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Abstract: The changes in structure and digestion properties of mung bean starch due to hydrothermal
treatment at various controlled temperatures were investigated. Results showed the increase in
onset temperature (To) from 66.33 ◦C to 76.69 ◦C and decrease in enthalpies (∆Hg and ∆Hr) until
the starch was completely gelatinized. The degree of molecular order (DMO) and degree of double
helix (DDH) were significantly (p < 0.05) reduced from 1.35 to 1.01 and 1.38 to 0.98 respectively.
X-ray diffraction (XRD) indicated the consecutive decrease in relative crystallinity (RC) while RVA
analysis showed that peak and final viscosities were decreased significantly (p < 0.05). However,
digestion kinetics indicated that degree of gelatinization increased the access of enzymes. As starch
was partially gelatinized it yielded significantly lower glycemic index but no significant (p > 0.05)
change in starch digestibility was observed after 70 ◦C. Hence, 70 ◦C can be considered as the critical
hydrothermal treatment temperature in mung bean starch. Pearson’s correlation analysis indicated
that controlled hydrothermal treatment had negative effect on the DMO, DDH, RC and the granular
damage increased vulnerability of mung bean starch to digestion. These findings gave insight into
sequential changes in the structure and digestibility occurring during gelatinization process due to
hydrothermal treatment. Controlled gelatinization in mung beans at 70 ◦C is useful and must be
employed to produce the foods with lower starch digestibility.
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1. Introduction

Mung bean (Vigna radiata L.) is a leguminous crop excessively cultivated in South-Asia and it has
potential health benefits [1]. It is documented to be rich source of functional components including
phytochemicals and proteins. Various bioactivities such as anti-inflammatory, anti-diabetic, anti-tumor
and anti-hypertensive have been associated with the mung bean to positively influence the human
health [2,3]. Mung bean contains 55–65% starch totaling 630 g·kg−1 on dry weight basis which is
extracted by employing different processing methods [4]. The size of native starch granules usually
varies from 7 µm to 26 µm and it contains much higher amylose contents (up to 45%) as compared to
the maximum amylose contents in other cereals, including wheat (35%) and rice (27.2%), respectively.
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This feature makes the amylolysis of mung bean starch slower and reduces the post prandial glucose
responses. Mung bean starch is expensive but an excellent substrate of the food industry and is
considered equally important for noodles and vermicelli development [5–8].

Many structural and functional details of different cultivars of native mung bean starch have been
studied by Yao et al. and Gunaratne et al., respectively [9,10]. It tells us about the biodiversity but beans
and legumes cannot be consumed directly and need to be cooked before consumption which changes
their structure and affects the digestion properties before consumption. Among various botanical
origins, starches from beans and pulses are the point of interest because they show lower digestion
rates in vitro and in vivo [11]. Therefore, regular consumption of legumes and pulses is proposed to
avoid metabolic diseases such as type II diabetes and obesity. The enzymatic hydrolysis of cooked
starch largely depends upon the degree of gelatinization [12]. However, some ambiguity still persists
about the digestibility mechanisms whether amylolysis of starch increases with gelatinization or the
structural orders have implications on digestion rates. The mechanism proposed by Wang et al. [13]
says that initial access of amylolytic enzymes is the major determining step in the digestion of starches.
This mechanism still needs to be validated in different processing conditions. In a previous study [14],
Li et al. investigated the structural features and digestibility in eight different native bean starches but
mung bean starch was not included, so keeping in view the prime importance of mung bean starch,
it needs to be more thoroughly investigated.

Native starch granules are heated in excess water to convert the highly ordered structure into the
disordered structure before consumption, termed as gelatinization. In the process, starch granules
undergo series of changes as they absorb and change their volume, viscosity, crystallinity and structural
conformations [15,16]. Further multi-scale studies of structure have unveiled that starch consists of
an amorphous core which is further surrounded by striated, alternating rings of amorphous and
semi-crystalline blocklets. These blocklets contain disordered reducing ends of amylopectin which
play significant role in gelatinization and digestion [17,18]. Mung bean starch exhibits solubility and
swelling in two different stages. Firstly, in lower temperature range around 50 ◦C to 70 ◦C and secondly
at higher temperatures above 70 ◦C to 90 ◦C. Gelatinized mung bean starch shows gradual increase in
solubility and swelling in both phases respectively [19]. This implies that the structural and digestion
profiles of mung bean starch in pre-gelatinization and post-gelatinization temperatures are different
from each other and still unexplored which largely needs to be investigated. Therefore, further research
on gelatinized mung bean starch was performed to understand its structure and digestion properties
at the pre and post gelatinization temperatures. To the best of our knowledge, this is the first study of
its kind about the structural changes occurring in mung bean starch during the mimicked cooking
process (hydrothermal processing) which causes changes in the structure and digestion properties.
The structure and digestion properties were studied over both low and high temperature ranges to
observe the long-range and short-range starch structures and compared with their relative digestibility.
These findings might be helpful for the development of mung bean composites and functional foods
with lower starch digestibility.

2. Materials and Methods

2.1. Materials

The mung bean variety (JLV 8) was purchased from Gucheng Sandou Food Technology
Development Co. Ltd., (Heng Shui, Hebei Province, China). Salivary α-amylase (A-3176, Sigma,
St. Louis, MO, USA), pepsin (P-6887, Sigma St. Louis, MO, USA), porcine pancreatic enzymes (P-1750,
Sigma), amyloglucosidase (E-AMGDF, 3300 U/mL, Megazyme, Bray, Ireland) were used for starch
digestion. D-Glucose (k-Gluc, GOPOD format, Megazyme, Bray, Ireland) was used for the glucose
measurements. All other reagents used in experiments were of the analytical grade.
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2.2. Preparation of Starch Dispersions and Heat Treatment

Starch was extracted from mung beans by previous method of extraction [9]. Aqueous dispersions
of 5:1 (v/w) extracted mung bean starch were prepared at room temperature in polypropylene bags.
Starch samples were hydrothermally treated by following the method of Wang et al. [13]. The bags
were sealed and given hydrothermal treatment in a water bath at various controlled temperatures
i.e., 50 ◦C, 60 ◦C, 70 ◦C, 80 ◦C, 90 ◦C and 100 ◦C for 20 min. Native mung bean starch was taken as a
reference sample or control. After heat treatment, the samples were immediately immersed in liquid
nitrogen and freeze-dried. Starch samples were subjected to cryogenic milling using ball mill (Retsch
400 MM, Haan, Germany). Milled starch was sieved through 100 µm sieve before further use. Native
mung bean starch was taken as control and treated similarly except no heat treatment was applied.

2.3. Differential Scanning Colorimetry

Thermal properties of the treated starch samples were analyzed using a differential scanning
calorimeter (TA Instruments Inc., New Castle, DE, USA) equipped with thermal analysis data station
following the method of Yao et al. [9]. Briefly, 3 mg of starch sample was weighed accurately in an
aluminum sample pan and mixed with 10 µL deionized water to hydrate the sample. It was then
sealed hermetically and placed overnight at 4 ◦C for equilibration. The samples were analyzed from
20 to 120 ◦C with the change in temperature of 10 ◦C /min. An empty aluminum pan was used as a
reference or blank.

Degree of gelatinization (DG) was further calculated by using the previously used formula by [13].
It tells us about the amount of starch crystallites that were melted during heat treatment:

D.G.(%) =(1− ∆Hgel./∆Hnat.) × 100 (1)

where ∆Hgel. is the enthalpy changes in gelatinized starch sample and ∆Hnat. represents the enthalpy
changes in the native starch.

2.4. Rapid Viscosity Analyzer (RVA)

The pasting properties were determined using RVA (TecMaster, Perten Instruments, North Ryde
BC, NSWAustralia) following the method of Guo et al. [20]. Briefly, 3g of starch sample was weighed
precisely and mixed with 25 g deionized water into RVA canister. The standard analysis time was
13 min. After mixing slurry at 960 rpm for 10 s, speed was kept constant at 160 rpm for the rest
of experiment. The initial temperature was kept at 50 ◦C for 1 min and then raised to 95 ◦C with
increment of 6 ◦C min−1 and holding time at 95 ◦C was 5 min. Then it was cooled down to 50 ◦C with
a decrease of 6 ◦C min−1 and held there for 2 min. The studied parameters included: peak viscosity
(PV), trough viscosity (TV), breakdown, final viscosity (FV), and setback.

2.5. Starch Morphology

2.5.1. Electron Microscopy

A scanning electron microscope (SEM, S-3400n; Hitachi Ltd., Tokyo, Japan) was used to study
morphological changes in the structure of gelatinized mung bean starch granules. Dried starch samples
were mounted on SEM stub and pasted on double-sided adhesive tape and sputter-coated with gold in
a vacuum evaporator. All the specimens were studied under the accelerating voltage transmission
of 10 kV. Images were taken at 500× magnification power (10 µm) and 4500× magnification power
(100 µm) for single and grouped starch granules respectively.

2.5.2. Polarized Light Microscopy

A polarization microscope (Motic DMBA 400 China Group Co., Ltd., Guangzhou, China) equipped
with a SPOT insight camera was used to analyze the birefringence in starch granules at different
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degrees of gelatinization in bean starch. The analysis was performed following the previously used
method of Li et al. [19]. Mung bean starches with different degrees of gelatinization were mixed with
glycerol solution (1:1 V/V) and observed under the polarized light microscope at 40× to check the
birefringence of the starch.

2.6. Wide-Angle X-ray Diffraction

A diffractometer (D8 Advance AXS X-ray powder diffractometer, Bruker, Karlsruhe, Germany)
was used to study the crystallinity of dried pre-gelatinized starch samples with moisture content
around 10%. All the measurements were performed at 40 kV and 40 mA with Cu-Kα monochromatized
radiation with a wavelength (λ) of 0.1542 nm. The starch powder was tightly packed in a rectangular
glass cell and scanned over the range of 4◦ to 40◦ with a function of 2θ. The scanning speed during the
analysis was 2 ◦C min−1 and scanning step was 0.033◦. The relative crystallinity was quantitatively
measured by following the method of Yao et al. [9].

2.7. Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FTIR) spectra were obtained by using a Fourier transform infrared
spectrometer (Nicolet 6700, CA, USA) following the method of [21]. The powdered starch samples
were tableted with potassium bromide (KBr) (1/100, mg/mg) ratio and then compressed to form
pellet. The pellet was then observed for the absorbance from 40–4000cm−1 at a resolution of 4 cm−1.
Each spectrum was observed for 64 scans at room temperature and the 1:1 ratio of wave numbers
995 to 1022 cm−1 and 1045 to 1022 cm−1 were calculated to represent the degree of double helix (DDH)
and degree of short-range molecular order (DMO) by using the described method of Xu et al. [22].

2.8. In Vitro Digestion Kinetics

Extracted native and heat-treated starch samples (50 mg) were dispersed separately in 2 mL of
deionized water and incubated with 7.5 mL of sodium acetate buffer (0.2 M, pH 6, 0.49 mM MgCl2,

200 mM CaCl2). Then it was placed in shaking incubator at 37 ◦C for 15 min to attain the temperature.
Then a freshly prepared enzyme solution of porcine pancreatic amylase (25 µg) and amyloglucosidase
(AMG) was added to the starch suspension. Starch digesta were collected at the regular time intervals
(15, 30, 45, 60, 90, 120, 180 min). Enzyme reaction was stopped by the addition of 95% ethanol in the
aliquots collected at different time intervals. Undigested starch was removed by centrifugation at
2000× g for 5 min at 4 ◦C. The starch digestibility was calculated by measuring the amount of released
glucose by using the kit method (Megazyme Glucose Format Kit). The digestograms were fitted to
first-order kinetics as previously described method by Edward et al. [23] and Wang et al. [24] according
to Equation (2):

Ct = C∞
(
1− e−kt

)
(2)

where Ct indicates the concentration of digested starch at incubation time t, C∞ is the estimated
digestion at infinite endpoint of the reaction and k is the digestion rate coefficient which was measured
using a logarithm of slope (LOS) plot analysis using the natural logarithmic form of Equation (2)
expressed as Equation (3):

ln
(

dC
dt

)
= −kt + ln(C∞k) (3)

where LOS i.e., ln(dC/dt) can be plotted against digestion time t, which has linear relationship between
the slope of −k and time t. However, C∞ was calculated by the intercept of the equation and slope k.

2.9. Statistical Analysis

All the analyses were performed in triplicate and means with standard deviation (S.D.) were
calculated. Analysis of variance (ANOVA) was performed by least significance difference (LSD) using
SPSS V. 22.0 windows software (SPSS Inc., Chicago, IL, USA). Duncan’s multiple range test was applied
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and the level of significance was set at p < 0.05. Pearson’s correlation analysis was performed to
analyze the relationship between structural changes and digestibility of starch.

3. Results and Discussion

3.1. Thermal Properties

Differential scanning colorimetry is an effective tool to measure the endothermic transitions
relating to the dissociation of amylopectin and double helices from semi-crystalline to amorphous
arrangement. The endothermic values of controlled treated mung bean starch are shown in Table 1.
Generally, typical DSC endotherms were obtained up to 70 ◦C but no endothermic transitions were
found above this temperature indicating complete starch gelatinization which is illustrated in Figure 1
below. Firstly, this may be due to the unavailability of crystallites and above 80 ◦C, the starch was
completely gelatinized due to which endotherms were not obtained [9]. Secondly, high temperature
could increase the mobility of crystalline and amorphous regions resulting in breakage of inter-linking
H-bonds between the adjacent double helices [25].

Table 1. Thermal properties of controlled gelatinized mung bean starch.

Sample
Onset Peak T. E. of Gel. Concl. T. E. of Ret. DG

To Tp ∆Hg Tc ∆Hr = Tc − To (%)

Native 66.33 ± 0.46 c 71.71 ± 0.36 c 14.07 ± 1.46 a 76.39 ± 0.04 c 10.15 ± 0.41 a 0
50 ◦C 66.48 ± 0.00 c 71.62 ± 0.43 c 14.40 ± 1.81 a 76.49 ± 0.36 c 10.06 ± 0.36 a 2.5
60 ◦C 70.01 ± 1.58 b 73.87 ± 1.87 b 11.44 ± 2.39 a 78.61 ± 2.25 b 8.60 ± 0.60 b 20.55
70 ◦C 76.69 ± 0.03 a 79.84 ± 0.04 a 6.77 ± 2.05 b 83.38 ± 0.62 a 6.68 ± 0.65 c 52.98
80 ◦C N.D. N.D. N.D. N.D. N.D. 100
90 ◦C N.D. N.D. N.D. N.D. N.D. 100

100 ◦C N.D. N.D. N.D. N.D. N.D. 100

where To, Tp, and Tc, indicate the Onset, Pasting and Conclusion temperature but Enthalpy of gelatinization and
Enthalpy of retrogradation are expressed as ∆Hg and ∆Hr respectively. Mean values ± S.D. in the same column
followed by different superscript letters are significantly different (p < 0.05).
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Figure 1. Thermal properties of controlled gelatinized mung bean starch.

With the increase in degree of gelatinization (DG), Onset (To), Peak (Tp), and Conclusion
temperatures (Tc) were increased which can be attributed to the melting of less stable crystallites
during the pre-treatment. Hence, higher energy input was required for the dissociation of larger
starch crystallites. Similar findings were previously reported about DG and thermal properties by
Wang et al. [26], where the thermal properties increased from 56.9 to 64.0 with an increase in DG
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from 0 to 95.4% at different water to starch ratios respectively. In another study of wheat and potato
starch, it was found that only DSC cannot represent the complete gelatinization behavior of starch but
represents partial gelatinization due to limited melting and swelling of granules [27].

Enthalpy changes are due to combination of endothermic disruption process of ordered structure
and the exothermic process of granular swelling [28]. Contrary to other results, enthalpy of gelatinization
(∆Hg) and enthalpy of retrogradation (∆Hr) were decreased from 14.07 to 6.77 J·g−1 and 10.06 to 6.68 J·g−1,
respectively, with increasing end temperature of pre-heat treatment. This was attributed to the melting
of less stable crystallites initially and later more energy input was required for dissociation of larger
crystallites [27].

3.2. Pasting Properties

The pasting properties of native and cooked starch samples determined by RVA are shown in
Figure 2. The analyzed pasting properties include (peak viscosity, trough viscosity, final viscosity,
breakdown, and setback). It can be seen that the heated starch samples showed reduced pasting
properties as compared to the native starch. Table 2 shows that peak viscosity reduced significantly
(p > 0.05) and progressively with increase in thermal pre-treatment temperature from 6613.50 mPa.s
to 2015.50 mPa.s from native starch at 100 ◦C. This can be attributed to maximum damage of starch
granules, which was significantly (p > 0.05) reduced with the increase of temperature. The rotating
paddle was used to measure the resistance of starch during the heating phase which was termed trough
viscosity. The trough viscosity was reduced from 3455.50 mPa.s in native starch to 1835.50 mPa.s for
maximum gelatinized samples (100 ◦C) due to loss of inherent capacity of starch granules as surface
structure is damaged and water moves inside easily. Hoover et al. (2011) described pasting to be
primarily dependent upon swelling characteristics of granules, leaching of granules and chain length
distributions (CLD’s) of amylopectin [29].
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The point where starch granules are ruptured is termed as breakdown and was calculated from
peak and trough viscosity [30]. For native mung bean starch, the pasting temperature is around
70 ◦C. After pasting, the texture of starch is more strengthened which can be practically utilized for
the preparation of thermally stable products. Setback is the limited ability of starch to retrograde.
The lower setback values indicate the level of difficulty in retrogradation of starch in native and
partially gelatinized samples. However, the samples near the gelatinization temperatures have higher
setback values and are prone to the retrogradation phenomenon which can be seen in Table 3. The final
viscosity is the viscosity of the cold paste, which is related to the hardness and amylose leached out
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of the lamellae causing recrystallization [30]. Initially, there was no significant difference in the final
viscosity but later the final viscosity decreased with increase in the thermal treatment temperature
beyond gelatinization temperature range. It could be due to the damage to crystalline structure
and breakage of short amylopectin chains. These findings are consistent with XRD analysis because
the pasting profiles were sequentially reduced with the increase in treatment temperature and the
samples treated at 90 ◦C and 100 ◦C showed collapsed profiles. The results were comparable with a
previous study on mung bean starch by Guo et al. [20], in which continuous and repeated dry heat
treatments were applied to sweet potato starch and the pasting profiles were reduced with the increase
in thermal treatments.

Table 2. Pasting profiles of controlled gelatinized mung bean starch.

Sample P. V. T. V. F. V. Bd. Sb.

(mPa.s) (mPa.s) (mPa.s) (mPa.s) (mPa.s)

Native 6613.50 ± 121.62 a 3455.50 ± 82.73 a 4784.50 ± 286.37 c 3157.50 ± 38.89 a 1329 ± 203.64 d

50 ◦C 5846 ± 192.33 b 3307.50 ± 96.87 ab 4866.50 ± 71.41 bc 2538.50 ± 95.45 b 1559 ± 25.45 d

60 ◦C 4906 ± 38.18 c 2833.50 ± 109.60 c 5105 ± 103.23 ab 2072.50 ± 71.41 c 2271.50 ± 212.83 b

70 ◦C 4067 ± 57.98 d 2781.50 ± 65.76 c 5390 ± 32.52 a 1285.50 ± 123.74 d 2608.50 ± 33.23 a

80 ◦C 3027.50 ± 35.50 e 2395.50 ± 26.50 cd 4435 ± 21.00 c 631.5 ± 9.5 e 2039 ± 5.00 c

90 ◦C 2244 ± 18.38 f 2214 ± 25.45 d 3612.50 ± 24.74 d 30 ± 7.07 f 1398.50 ± 0.70 d

100 ◦C 2015.50 ± 75.66 f 1835.50 ± 9.19 e 2650.50 ± 10.60 e 180 ± 66.46 f 815 ± 1.41 e

Peak viscosity, trough viscosity, final viscosity, breakdown, and setback are abbreviated as P.V., T.V., F.V., Bd., and
Sb., respectively. Mean values ± S.D. in the same column followed by different superscript letters are significantly
different (p < 0.05).

Table 3. Digestion and FTIR properties of controlled gelatinized mung bean starch.

Sample C∞ K DMO DDH

(%) (min−1) (1047/1022 cm−1) (995/1022 cm−1)

Native 22.69 ± 0.50 e 0.015 ± 0.000 cd 1.35 ± 0.0002 a 1.38 ± 0.001 a

50 ◦C 43.34 ± 1.02 d 0.018 ± 0.000 c 1.17 ± 0.0001 b 1.25 ± 0.0002 b

60 ◦C 60.09 ± 0.30 c 0.022 ± 0.000 bc 1.06 ± 0.0002 c 1.07 ± 0.0000 c

70 ◦C 71.70 ± 0.01 b 0.030 ± 0.001 b 1.04 ± 0.001 d 1.06 ± 0.0035 d

80 ◦C 79.16 ± 0.17 a 0.040 ± 0.004 a 1.04 ± 0.002 d 1.00 ± 0.0004 e

90 ◦C 78.70 ± 0.39 a 0.041 ± 0.001 a 1.03 ± 0.0006 e 0.9918 ± 0.0004 f

100 ◦C 78.99 ± 0.10 a 0.041 ±0.000 a 1.01 ± 0.0008 f 0.98 ± 0.0003 f

Degree of molecular order, degree of double helix, the end-point concentration of digested starch and k-constant
values are expressed as DMO, DDH, C∞ and k, respectively. Mean values ± S.D. in the same column followed by
different superscript letters are significantly different (p < 0.05).

3.3. Morphology of Starch

The scanning electron micrographs of cooked starch at different temperatures i.e., 50 ◦C, 60 ◦C,
70 ◦C, 80 ◦C, 90 ◦C, and 100 ◦C are shown in the Figure 3A–G. Mung bean starch demonstrated spherical
to elliptical shapes with an average size ranging from 17 to 27 µm and average size was found 22 µm.
The measured size was comparable with the range of previously studied mung bean starch i.e., 14 to
27 µm averaging 21 µm [9]. Below gelatinization temperature, no significant differences in the starch
morphology were observed. However, the heating at 70 ◦C caused serious damage to the granular
integrity. Furthermore, with each treatment interval, starch granules were disrupted leading to the
formation of porous aggregates on surface (Figure 3G). These findings were comparable with the study
of Zhang et al. [31], which described gelatinization as the ingress of water molecules into amorphous
and crystalline regions exerting disruptive forces in the crystalline region that lead to collapse of the
whole structure. Chen et al. studied maize starch gelatinization by hot stage microscopy and indicated
that starch granules are swollen during gelatinization process and subsequently break through their
cavities and channels [32]. Later on, it was revealed that gelatinization starts at the botanical center
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(hilum) which is less organized structure and then spreads outwards to the periphery [33]. Figure 3a–g
shows the birefringence patterns of gelatinized mung bean starch granules heat-treated at different
temperatures. Birefringence can be defined as the average radial orientation of the double-helical
structures. A typical birefringence exists in native starch granule in which complete and clear Maltese
crosses can be observed [19]. The 50 ◦C is said to be the onset temperature because with the progression
of gelatinization, the birefringence started to become blurred. Eventually, above the gelatinization
temperature, 80 ◦C can be termed as endpoint temperature because the birefringence was completely
lost. The loss of these maltese crosses is consistent with the loss of granular structure in micrographs
of electron microscopy. In a previous study by Li et al. [19], ultra-high pressure was applied for the
gelatinization of mung bean starch and the birefringence was completely lost at 600 mPa pressure.
Contrary to this, heat-moisture treatments in potato starch showed complete loss of birefringence at
110 ◦C at 21 and 24% moisture level [34].

3.4. X-ray Diffraction

X-ray diffraction profiles of gelatinized mung bean starch with relative crystallinity (%) at
various temperatures are shown in Figure 4. Mung bean starch showed C-type crystallinity pattern
characterized by five reflection intensities of 2θ around 15.00◦, 17.00◦, 17.83◦, 19.83◦ and 22.91◦.
Similar reflection peaks were reported by Hoover et al. [35], in native mung bean starch sample.
The minor peak obtained at 19.83◦ indicated the amylose-lipid complex in mung starch which was
highest in native sample but reduced greatly with increasing the temperature [36]. This was possibly
due to the leaching of amylose from the lattice with the thermal treatment. The relative crystallinity
calculated on the basis of obtained diffraction patterns is shown in Figure 4. Native mung bean starch
exhibited highest relative crystallinity (18.98%). It was within the range of 17.23% to 19.41% previously
recorded by Yao et al. [9]. Hydrothermal treatment reduced the relative crystallinity to 12.07%, 9.09%,
7.20%, 2.69%, 2.33% and 1.16% due to gelatinization at 50, 60, 70, 80, 90 and 100 ◦C, respectively.
The relative crystallinity of native mung bean starch was recorded much lower as compared to eight
other bean starches from lowest in great split bean (27.9%) to highest in Pinto bean (35.1%) [14].
This difference was attributed to crystal size, amounts of crystalline regions, orientation of double
helices and extent of interactions between double helices [37].

3.5. Short-Range Molecular Order by Fourier Transform Infrared Spectroscopy

The infrared spectra have been displayed in Figure 5. The infrared spectral ratios at 1047/1022 cm−1

and 995/1022 cm−1 can be related to the degree of short-range molecular order and degree of long-range
double helix, respectively [38]. The short-ordered structure can be described as a measure of the ratio
between amorphous and crystalline structure of starch. It was observed that cooking treatment resulted
in the significant disruption of crystalline and amorphous structures in mung bean starch. However,
the absorption peaks from 3000 to 3600 cm−1 shown as 3390 cm−1 in Figure 4, are associated with the
vibrational stretching of hydroxyl groups. These peaks were decreased relating to the inter or intra
hydrogen bonding within or amongst the starch granules. In 90 and 100 ◦C samples, the hydrogen
bonds were partially disrupted which led to the decrease of absorption peak at 3390 cm−1. Table 2
shows that calculated values for degree of molecular order (DMO) and degree of double helix (DDH)
were significantly reduced from 1.35 and 1.38 to 1.01 and 0.98 respectively. The disruption of DMO
until 70 ◦C was much slower as compared to the pre-gelatinized samples but the short-range ordered
structure was still present at highest temperature of gelatinization treatment (100 ◦C). Generally,
the FTIR absorption peaks were in the decreasing trend until 80 ◦C but they were collapsed at 90 ◦C
and no further noticeable difference was observed at 100 ◦C. It is previously reported in wheat starch
that crystalline structure was melted earlier as compared to molecular orders [33]. It can be observed
in findings of this study that at 80 ◦C, the crystalline peaks were greatly reduced but the amorphous
region still has pronounced peaks at 995 cm−1. The short-range ordered structure was still present at
the maximum heat treatment temperature (100 ◦C). The results were comparable with Xu et al. [22],
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where DMO and the O-H stretching were decreased significantly (p > 0.05) between the native and
autoclaved pea and navy bean samples, which was attributed to the uncoiling of the double-helical
structures of starch granules.
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3.6. In Vitro Digestion Kinetics

In vitro digestion kinetics of gelatinized mung starch to different degree of gelatinization are
given in Table 3. The progression curve graph in Figure 6A indicates that the digestion was rapid in
the first hour of the experiment but afterwards it was delayed when the concentration of starch was
exhausted. As it is already known that the major digestion limiting factors include the origin of starch
and the concentration of the enzymes used in the digestion process [39]. The native starch sample
followed a more or less linear fit but the gelatinized samples showed curved progression fitting. The k
values are the indicators of digestion rate coefficients which were lowest in native starch and increased
with increase in degree of gelatinization (DG) from 0 to 100% respectively. The lowest k values of
native starch indicated that it was digested slowly and with the increase in heat treatment, the starch
was digested at a faster pace. The digestibility of native mung bean starch was found to be within
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the range of 19.6 to 28.6 mg/g equivalents of maltose among established and newly developed mung
bean cultivars [40]. The k value was obtained by fitting the enzyme catalytic data to the LOS plot
as previously done by Butterworth et al. [41] is shown in Figure 6B. The k value was increased from
0.015/min to 0.041/min when DG increased from 0% to 100%. Similarly, in the study of Wang et al. [26],
k values were increased 2.5-fold between native and the gelatinized sample. The digestion extent (C∞)
at the endpoint of reaction varied significantly (p < 0.05) from native (22.69 ± 0.50%) to 78.99 ± 0.10%
for samples gelatinized at temperatures up to 80 ◦C. However, no significant difference was observed
when the starch was completely gelatinized in heat-treated samples at 80 ◦C, 90 ◦C, and 100 ◦C. Similar
results were reported by Wang et al. [13], where the susceptibility of potato and lotus seed starch
breakdown by enzymatic hydrolysis was increased due to the increase in gelatinization. Similarly,
in wheat starches, the cooked samples were digested rapidly as compared to native and may result
in higher glycemic and insulinemic responses in body [36]. The accountable reason was said to be
the damaged starch granules and the internal crack of hilum. However, Li et al. listed disruption of
double-helical structure and crystallinity to be the determinants in the digestion of starches which is
in accordance with our findings from FTIR and XRD as they also indicated the disruption in double
helical structure and crystallinity [14]. The relation between starch structure and digestion is complex
which depends on various factors such as amylose content, orientation of amylopectin, degree of
crystallization and the particle size [42]. Keeping in view these factors, processing of foods is now
focused on maintaining the intact cells encapsulated within cell walls using different processing
technologies. This hinders the gelatinization process and retains the ordered structures of starches
resulting in lower enzyme susceptibility [43].
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3.7. Pearson’s Correlation Analysis

The values of Pearson’s correlation analysis are shown in Table 4. It indicated that Onset
temperature (To) was highly positively correlated with all other DSC parameters (Tp, Tc, ∆Hg and
∆Hr) but degree of gelatinization (DG) was found to be negatively correlated (p < 0.01). This indicates
that the more starch is pre-treated or gelatinized, the lesser will be its thermal viability. The digestion
extent (C∞) and the value of k were found strongly correlated (0.898 **) and (0.997 **) with the degree
of gelatinization (DG) respectively. This suggests that the pre-gelatinized starch tend to digest more
easily due to damage of granular structure and easier initial binding of amylases to the starch.
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Table 4. Correlation analysis between structural changes and digestibility of starch.

To Tp ∆Hg Tc ∆Hr DG C∞ K DMO DDH P. V. T. V. F. V. Bd. Sb.

Tp 1.000 ** 1
∆Hg 0.891 ** 0.901 ** 1
Tc 0.999 ** 1.000 ** 0.907 ** 1

∆Hr 0.946 ** 0.954 ** 0.990 ** 0.958 ** 1
DG −0.891 ** −0.901 ** −1.000 ** −0.907 ** −0.990 ** 1
C∞ −0.665 −0.682 −0.890 ** −0.69 −0.849 * 0.898 ** 1
K −0.874 * −0.885 ** −0.995 ** −0.891 ** −0.982 ** 0.997 ** 0.923 ** 1

DMO 0.521 0.538 0.75 0.545 0.708 −0.762 * −0.963 ** −0.803 * 1
DDH 0.645 0.661 0.859 * 0.668 0.821 * −0.865 * −0.988 ** −0.891 ** 0.975 ** 1
P.V. 0.840 * 0.852 * 0.968 ** 0.857 * 0.955 ** −0.972 ** −0.938 ** −0.984 ** 0.853 * 0.923 ** 1
T.V. 0.832 * 0.843 * 0.935 ** 0.847 * 0.929 ** −0.937 ** −0.898 ** −0.947 ** 0.831 * 0.905 ** 0.980 ** 1
F.V. 0.834 * 0.830 * 0.688 0.829 * 0.749 −0.687 −0.461 −0.681 0.375 0.465 0.722 0.785 * 1
Bd. 0.832 * 0.844 * 0.971 ** 0.850 * 0.954 ** 0.975 ** −0.943 ** −0.988 ** 0.851 * 0.919 ** 0.995 ** 0.957 ** 0.682 1
Sb. 0.509 0.494 0.186 0.487 0.286 −0.183 0.132 −0.164 −0.202 −0.131 0.196 0.275 0.812 * 0.155 1
R.C. 0.774 * 0.787 * 0.919 ** 0.792 * 0.903 ** 0.928 ** −0.979 ** −0.951 ** 0.938 ** 0.968 ** 0.969 ** 0.944 ** 0.607 0.968 ** 0.053

** Correlation is significant at the 0.01 level (p < 0.01); * Correlation is significant at the 0.05 level (p < 0.05) where To, Tp, ∆Hg , Tc, ∆Hr, DG, C∞, K, DMO, DDH, P.V., T.V., F.V., Bd., Sb.,
and R.C. represent Onset temperature, Peak temperature, Enthalpy of gelatinization, Conclusion temperature, Enthalpy of retrogradation, Degree of gelatinization, Endpoint concentration
of digested starch, K-constant, Degree of molecular order, Degree of double helix, Peak viscosity, Trough viscosity, Final viscosity, Breakdown, Setback and relative crystallinity respectively.
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The structural parameters such as degree of molecular order (DMO), degree of double helix
(DDH) and relative crystallinity were found to be strongly negatively correlated with the digestion
extent (C∞). The controlled thermal treatment of starch lead to the decrease in the structural orders
and increase in the digestion extent of the starch. These findings were found contrary to the results of
Li et al. (2017) [14], where no correlation was observed between the structural parameters of native
bean starches and their digestibility. A strong positive correlation was observed in the viscosity (P.V.
and T.V.) and the enthalpies of gelatinization and retrogradation (∆Hg and ∆Hr).

4. Conclusions

Controlled gelatinization of Mung bean starch was carried out at different temperatures and
the transitional changes in the digestibility and structure were observed. The structure-digestion
relationship was observed by Differential scanning colorimetry (DSC), Scanning electron microscopy
and short-range molecular orders. The results indicated that 70 ◦C was the ideal gelatinization
temperature for lower glycemic index but at further gelatinization, the structure was disrupted and
in-vitro digestibility was maximum. Mung bean products especially noodles can be cooked at 70 ◦C for
slightly longer time to reduce the glycemic index. Moreover, mung bean composites can be prepared
with other key cereals to reduce the glycemic index and insulinemic responses. Correlation analysis
indicated that controlled gelatinization treatment had negative effect on the amorphous and crystalline
orders of starch structure and the granular damage increased the vulnerability of mung bean starch to
digestion. It was found that controlled gelatinization was useful to control the digestibility of starch.

Various other methods of thermal treatments such as microwave and roasting can be used to control
the degree of gelatinization in the future to get the lower starch damage and lower starch digestibility.
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