatment method.

Introduction of three-dimensional (3D) sequences in magnetic resonance (MR) imaging,

which allows the acquisition of thin-section thickness images in a reasonable time, has signifi-

cantly enhanced the sensitivity of BM detection, particularly for small nodules [11]. However,

this demands time and effort on radiologists due to the increased number of images, which

can be on the order of hundreds for a single patient. In addition, the enhancement of a small

vessels may occasionally be confused with a small metastatic nodule on magnetization-pre-

pared rapid-gradient-echo (MP-RAGE) imaging [12, 13], which is currently the most widely

used 3D T1-weighted imaging (T1WI) sequence.

Computer-aided detection (CAD) was developed to assist radiologists by providing a sec-

ond opinion. Previous studies have found that CAD increases the sensitivity of detecting

lesions in the breast [14–16], lung [17–19], and colon [20–23]. While CAD has also been

applied for the detection of BM on MR imaging [24–27], to our knowledge, no studies have

yet attempted to validate its usefulness in clinical practice. In this study, we developed CAD

software for the detection of BM and conducted an observer performance study. We aimed to

assess the effect of CAD of BM on radiologists’ diagnostic performance in interpreting 3D

brain MR imaging using follow-up imaging and consensus as the reference standard.

Materials and methods

Observer study cohort

The institutional review board waived the need for written informed consent from the partici-

pants because this was a retrospective study, and the patient records and information were

anonymized and de-identified prior to analysis. From January 2015 through March 2016, 1751

consecutive MR imaging studies collected using a ‘BM work-up’ protocol from 1435 patients

who had confirmed systemic malignancy were selected from the radiology database of Seoul
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National University Bundang Hospital. Two non-observer neuroradiologists (S.H.C. and B.S.

C., with 16 and 18 years of clinical experience, respectively), who had access to the patients’

histories and follow-up imaging studies, determined the reference standard of BM nodules

based on consensus. Among these, 353 patients were excluded using the following criteria: (a)

presence of metastasis involving bone, dura, or skin, or suspicious lesions for leptomeningeal

seeding (n = 129); (b) presence of other pathological conditions, such as meningioma, vestibu-

lar schwannoma, pituitary adenoma, cavernous malformation, or hemorrhagic infarction

(n = 64); (c) presence of equivocal nodule(s) determined to be BM (n = 99); (d) presence of

excessive artifacts or poor image quality (n = 31); and (e) presence of more than 50 metastatic

nodules (n = 30). For patients who underwent multiple MR imaging studies during the period,

one study was chosen. After the initial selection, 80 patients with the presence of BM according

to studies performed in 2015 were designated as the training set. Next, 30 patients with the

presence of BM according to studies performed in 2016 were designated as the test set. Among

the 236 patients without evidence of BM on MR studies performed in the same period, 30

patients were randomly chosen after age and sex matching and included in the test set (Fig 1).

Image acquisition

MR images were obtained with a 1.5-T (Intera; Philips Healthcare, Best, the Netherlands) or

3-T (Achieva or Ingenia; Philips Healthcare) MR scanner with an 8- or 32- channel head coil.

MR imaging parameters for the 3D gradient-echo sequence (GRE) were as follows: field-of-

view, 240 × 240 mm2; acquisition matrix, 240 × 240; slice thickness, 1 mm; number of excita-

tions, 1; repetition time (TR), 8–10.6 msec; echo time (TE), 3.7–5.7 msec; and flip angle, 8˚.

For contrast enhancement, gadobutrol (Gadovist1, Bayer Schering Pharma AG, Berlin, Ger-

many; 0.1 mmol/kg) was injected as a bolus intravenously. While CAD analyzed the 3D GRE

Fig 1. Flow diagram for patient selection. The diagram shows the initial case selection and final distribution

of study cases into the training set and test set. Jan = January, Mar = March.

https://doi.org/10.1371/journal.pone.0178265.g001
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contrast-enhanced T1WI only, non-observer reviewers (S.H.C. and B.S.C.) also assessed other

imaging sequences in the routine protocol, including pre-contrast T1WI, T2-weighted images

(T2WI), and fluid-attenuated inversion recovery (FLAIR) images.

Development of CAD software

The algorithm of the developed CAD software are classified into brain segmentation-phase,

BM candidate detection-phase and BM discrimination-phase algorithms. Fig 2 shows the com-

plete flowchart of the proposed algorithms.

Normalization. While the attenuation values of CT are absolute values, the signal inten-

sity of MR imaging is a relative value. Therefore, the range of signal intensity differs depending

Fig 2. Flow diagram of our proposed CAD algorithms. TP = true positive, FP = false positive, ANN = artificial neural network.

https://doi.org/10.1371/journal.pone.0178265.g002
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on the scanning parameters. To solve this problem, we normalized the image by resampling

the signal of the whole image to the same range based on the signal intensity at the initial seed

position manually selected in the gray matter.

Brain segmentation. We attempted to limit the region of interest to the brain by extract-

ing the brain tissue from the source MR images. Restricting the algorithm to the brain region

may reduce the potential false-positive (FP) nodules in anatomical structures outside the brain

region.

A 3D spherical-based seed region growing (SSRG) algorithm was used for brain segmenta-

tion based on the manually determined seed position in the gray matter. Seed region growing

(SRG) is a general method of segmenting a homogeneous region by 3D expansion from a seed

position (x, y, z). The SRG algorithm expands the region pixel by pixel [28, 29]. Therefore,

when the signal intensity of a brain region is similar to those of neighboring structures, the

brain segmentation might fail with only one pixel. To resolve this problem, we developed the

SSRG algorithm, which expands the region when all pixels within the sphere comply with the

expansion conditions.

BM candidate detection. BM typically has a spheroid-like structure and shows contrast

enhancement on T1WI. Thus, BMs usually have well-defined borders with the surrounding

anatomical tissue [30, 31]. However, large BMs tend to have irregular shapes. In addition,

when internal necrosis is present, BM may appear as a peripheral rim-enhancing lesion. We

proposed two types of algorithms according to the size of the nodules based on the characteris-

tics of typical BM morphologies.

First, we used a 3D template-matching algorithm for BM detection with a small spheroid-

like structure. Specifically, we used two spherical template models (a solid type and an inner-

hole type) to compensate for the internal necrosis. The size of the voxel was determined by

considering the ratio between the in-plane pixel spacing and slice thickness. Three templates

were created for each of the two models and had diameters of 2 mm, 3 mm, and 4 mm. The

size of the inner hole was determined to be 50% of each template. Fig 3 shows the various tem-

plates created for each size and type.

Within the extracted brain volume, we performed a convolution of the brain volume using

the template models. We detected BM candidates by evaluating the similarity in each position

in the brain volume. The normalized cross correlation (NCC) was selected as the similarity

measure because it is independent of the voxel attenuation, as defined in (Eq 1) [32, 33].

1

n
Sx;y;z

ðf ðx; y; zÞ � �f Þðtðx; y; zÞ � ��tÞ
sf st

ð1Þ

where n is the count of pixels, f(x, y, z) is the brain image, t(x, y, z) is the template, and �f and ��t
are the means of the brain image and template, respectively. σf and σt are the standard devia-

tions of the brain image and template, respectively.

We initially detected image coordinates that exceeded the experimentally determined

threshold value of similarity measured by NCC in the brain volume. Then, labelling was per-

formed for the detected coordinates, and a 3D spherical region was created using the center

position of each label and the radius of the template. Finally, 3D spherical regions were consid-

ered as potential candidates.

Next, we used a K-means clustering algorithm for the detection of large BM nodules with

irregular shapes. K-means clustering is one of the simplest unsupervised classification tech-

niques and is widely used due to its simplicity. K-means clustering is an algorithm for group-

ing data into k clusters. The data are distributed over the nearest cluster by calculating the

Euclidean distance between the data and the center of each cluster [34, 35].
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We defined seven clusters (i.e., attenuation of enhanced tissues, ambiguous attenuation

between enhanced tissues and white matter, attenuation of white matter, ambiguous attenua-

tion between white matter and gray matter, attenuation of gray matter, ambiguous attenuation

between gray matter and necrotic tissue, and attenuation of necrotic tissue) and then per-

formed K-means clustering on the attenuation of all coordinates in the brain images. Next, we

aligned each cluster to a mean value of attenuation. On the aligned clusters, the ends had the

highest or lowest attenuation. In other words, there is a high probability that clusters at both

ends represent enhanced BM or BM including necrotic tissue. We performed 3D labelling on

the coordinates of clusters at both ends. Morphological features were calculated for each label

and used for the discrimination of BM. Finally, the labels with the feature values greater than

the experimentally defined thresholds were considered as potential candidates. Other labels

were defined as FP results and deleted.

BM discrimination from the candidates using machine learning. We removed the FP

nodules from the BM candidates to improve the accuracy. For the discrimination of the nodule

candidates, we used the artificial neural network (ANN) algorithm, which is a machine learn-

ing technique. ANNs are mathematical models based on biological neural networks [36]. They

consist of interconnected groups of artificial neurons organized into layers. We used three lay-

ers: the input, output and hidden layers (Fig 4). The input layer consisted of 30 neurons, and

we used 30 features measured from the BM candidate images as input neurons.

We initially selected 272 features based on the histogram, morphology, and texture [37–39].

From among these, the following 30 features were chosen using logistic regression analysis:

Fig 3. Six spherical templates by sizes (2, 3, and 4 mm) and types (solid and inner-hole).

https://doi.org/10.1371/journal.pone.0178265.g003
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volume, min, max, mean, standard deviation, variance, skewness, kurtosis, energy, entropy,

fractal dimension (box counting), gray level co-occurrence matrix (GLCM)-contrast, GLCM-

dissimilarity, GLCM-homogeneity, GLCM-angular second moment (ASM), GLCM-energy,

GLCM-probability max, GLCM-entropy, GLCM-correlation, GLCM-mean reference, GLCM-

mean neighbor, GLCM-variance reference, GLCM-variance neighbor, GLCM-standard devia-

tion reference, GLCM-standard deviation neighbor, gray level run length matrix (GLRLM)-

long run emphasis (LRE), GLRLM-gray level non-uniformity (GLN), GLRLM-run length

non-uniformity (RLN), GLRLM-low gray level run emphasis (LGRE), and GLRLM-high gray

level run emphasis (HGRE). The output layer consisted of two neurons representing BM and

non-BM.

The ANN model used in our study had a feed-forward architecture and was trained by

using the back-propagation algorithm with the hyperbolic tangent activation function (1.7159

tanh 2/3 x) [40]. The result of an output node represents the likelihood that a nodule may be

classified into each corresponding class. Thus, in this study, the output was interpreted as the

probability that a BM candidate is a true-positive (TP) nodule.

Fig 4. Example of an ANN for FP reduction of BM candidates using computer features.

https://doi.org/10.1371/journal.pone.0178265.g004
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Thresholds of nodule detection. The main algorithms we used in our CAD software

were template-matching and K-means clustering. These algorithms use a threshold value to

determine the BM candidates, and the detection result depends on the threshold value. Lower

threshold values provide higher sensitivity and more FP results (algorithm A). In contrast,

higher threshold values provide lower sensitivity and fewer FP results (algorithm B). Thus, we

developed two versions of the CAD software using algorithm A and algorithm B and applied

them in the experiments.

Clinically, it is important to detect as many BM nodules as possible. Therefore, we selected

algorithm A as the main algorithm, and observer performance was evaluated using the CAD

software with algorithm A. In addition, the stand-alone performances were evaluated using

both algorithm A and algorithm B.

Observer performance study

Four radiologists who were blinded to the patients’ histories and pathological data indepen-

dently reviewed MR image sets in a random order. Reviewers 1 and 2 were radiology residents

(Y.K. and J.H.K.; in the fourth year and second year of training, respectively), and reviewers 3

and 4 (L.S. and R-E.Y.) were board-certified neuroradiologists with 7 years of clinical experi-

ence. Review sessions were performed in a sequential manner [17, 21]. First, a reviewer

searched for potential nodules on each study without the use of CAD marking (referred to as

without CAD). The reviewers were encouraged to identify all BM candidates regardless of their

size and to record their confidence score based on the likelihood that the candidate was a true

BM using a five-point scale (1 = definitely not a BM, 2 = probably not a BM, 3 = indeterminate,

4 = probably a BM, 5 = definitely a BM). When the reviewer completed nodule detection for

each case, the reading time was automatically recorded. Then, the reviewer reviewed each

marked nodule to assign a confidence score.

Second, once score assignment was complete, pre-processed CAD markings with probabil-

ity scores determined using the CAD algorithm with maximized sensitivity were displayed.

The reviewer was then allowed to add any new nodules or remove previously marked nodules.

The reviewer was also allowed to modify the confidence scores. The additional reading time

was automatically recorded separately. This second reading session was referred to as with
CAD. A video clip of a sample sequential reading session in our study can be found in S1

Video.

Statistical analysis

To determine the improvement in the diagnostic accuracy using CAD as a second reader, a

jackknife free-response receiver operating characteristic (JAFROC) analysis was performed

[41, 42]. JAFROC software (version 4.2.1; http://www.devchakraborty.com) was used to com-

pute a figure-of-merit (FOM), which is defined as the probability that lesions, including

unmarked lesions, are rated higher than non-lesion marks (analogous to the area under the

receiver operating characteristic curve).

The sensitivities and FP markings per patient of the reviewers and the CAD algorithms

were evaluated. Among the nodules marked by the reviewers, those with confidence scores

equal to or higher than 3 were considered positive, whereas those with confidence scores of 1

and 2 were considered negative. Subgroup analysis on a patient-by-patient basis was also per-

formed, in which a reviewer’s assessment was assumed to be correct when at least one lesion

was correctly detected for patients with BM or when no lesion was marked for control studies.

If no lesion was correctly marked in a study with BM, or if an FP nodule was marked in a con-

trol study, then the assessment was considered incorrect.
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Fisher’s exact test, the Mann-Whitney U test, the Wilcoxon test, and Pearson’s correlation

were used to analyze the demographic data of the subjects and the reading time of the review-

ers. Statistical analyses were performed with SPSS (version 24.0 for Windows, SPSS, Chicago,

IL, USA) or MedCalc (version 16.8.4, MedCalc Software, Mariakerke, Belgium). P values of

less than 0.05 were considered to be statistically significant.

Results

Patient demographics

The clinical characteristics of the subjects are summarized in Table 1. The primary malignan-

cies that the patients harbored included lung cancer (n = 112), breast cancer (n = 13), colorec-

tal cancer (n = 5), renal cell carcinoma (n = 3), melanoma (n = 1), ovarian cancer (n = 1),

hepatocellular carcinoma (n = 1), gastric cancer (n = 1), follicular thyroid carcinoma (n = 1),

cutaneous squamous cell carcinoma (n = 1), osteosarcoma (n = 1), and synovial sarcoma

(n = 1). One patient with lung cancer was also diagnosed with advanced gastric cancer.

The training set consisted of 80 patients with 450 metastatic nodules, and the test set

included 134 metastatic nodules from 30 patients with BM. The distribution of the nodule

sizes is shown in Fig 5. No significant difference was found in the median size of the nodules

between the two sets. However, the proportion of small nodules (1 to 3 mm in diameter) was

significantly larger in the test set than in the training set (p = 0.01).

Stand-alone performance of CAD

Two CAD algorithms were independently analyzed (Table 2). Algorithm A exhibited a sensi-

tivity of 87.3% (117/134 nodules) and an FP per patient of 302.4. In contrast, algorithm B

Table 1. Clinical characteristics of the patients.

Training set (n = 80) Test set (n = 60) p value

Age (years)*a 60.4 ± 12.0 63.5 ± 11.7 0.127

Sex (male:female)a 42:38 30:30 0.865

Number of nodulesa 450 134†

Size of nodules (mm)**b 5 (3–9) 4.5 (2–9) 0.096

Primary malignancya

Lung cancer 62 (77.5%) 50‡ (83.3%) 0.522

Breast cancer 9 (11.3%) 4 (6.7%) 0.396

Colorectal cancer 4 (5%) 1 (1.7%) 0.392

Renal cell carcinoma 2 (2.5%) 1 (1.7%) 1.0

Melanoma 1 (1.7%) 0.429

Ovarian cancer 1 (1.3%) 1.0

Follicular thyroid carcinoma 1 (1.7%) 0.429

Gastric cancer 1‡ (1.7%) 0.429

Osteosarcoma 1 (1.7%) 0.429

Hepatocellular carcinoma 1 (1.7%) 0.429

Cutaneous squamous cell carcinoma 1 (1.3%) 1.0

Synovial sarcoma 1 (1.3%) 1.0

*Values are the means ± standard deviations.

**Values are medians with interquartile ranges.
†The test set included 30 patients with brain metastasis and 30 patients without brain metastasis.
‡One patient had double primary cancers: lung cancer and gastric cancer.
a and b p values were calculated using either aFisher’s exact test or the bMann-Whitney U test.

https://doi.org/10.1371/journal.pone.0178265.t001
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showed a sensitivity of 75.4% (101/134 nodules) and an FP per patient of 35.5. For algorithm

A, Fig 6 shows examples of TP and FP nodules identified using CAD. No significant difference

was found in the median processing time between the two algorithms (264.7 sec vs. 268.6 sec,

p = 0.52). For both algorithms, the probability score was significantly higher in the metastasis

Fig 5. Bar graph of the nodule size distributions in the training and test sets. The relative frequency of nodules with

diameters of 1 to 3 mm differed significantly between the two groups (p = 0.01).

https://doi.org/10.1371/journal.pone.0178265.g005
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group than in the non-metastasis group (p< 0.01 and p < 0.01, respectively). When tiny nod-

ules less than or equal to 2 mm in diameter were excluded, the sensitivity was increased to

92.7% (89/96 nodules) for algorithm A and 82.3% for algorithm B (79/96 nodules).

Observer performance study

The performances of the reviewers before and after the application of CAD are summarized in

Table 3. The average sensitivity and FP per patient for BM detection without CAD by the four

reviewers were 77.6% and 0.18, respectively. With CAD, the sensitivity and FP per patient

were 81.9% and 0.18, respectively. According to JAFROC analysis, the FOM value was signifi-

cantly increased by the use of CAD (0.87 without CAD vs. 0.90 with CAD, p< 0.01).

Table 2. Comparison of the nodule detection performances of algorithm A and algorithm B.

Algorithm A Algorithm B

Sensitivity 87.3% (117/134) 75.4% (101/134)

Sensitivity (>2 mm) 92.7% (89/96) 82.3% (79/96)

FP per case 302.4 35.5

Processing time (sec) 264.7 (200.1–383.7) 268.6 (204.0–387.0)

FP = false positive.

https://doi.org/10.1371/journal.pone.0178265.t002

Fig 6. Examples of CAD results using algorithm A. A–D: Examples of the correct detection of BM by CAD software. E–H:

Examples of the incorrect detection (FPs) by CAD software. Common sources of FPs included the cortical vessel (F), dural sinus (G),

and choroid plexus (H).

https://doi.org/10.1371/journal.pone.0178265.g006
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For the radiology residents (reviewers 1 and 2), the sensitivity and FP per patient without

CAD were 67.9% and 0.10, respectively. With CAD, the sensitivity was improved to 76.1%,

while the FP per patient was slightly elevated to 0.12. For the neuroradiologists (reviewers 3

and 4), the sensitivity and FP per patient without CAD were 87.3% and 0.25, respectively.

After reviewing the CAD results, the sensitivity and FP per patient changed to 88.7% and 0.25,

respectively. Specifically, the two residents found 22 TP nodules and five FP nodules upon

reviewing the CAD results. However, they were also able to remove three FP nodules with the

aid of CAD. The experienced reviewers detected two additional TP nodules and three addi-

tional FP nodules with CAD but discarded one TP nodule and three FP nodules. Overall, the

use of CAD led to the detection of 23 TP nodules at the cost of 2 additional FP nodules by the

four reviewers. Per-reviewer JAFROC analysis revealed that both reviewers 1 and 2 showed

significant improvement in their nodule detection performance (p = 0.01 and p< 0.01, respec-

tively), whereas neither reviewers 3 nor 4 exhibited a statistically significant improvement

(p = 0.19 and p = 0.67, respectively). A representative case is shown in Fig 7.

When tiny nodules with diameters less than or equal to 2 mm were excluded, the average

sensitivities for less-experienced reviewers were 85.4% without CAD and 90.1% with CAD. For

experienced reviewers, the average sensitivities were 93.2% without CAD and 93.8% with CAD.

Among the 30 patients with BM, reviewers failed to detect at least one TP nodule in 6.7%

(8/120) of the cases. Notably, CAD successfully detected all of the missed nodules. With the

aid of CAD, the reviewers detected three initially missed nodules; thus, the reviewers detected

at least one TP nodule in 95.8% (115/120 cases). Among the 30 patients without BM, reviewers

detected at least one FP nodule in 5% (6/120 cases). After reviewing the CAD results, one

reviewer successfully removed one FP nodule; thus, the reviewers found at least one FP nodule

in 4.2% (5/120) of cases. Overall, the reviewers correctly classified patients without CAD and

with CAD in 94.2% (226/240) and 95.8% (230/240) of the cases, respectively.

The median reading times without and with CAD were 114.4 sec and 72.1 sec, respectively.

No significant difference was found in the overall reading time between less-experienced and

experienced reviewers (178.5 sec vs. 174.3 sec, p = 0.13). However, less-experienced reviewers

spent significantly less time than experienced reviewers in reviewing the images without CAD

(98.5 sec vs. 121.5 sec, p< 0.01). In contrast, less-experienced reviewers spend significantly

more time than experienced reviewers on reviewing the CAD results (74.3 sec vs. 58.3 sec,

p< 0.01). We found only a weak positive trend between the number of total nodules detected

by CAD and the additional reading time with CAD (r = 0.24, p = 0.06).

Table 3. Comparison of the reviewers’ nodule detection performances.

Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Average

Without

CAD

With CAD Without

CAD

With CAD Without CAD With CAD Without

CAD

With CAD Without

CAD

With CAD

Sensitivity 69.4% (93/

134)

76.8%

(103/134)

66.4% (89/

134)

75.3%

(101/134)

86.6% (116/

134)

88.1%

(118/134)

88.1% (118/

134)

88.8%

(119/134)

77.6% 81.9%

Sensitivity

(> 2 mm)

85.4% (82/

96)

88.5% (85/

96)

85.4% (82/

96)

91.7% (88/

96)

91.7% (88/

96)

92.7% (89/

96)

94.8% (91/

96)

94.8% (91/

96)

89.3% 91.9%

FP per case 0.15 (9/60) 0.17 (10/

60)

0.05 (3/60) 0.07 (4/60) 0.25 (15/60) 0.2 (12/60) 0.25 (15/60) 0.3 (18/60) 0.18 0.18

Reading time

(sec)

131.0 (93.0–

183.0)

65.5 (44.0–

123.0)

64.0 (42.0–

88.5)

64.0 (45.5–

108.5)

148.5

(136.0–

172.0)

47.5

(39.0–

67.0)

93.5 (62.0–

127.0)

67.0

(48.0–

93.0)

114.4 (92.0–

144.5)

72.1

(50.9–

90.8)

FOM 0.839 0.876 0.832 0.877 0.905 0.915 0.923 0.925 0.874 0.898

Reading time values are medians with interquartile ranges in the parentheses. CAD = computer-aided detection, FOM = figure-of-merit.

https://doi.org/10.1371/journal.pone.0178265.t003
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The total reading time for patients with BM was significantly longer than that for patients

without BM (202.8 sec vs. 161.3 sec, p< 0.01). Although the reading time without CAD dif-

fered significantly between patients with BM and without BM (144.5 sec vs. 94.4 sec, p< 0.01),

the reading time with CAD was not significantly different between the two groups (59.4 sec vs.

76.0 sec, p = 0.38).

Discussion

In the present study, we developed CAD software, evaluated its stand-alone performance, and

conducted an observer performance study. The sensitivity of the CAD software itself was

between that of the experienced neuroradiologists and the radiologists in training. CAD signif-

icantly improved the diagnostic performances of the four reviewers, as indicated by the FOM

determined by JAFROC analysis (without CAD vs. with CAD, 0.874 vs. 0.898, p< 0.01). The

median time required to review the CAD results was approximately 72 sec (40% of the total

Fig 7. 3D gradient-echo contrast-enhanced T1-weighted MR images in an 81-year-old female patient

with metastatic lung cancer. A and B: Axial (A) and coronal (B) images show a tiny enhancing nodule at the

left inferior temporal gyrus (arrowhead). This nodule was missed by all four reviewers but was successfully

detected by CAD. C: On the navigation MR image for a gamma-knife surgery performed 2 days after (A) and

(B), the nodule showed no interval changes. D: On the follow-up MR image taken after 3 months, the nodule

disappeared.

https://doi.org/10.1371/journal.pone.0178265.g007
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review time). Notably, the two trainees detected 22 additional TP nodules after reviewing the

CAD results. Although CAD significantly improved the overall performance of the reviewers,

a statistically significant improvement was noted only for less-experienced reviewers (FOM

without vs. with CAD, 0.834 vs. 0.877, p< 0.01).

Technical advances in 3D MR imaging have significantly improved the sensitivity of BM

detection. However, concomitantly increased numbers of images per study have raised the

burden of reading and the risk of detection failure. Missed BM nodules may underestimate the

cancer staging, lead to inappropriate treatment, and negatively affect the prognosis. To address

this issue, efforts have been increasingly focused on improving the diagnostic accuracy using

CAD. CAD does not overlook a lesion because of exhaustion or other extrinsic factors. Thus,

when used as a second reader, CAD may be feasible for time-consuming tasks, such as detect-

ing BM nodules.

The sensitivities of BM detection in previous CAD studies ranged from 30.2% to 93.5%

[24–27], which are comparable to that of our study. However, the FP per patient in previous

studies ranged from 5.18 to 34.8 [24–26], which are lower than that of our study. In contrast to

all but one of these studies [25], we enrolled consecutive patients to minimize selection bias.

However, whereas the other study [25] enrolled a small cohort of patients in a prospective

manner, we enrolled a relatively large cohort in a retrospective manner. Our data contained a

relatively high proportion of nodules equal to or smaller than 3 mm in diameter. Additionally,

this proportion was higher in the test set than in the training set (Fig 5, 43.3% vs. 31.1%,

p< 0.01). Therefore, the inclusion of a larger proportion of small or less-conspicuous nodules

(i.e., nodules that are relatively difficult to detect), at least partially due to consecutive enrol-

ment, might have affected the overall performance observed in our study. When nodules

smaller than 2 mm were removed, the sensitivity was improved (from 87.3% to 92.7% for algo-

rithm A).

When unassisted, neuroradiologists showed higher sensitivity for BM detection than the

radiology residents at the cost of slightly more FPs. However, the less-experienced reviewers

seem to have benefited more from the aid provided by CAD than the experienced reviewers.

This finding is consistent with previous studies of CAD for computed tomography (CT) colo-

nography [20–22]. While the reviewers detected a total of 23 additional TP nodules after

reviewing the CAD results, the use of CAD also resulted in the detection of two additional FP

nodules. This increase in the FP per case was minimal given the large number of FP nodules

identified by CAD. Indeed, most of the FP nodules detected by CAD were easily rejected by

human reviewers because of their typical locations (Fig 6). The weak correlation between the

number of nodules marked by CAD and the time spent on reviewing the CAD results also sup-

ports this observation. In addition, the significant improvement in FOM with the use of CAD

suggests that the increased FP was disproportionately offset by increased sensitivity.

The strategy of our proposed algorithm was to first detect the BM candidates as sensitively

as possible and then discriminate TP nodules from FP nodules. We used a template-matching

algorithm to find small BMs. While other similar studies used larger templates with a mini-

mum diameter of 3.4 mm, we were able to find smaller nodules by using smaller templates. In

addition, other studies used only one type of template model [24, 26], whereas we used two

spherical types of template models (solid and inner-hole to detect necrotic nodules. In our

data, the actual size of one voxel was 1.0 × 1.0 × 1.0 mm3. Hence, an 1-mm template would

cover only one voxel, which is too small for accurate BM detection. Thus, we determined that

the minimum template size is 2 mm. Interestingly, we were able to detect some BM nodules

that were 1 mm in size using a 2-mm-diameter template. We speculate that the difference in

size between the template and the BM is one cause of the increased FPs. We expect to reduce

the numbers of FPs by using a 1-mm template on higher-resolution images.

Computer-aided detection of brain metastasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0178265 June 8, 2017 14 / 18

https://doi.org/10.1371/journal.pone.0178265


We removed the FPs using an ANN algorithm, which is a type of machine learning tech-

nique. We selected 30 out of 272 features using logistic regression analysis to effectively reduce

the FPs. The ANN algorithm was superior to other machine learning classifiers in our training

data, for which the support vector machine (SVM) algorithm [43] showed an accuracy of

57.9%, the Bayes classifier algorithm [44] showed an accuracy of 83.2%, and the boosting algo-

rithm [45] showed an accuracy of 83.1%; the accuracy of the ANN algorithm was 87.7%.

Despite the use of the ANN algorithm, approximately 12% of the correctly detected nodules

were removed during the FP-removal process. To reduce the chance of removing a correctly

detected nodule, the amount of training data should be increased, and BMs of various sizes

and shapes should be included. In addition, the features used in the ANN model should be fur-

ther optimized.

Our proposed method required approximately 4 min to process the MR images. This is

much shorter than the processing times reported in other studies [24, 26], which ranged from

15 to 50 min. In addition, the time needed to review the CAD results was, on average, approxi-

mately 72 sec. Therefore, once the CAD results using our proposed method can be provided to

the radiologists before reading, this strategy could be applied to clinical practice with an

acceptable range of extra time.

In addition to the retrospective nature of this study, our study has limitations. First, most of

the subjects with BM did not undergo pathologic confirmation of the brain lesions. To address

this problem, two independent reviewers determined the ground truth based on consensus

with access to clinical information and follow-up imaging studies. Second, although we

included a relatively large number of subjects compared to previous studies, the sample size

was still too small to train the algorithm sufficiently. In the future, we believe that the perfor-

mance could be improved by using a larger amount of data and more recent algorithms, such

as convolutional neural networks.

Conclusions

In conclusion, using CAD as a second reader helps radiologists improve their diagnostic per-

formance in the detection of BM on MR imaging, particularly for less-experienced reviewers.
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