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Systemic network analysis identifies XIAP and IκBα as
potential drug targets in TRAIL resistant BRAF mutated
melanoma
Greta Del Mistro1,2, Philippe Lucarelli 3, Ines Müller1,2, Sébastien De Landtsheer3, Anna Zinoveva1,2, Meike Hutt4, Martin Siegemund4,
Roland E. Kontermann4,5, Stefan Beissert1, Thomas Sauter3 and Dagmar Kulms1,2

Metastatic melanoma remains a life-threatening disease because most tumors develop resistance to targeted kinase inhibitors
thereby regaining tumorigenic capacity. We show the 2nd generation hexavalent TRAIL receptor-targeted agonist IZI1551 to induce
pronounced apoptotic cell death in mutBRAF melanoma cells. Aiming to identify molecular changes that may confer IZI1551
resistance we combined Dynamic Bayesian Network modelling with a sophisticated regularization strategy resulting in sparse and
context-sensitive networks and show the performance of this strategy in the detection of cell line-specific deregulations of a
signalling network. Comparing IZI1551-sensitive to IZI1551-resistant melanoma cells the model accurately and correctly predicted
activation of NFκB in concert with upregulation of the anti-apoptotic protein XIAP as the key mediator of IZI1551 resistance. Thus,
the incorporation of multiple regularization functions in logical network optimization may provide a promising avenue to assess the
effects of drug combinations and to identify responders to selected combination therapies.
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INTRODUCTION
Dysregulation of two major mitogen-activated pathways (RAS-
RAF-MEK-ERK and PI3K-AKT-PTEN) are key drivers of melanoma
development and progression,1 with 66% of patients expressing a
constitutive active mutant of the MAP (mitogen-activated
protein)-kinase BRAF (mutBRAF, V600D or V600E).2 The initial
response rates of patients to first-line therapy with targeted
mutBRAF inhibitors dabrafenib or vemurafenib is almost 100%,
however about 70% of patients acquire resistance to the
treatment within one year.3,4 Accordingly, downstream inhibition
of the MAP-kinase MEK with e.g., trametinib is used as a second-
line therapy or even initially combined with mutBRAF-inhibitors.5,6

Still, the prognosis for patients with metastatic melanoma remains
particularly poor and is mostly associated with high tumor relapse
rates.1[,3,7

Therefore, alternative treatment options are demanded as first
or second line therapy to overcome acquired resistance. In this
context, cell death induction by the tumor-selective death ligand
TRAIL (Tumor necrosis factor-Related Apoptosis-Inducing Ligand)
might serve as an alternative treatment option. Unfortunately,
melanoma cells were shown to stay largely resistant against
conventional TRAIL treatment.8,9 Importantly, conventional tri-
meric TRAIL and receptor-agonistic antibodies as single agents
failed in clinical trials, due to the limited therapeutic activity in
patients.10 To overcome this therapeutic limitation we have
developed novel second-generation TRAIL receptor-targeted
agonists, with increased bioactivity enhancing the cytotoxic
capacity towards cancer cells. These fully human TRAIL-Fc-fusion

proteins consist of two single-chain TRAIL molecules fused
covalently to the Fc-part of human IgG, forming a potent
hexameric TRAIL-receptor agonist (IZI1551). Systemic administra-
tion of IZI1551 in mice xenograft models resulted in a potent
antitumoral activity with improved pharmacokinetic properties
showing no side effects.11,12

However, both MAPK signalling as well as TRAIL receptor
activation can lead to the activation of the transcription factor
NFκB10,13–15 which may impair the therapeutic outcome due to
upregulation of survival genes. To take this sensitive balance
between pro-apoptotic and anti-apoptotic signalling into account,
and to explore novel treatment options, a holistic understanding
of the signal transduction network within melanoma cells is a
prerequisite.
To assess the relevance of individual interactions within the

signal transduction network of melanoma cells, we applied
Dynamic Bayesian Network (DBN) modelling, which allows to
efficiently contextualize and analyze logical networks. The
parameters of DBN models can be estimated using quantitative
(quasi) steady-state protein data, thereby for example allowing
comparisons between cell types,16 here of therapy-responsive and
therapy-resistant melanoma cell lines. Large-scale DBN modelling
is feasible with the recently published FALCON toolbox,17 a
Matlab-based framework designed for computational perfor-
mance, and comprising a wide range of systems-level analyses.
Furthermore, additional constrains on the parameter set can be
included in the optimization problem in the form of biased
estimators. Such regularized objective functions are frequently

Received: 20 June 2018 Revised: 5 October 2018 Accepted: 9 October 2018
Published online: 5 November 2018

1Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany; 2Center of Regenerative Therapies Dresden, TU-Dresden, Dresden 01307,
Germany; 3Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux 4367, Luxembourg; 4Institute of Cell Biology and Immunology, University of Stuttgart,
Stuttgart 70569, Germany and 5Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart 70569, Germany
Correspondence: Dagmar Kulms (dagmar.kulms@uniklinikum-dresden.de)
These authors contributed equally: Greta Del Mistro, Philippe Lucarelli.

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

http://orcid.org/0000-0001-6079-1623
http://orcid.org/0000-0001-6079-1623
http://orcid.org/0000-0001-6079-1623
http://orcid.org/0000-0001-6079-1623
http://orcid.org/0000-0001-6079-1623
https://doi.org/10.1038/s41540-018-0075-y
mailto:dagmar.kulms@uniklinikum-dresden.de
www.nature.com/npjsba


used to balance goodness-of-fit with existing prior assumptions.18

Two desired properties of the parameter values of a meta-model
encompassing the different cell types can be formulated. Firstly, it
is expected that the phenotypic differences between the cell lines
are due to a limited number of molecular changes, and that
therefore most cellular processes are identically parametrized
across both cell types. Secondly, the final model should be as
sparse as possible by focusing on the most essential interactions,
to increase its predictive power and to facilitate interpretation.
In order to identify the molecular changes between TRAIL-

sensitive melanoma cells compared to melanoma cells that have
acquired resistance to TRAIL we used a mixed regularization
scheme incorporating these two assumptions within the FALCON
toolbox to estimate parameter values for the two cell types and
discover the most significant changes that may confer therapy
resistance.

RESULTS
Hexavalent TRAIL receptor agonist IZI1551 is superior in killing
mutBRAF melanoma cells to conventional TRAIL or specific MAP-
kinase inhibitors
Once diagnosed, the first-line therapy of mutBRAF melanoma
includes administration of specific kinase inhibitors like vemur-
afenib or dabrafenib. Accordingly, treatment of two mutBRAF
melanoma cell lines A375 and Malme3M with dabrafenib (Dabra)
reduced clonogenic outgrowth, indicating growth inhibition to
occur in response to mutBRAF inhibition (Fig. 1a and Figure S1).
However, active cell death induction remained largely absent in
response to dabrafenib alone, as well as in combination with the
MEK inhibitor trametinib (Trame), as used as second line therapy
for patients who have acquired resistance against mutBRAF
inhibitors (Fig. 1b). To mimic dabrafenib resistance we conditioned
melanoma cells to a sub-lethal dose of dabrafenib (1 µM) over a
period of six months. Neither conditioned, nor non-conditioned,
parental cells responded with significant cell death induction to
the combination of two downstream MAPK pathway inhibitors
(Fig. 1b), implying that additional cell death induction might be
superior to MEK-inhibition in (re-)sensitizing mutBRAF melanoma.
Consequently, conventional trimeric isoleucine-zipper linked

TRAIL (izTRAIL) induced moderate apoptotic cell death in A375
melanoma cells while hexavalent scTRAIL-Fc fusion protein
(IZI1551) even showed increased cytotoxic activity (Fig. 1c).
IZI1551-induced cytotoxicity was shown to be largely tumor-
selective, as it spared primary keratinocytes, fibroblasts and
melanocytes of the skin from apoptotic cell death induction (Fig.
1d). Moreover, IZI1551 (IZI) was shown to be significantly more
potent in actually killing parental as well as in re-sensitizing
dabrafenib-conditioned mutBRAF melanoma cells than the
specific mutBRAF inhibitor dabrafenib (Dabra) (Fig. 1e). Accord-
ingly, apoptotic cell death induction through cleavage of the
executioner caspase-3 as well as its substrate PARP was exclusively
evident in both, parental and conditioned cells upon treatment
with IZI alone or in combination with dabrafenib (Fig. 1f).

Monitoring IZI1551 susceptibility using mathematical modelling
In order to investigate the potential of IZI1551 as an alternative
treatment option for malignant melanoma, we aimed at identify-
ing molecular changes and switches that might occur during
acquired TRAIL resistance, and thus conditioned mutBRAF A375
and Malme3M melanoma cells to the EC50 IZI1551 dose (5 ng/ml)
for 6 months (Fig. 2a, b and Table S1). Compared to parental cells
(pA375; pMalme3M), conditioned cells (cA375; cMalme3M) stayed
largely resistant to treatment with a lethal dose of IZI1551 (50 ng/
ml, Fig. 2c, compare Fig. 2b and Table S1). The overall response to
IZI1551 was lower in parental 3D spheroid culture, mimicking the
architecture of tumor metastasis in vivo,19–21 as compared to

regular 2D cell culture, and remained largely absent in condi-
tioned 3D spheroids (Fig. 2c). Accordingly, only parental 3D
spheroids were shown to be disrupted due to cell death induction
24 h after treatment with IZI1551 (Fig. 2d).
Interestingly, IZI1551-resistant cA375 cells had not generally lost

the capacity to induce cell death, since they could still respond to
cisplatin treatment with apoptosis induction (Fig. 2e). Neither
downregulation of apoptosis-inducing TRAIL receptors 1 (DR4)
and 2 (DR5) nor upregulation of TRAIL-decoy receptors DcR1 or
DcR2 was evident to confer IZI1551 resistance in conditioned
melanoma cells (Fig. 2f). The major dysregulation identified at the
molecular level displayed downregulation of the initiator caspase-
8 (Fig. 2g, Figure S2a). This is due to the conditioning process in
which only those cells survive the constant exposure to 5 ng/ml
TRAIL agonist which express only low levels of caspase-8. Under
these conditions, caspase-8 seems to serve a non-catalytic scaffold
function, leading to cytokine production via NFκB activation,
instead of cell death.22,23 Along this line, also the protein level of
the NFκB inhibitor IκBα was shown to be reduced, accounting for
constitutive activation of the transcription factor NFκB, being also
evident by enhanced phosphorylation of its p65 subunit (Fig. 2g).
It therefore appeared that melanoma cells surviving TRAIL
receptor activation selectively reduced the apoptotic signal
transduction by downregulating the receptor-associated initiator
caspase-8 and at the same time activated NFκB, which is usually
associated with upregulation of anti-apoptotic genes.24

For the mathematical modelling based network analysis we
therefore focused on the integration of three signal transduction
pathways that may influence melanoma progression and treat-
ment: MAPK signaling—as frequently dysregulated in melanoma,
extrinsic death receptor-driven apoptosis, and alternative death
receptor-driven anti-apoptotic NFκB activation (Fig. 2h). In order to
disentangle the complexity of melanoma resistance, we estab-
lished a DBN model17 comprising the selected signal transduction
pathways as well as their crosstalk to precisely identify the most
sensitive nodes within this signal transduction network that may
serve as druggable targets. The network topology was assembled
from literature and public databases (Metacore and Ingenuity),
and comprised 19 nodes and 29 parameters. We calibrated
models independently for each cell type (Fig. 2i) with quantitative
protein expression and activation data of MAPK members AKT and
ERK, the pro-apoptotic protein PARP, and anti-apoptotic proteins
including IκBα, NFκB (p65), FLIP, and XIAP derived from
immunoblotting of unstimulated and stimulated parental versus
conditioned A375 cells (Figure S2b and S2c).
We deliberately established the DBN model exclusively on data

derived from parental and conditioned A375 cells, intending to
utilize Malme3M cells to validate the predictive power of the
model retrospectively.

Accurate modelling requires apoptotic proteins in parental but
mostly NFκB-driven anti-apoptotic proteins in conditioned cells
Acquired TRAIL resistance during conditioning of cells to IZI1551
caused severe modifications in expression levels of anti-apoptotic
proteins XIAP and FLIP, as well as in the activation status of pro-
survival proteins NFκB, IκBα, AKT, ERK, and pro-apoptotic protein
PARP over time (1, 2, 4, 8, 16, 24, 48 h) (Fig. 3a and Figure S2a and
the heatmap Figure S2b which includes the values of the
untreated and treated samples). We analyzed the differences in
normalized protein expression in parental and IZI1551-
conditioned A375 cells for each time point. The largest overall
differences between the profiles of parental and IZI1551-
conditioned A375 cells were observed at the three different time
points that might be referred to as: initiation phase (4 h),
execution phase (16 h), and adaption phase (48 h) (Fig. 3b). To
analyze the network modularity within these three phases, we
performed systematic in silico protein knock-out experiments in
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the parental and IZI1551-conditioned cells at 4, 16 and 48 h. We
used the Akaike Information Criterion (AIC) as selection criteria to
verify if the selective removal of each individual node can be
compensated by the network. Based on this analysis mostly pro-
apoptotic proteins were shown to play an essential role in the

execution and adaption phase of parental cells in response to
IZI1551 treatment. In contrast, pro-apoptotic proteins only played
a minor role in IZI1551-treated conditioned cells, because right
from the initiation phase and through the execution and
adaptation phases NFκB-dependent anti-apoptotic proteins were
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shown to be the most indispensable for accurate modelling of the
system (Fig. 3c).
In accordance with the results from the in silico knock out,

Western-blot analysis confirmed lack of pro-apoptotic caspase-3
processing and concomitant NFκB activation to be key character-
istics of conditioned A375 cells in response to IZI1551 treatment
compared to parental cells (Fig. 3d). As a consequence IZI1551-
induced depletion of anti-apoptotic proteins FLIP and XIAP was
fully compensated most likely due to upregulation of these NFκB-
dependent genes (Fig. 3d).8,9 Immunoblotting in concert with the
mathematical model analysis strongly implied the balance at the
TRAIL receptor of IZI1551 conditioned cells to switch from pro-
apoptotic caspase-dependent signal transduction to NFκB-driven
anti-apoptotic signaling, which finally may confer TRAIL resistance.
Considering the overall network sensitivity upon in silico knock

out of each node, the execution phase (16 h) seems to represent
the time-point of maximal vulnerability to systems perturbation
between parental and conditioned A375 cells. Based on the
analysis and taking into account the fact that the initiation phase
(4 h) might not represent the steady-state of the signaling
network, while in the adaption phase (48 h), the effects of
transcriptional regulation might already be too large and might
alter the wiring of the signaling machinery, we selected the 16 h
time-point for further analysis.

Model analysis predicts that dysregulated XIAP and IκBα drive
IZI1551 resistance in melanoma
In order to integrate the experimental data into a coherent picture
and to gain a systems-level understanding of the signal
transduction network affected by IZI1551 conditioning, we
implemented different regularization algorithms in the FALCON
toolbox to identify the cell type-specific parameters. We therefore
combined two regularization methods. The partial-norm (L1/2)
regularization method optimizes identical models for multiple
series of experimental conditions in parallel and allows discover-
ing those parts of the network that are active or inactive between
cell lines, resulting in pruning of inactive edges within the
experiments. The grouped L1 regularization for each interaction
focuses on the differences between parental and conditioned cells
and tends to reduce the model size by assigning the same
parameter value for both cell types for a given interaction. Here,
we combined both methods to identify the minimal network
structure and uncover cell type-specific differences.
To identify the minimal set of reactions in the network (L1/2) as

well as the minimal number of parameters between cell lines (L1
groups), we screened values for the regularization strengths from
10E-10 to 10E2 by half-log steps, thus giving 25 different values to
test, plus 0. We performed the optimization for each combination
of these values, thus optimizing in total 26 L1/2 × 26 L1-grouped
regularization strengths= 676 models. Out of 676 different model
structures investigated, we identified the optimal network
structure based on the Bayesian Information Criterion (BIC) (Fig.
4a; BIC: red box).25 The optimal network (Fig. 4a; #Parameters)

contained 29 parameters comprising 19 parameters with equal
values for both cell types, four reactions equal to 0, and six cell
type-specific reactions, while the initial network contained 58 non-
zero parameters (2 cell lines × 29 parameters). The goodness-of-fit
of the reduced model was assessed by the mean squared error
(Fig. 4a; MSE: red box). The total runtime of the experiment was
6.2 h for assessing the 676 model variants, i.e., ~13 s per individual
model. The reduced mathematical model with only 31 non-zero
parameters for both cell lines was shown to be able to describe
the experimental data (Fig. 4b) to a similar extent as the complete
mathematical model which is considering different parameters for
both cell types. These results show that our modeling pipeline is
able to identify major putative differences in parameter values
between parental and conditioned cells (Table S2).
The relevance of these differences can be further analyzed by

parameter comparison, as displayed by parameter values sorted
by increasing difference between both cell types (Fig. 4c). This
allows estimating if a reaction is cell type-specific and/or essential.
The reactions which strongly differ between both cell types (Fig.
4c, right columns) are mainly linked to the NFκB activating and
apoptosis-inducing pathways (Table S2). Reactions from the anti-
apoptotic proteins FLIP (FLIP -|Casp8cl) and also BCL2 (BCL2 -|
Casp3cl) were close to 0 in the parental and conditioned cells,
meaning that the inhibition strength of both proteins would not
be enough to inhibit apoptosis. The strongest difference between
parameter values can be observed in the reaction XIAP -| Casp3cl,
absent in parental cells (k= 0.0135) but highly active in
conditioned cells (k= 0.8715). Considering these modelling
results, one would expect that IZI1551-conditioned cells upregu-
lated the apoptosis inhibitor XIAP to acquire resistance to the
treatment. Accordingly, the regularized model predicts IκB super
repressor (IκB-SR) to partially, and XIAP knockout to fully re-
sensitize conditioned cells (Fig. 4d).

DBN modelling correctly predicts melanoma cell re-sensitization
to IZI1551 by targeting NFκB or XIAP
Given these model predictions, we wanted to verify whether
NFκB-driven up-regulation of XIAP plays a major role in conferring
TRAIL resistance in IZI1551-conditioned A375 melanoma cells. As
predicted, ectopic expression of a non-degradable IκBα (S32/36A)-
SR mutant, preventing NFκB activation, was able to partially re-
sensitize conditioned cells to IZI1551 (Fig. 5a), and coincided with
increased XIAP-depletion (Fig. 5b). An enhanced turnover of XIAP
in parental versus conditioned A375 cells was also evident when
we monitored loss of endogenous XIAP upon transcriptional
inhibition by Actinomycin D (ActD). While XIAP started to vanish
after eight hours of ActD treatment in parental A375 cells, it stayed
stable at least for 16 h in conditioned cells (Fig. 5c). Intriguingly,
transient knock-down of XIAP using RNA interference was able to
almost fully re-sensitize conditioned A375 cells to IZI1551,
confirming the predictions of the DBN model (Fig. 5d, e).
Most importantly, and without any previous molecular analysis,

siRNA-mediated XIAP knock down antagonized its upregulation

Fig. 1 IZI1551 is superior in killing melanoma cells than TRAIL or specific MAP kinase inhibitors. a Clonogenic outgrowth of mutBRAF A375
and Malme3M melanoma cells treated with dabrafenib (Dabra; 10 µM) for 8 days was compared to untreated cells (*p ≤ 0.05; ***p ≤ 0.001). b
Parental and dabrafenib-conditioned melanoma cell lines A375 and Malme3M were treated with dabrafenib (Dabra; 10 µM) alone or in
combination with trametinib (Trame; 1 µM). After 48 h apoptosis was determined using a Cell Death Detection ELISA (CDDE) (*p ≤ 0.05; **p ≤
0.01; ***p ≤ 0.001; n.s.= not significant). c A375 melanoma cells were treated with increasing doses of izTRAIL or IZI1551 as indicated (ng/ml).
After 24 h apoptosis was determined using a CDDE (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; n.s.= not significant). d The same dose kinetics of
IZI1551 as in (c) was applied to primary human keratinocytes, fibroblasts and melanocytes. After 24 h apoptosis was determined using a CDDE
(*p ≤ 0.05; ***p ≤ 0.001; n.s.= not significant). e Parental (par) and dabrafenib-conditioned (cond) melanoma cell lines A375 and Malme3M
were treated with dabrafenib (Dabra; 10 µM) or IZI1551 (IZI; 50 ng/ml) alone or in combination. After 24 h of IZI1551 and 48 h of dabrafenib
treatment apoptosis was determined using a CDDE (**p ≤ 0.01; ***p ≤ 0.001; n.s.= not significant) and f monitored by Western-blot analysis
using antibodies against caspase-3 and PARP. α-tubulin served as loading control. For CDDE and clonogenic assay, the mean ± SD of three
independently performed experiments is shown. WBs represent one out of three independently performed experiments
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by NFκB and consequently fully re-sensitized conditioned
Malme3M to IZI1551 (Fig. 5f, g), confirming that XIAP might be
a key player in conferring TRAIL resistance in mutBRAF melanoma
cells, and that the DBN developed here was able to predict this
key player correctly. Accordingly, co-treatment with the SMAC
mimetic (SM83) was able to re-sensitize IZI1551-conditioned
melanoma cells through depletion of XIAP (compare Fig. 5h, i).
To investigate whether XIAP expression level might serve as a

biomarker predicting responsiveness to TRAIL receptor-activating

agonistic molecules in general, we correlated semi-quantitative
XIAP protein expression level with IZI1551 responsiveness in five
different mutBRAF melanoma cell lines. Strikingly, only cell lines
expressing very low XIAP levels, Skmel1, WM35 and WM115,
induced pronounced apoptosis in response to IZI1551 treatment,
whereas Malme3M and Skmel5, expressing elevated XIAP protein
level, only moderately underwent apoptotic cell death (compare
Fig. 5j, k).
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In summary, we have identified hexavalent TRAIL receptor
agonist IZI1551 to be superior in actively inducing cell death in
mutBRAF melanoma compared to conventional trimeric TRAIL but
also compared to specific targeted mutBRAF kinase inhibitors as
used in the clinic. Above this, we have established a regularized
DBN model that was able to predict key players of TRAIL
susceptibility correctly and helped to identify XIAP to serve as a
potential biomarker for TRAIL treatment responsiveness in
mutBRAF melanoma.

DISCUSSION
Defensive mechanisms against cell death render melanoma
resistant to current therapeutic outlines with targeted kinase
inhibitors.4 The molecular mechanism leading to intrinsic or
acquired resistance against BRAF-inhibitors is still controversial
since pro-apoptotic and anti-apoptotic functions depend on
cellular context, target proteins, and cross-talk of different
pathways.7,26,27 Accordingly, neither treatment of two mutBRAF
melanoma cell lines with the mutBRAF inhibitor dabrafenib alone
nor in combination with the MEK inhibitor trametinib yielded
significant cell death. In contrast, we demonstrated that the TRAIL
receptor agonist IZI1551 potently induced cell death in parental
mutBRAF as well as dabrafenib-conditioned mutBRAF melanoma
cells lines, while sparing untransformed primary cells of the skin. It
therefore appears that active and tumor-selective induction of
apoptosis through death receptor activation might be a promising
first or second line treatment alternative for mutBRAF melanoma,
administered either alone or in combination with targeted
mutBRAF inhibitors.
However, different mechanisms of intrinsic TRAIL resistance

have also been observed in cancer cells, especially in mela-
noma.10,28 IZI1551-specific acquired resistance coincided with two
major features, namely down-regulation of the initiator caspase-8
which is indispensable for downstream execution of apoptotic
processes, and constitutive activation of the anti-apoptotic
transcription factor NFκB. Low caspase-8 levels have been
reported to form non-functional heterodimers with the FLICE
inhibitory protein (FLIP) that are more stable than the functional
caspase-8 homodimers and may lead to NFκB activation instead of
cell death induction.29,30 In turn, FLIP is transcriptionally regulated
by several transcription factors, including NFκB and its expression
has been correlated to drug resistance in a wide range of human
malignancies.15,31,32 Thus, low caspase-8 level together with FLIP
may shift the balance at the TRAIL receptors from pro-apoptotic
signalling to anti-apoptotic signal transduction via NFκB activa-
tion. It is known that constitutive NFκB activation is linked to
tumor maintenance and drug resistance.24,32–34 Studies investi-
gating the role of NFκB in tumor pathogenesis and the
mechanisms regulating its activity, revealed that multiple factors
are involved in anti-apoptotic responses, and a better

understanding of the molecular mechanisms could lead to new
targets identification and prognostic biomarkers.35 Accordingly,
the canonical NFκB signaling pathway was included into a DBN
modelling approach aiming to identify the key differences within
the signal transduction networks of parental IZI1551-sensitive
versus conditioned IZI1551-resistant mutBRAF melanoma cell lines
and the molecular mechanism leading to acquired TRAIL
resistance.
DBNs as well as the related probabilistic Boolean networks

(PBNs) are specifically suited to quantitatively model large-scale
regulatory and signalling networks based on steady-state expres-
sion or activity data.17,36 Based on a minimal parametrization (one
parameter per interaction) and a relatively simple algebraic
formalism, they obtain superior speed over more detailed kinetic
models (e.g., ODE based) while still preserving a good predictive
power.17,37 The continuous variables of the DBNs/PBNs thereby
allow quantitative modelling and predictions in contrast to the
classical Boolean approaches with only qualitative read-out. In this
study we combined DBN modelling with a sophisticated
regularization strategy aiming for sparse and context-sensitive
networks and show the performance of this strategy in the
detection of cell line-specific deregulations of a signalling
network. For ODE based models, the L1 regularization can be
used to demonstrate the connections between the deregulation
of signal transduction networks and the pathophysiology in
cancers.38,39 In contrast to their single regularization, our method
includes both cell type comparisons and network pruning as part
of the overall optimization problem in the form of regularization
functions, therefore providing a more stable solution than
methods based on independent optimization and unsupervised
clustering or multi-step model selection methods. Combining
both selection methods resulted in a total of 676 model variants
which could efficiently be scanned with the very fast DBN
implementation in the FALCON toolbox. This resulted in the
simultaneous network pruning, contextualization, and parameter
fitting which are tasks which usually are only performed
sequentially in other modelling frameworks.
Analysis of the regularized model revealed that a subset of

reactions, mainly linked to NFκB and anti-apoptotic signalling,
were strongly upregulated in conditioned IZI1551-resistant cells,
whereas the essential nodes in the parental cell lines were
identified to be mainly pro-apoptotic proteins. The model
accurately predicted IκB –SR to partially and XIAP knockout to
fully re-sensitize conditioned cells. The continuous regularization
paths within the innovative strategy16 make sure that the top
performing models located in the same region in the BIC
landscape will have a similar parametrization and thus yield
similar predictions.
Following these predictions, we confirmed that NFκB inhibition

by ectopic expression of IκBα-SR mutant partially reduced cellular
XIAP levels in conditioned melanoma cells coinciding with partial

Fig. 2 Monitoring IZI1551 susceptibility using mathematical modelling. a Dose response curve of nine different IZI1551 concentrations to
determine the EC50 concentration. b A375 and Malme3M melanoma cells were treated with increasing IZI1551 doses (0.5; 5; and 50 ng/ml)
and apoptosis determined 24 h later in a CDDE. c Parental and IZI1551-conditioned A375 and Malme3M cells in 2D cell culture and in 3D
spheroid culture, respectively, were treated with IZI1551 (50 ng/ml). After 24 h apoptosis was determined using a CDDE (**p ≤ 0.01; ***p ≤
0.001), and d monitored by transmission microscopy of 3D spheroids. Scale bar= 250 µm. e Parental and IZI1551-conditioned A375 cells were
treated with IZI1551 (50 ng/ml) or cisplatin (30 µM). After 24 h apoptosis was determined using a CDDE (*p ≤ 0.05; n.s.= not significant). f
Surface expression level of TRAIL receptors 1 (DR4) and 2 (DR5) and decoy receptors 3 (DcR1) and 4 (DcR2) of parental (par) and conditioned
(cond) A375 cells was scored by FACS analysis (**p ≤ 0.01; ***p ≤ 0.005; n.s.= not significant). g The expression level of caspase-8, IκBα, NFκB
(p65) and phosphorylated-p65(Ser536) in untreated parental and IZI-conditioned A375 cells was monitored by Western-blot analysis. β-actin
served as loading control. One representative Western-blot out of three independently performed experiments is shown (for two more
replicates, see Figure S2a). h Schematic overview of MAPK-dependent, TRAIL-induced pro-apoptotic and NFκB-driven anti-apoptotic signal
transduction pathways. i Topology of the Dynamic Bayesian Network (DBN) model of the signal transduction pathways. Black arrows indicate
the activation, red arrows the inhibition of target proteins (purple nodes=model inputs, red nodes=measured proteins, green nodes= not
measured proteins, blue nodes= functional measurements, asterisks= constitutively active proteins). For CDDE and flow cytometry analysis
the mean ± SD of three independently performed experiments is shown
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re-sensitization to IZI1551. More importantly, direct depletion of
anti-apoptotic XIAP fully rescued the TRAIL-resistant phenotype,
not only in the A375 cell line used for model parameterization, but
also in another mutBRAF cell line, Malme3M. XIAP, an NFκB-
dependent member of the inhibitor of apoptosis (IAP) family,

inhibits apoptotic cell death through binding to the executioner
caspase-3, −7, and-9, and has been shown to be upregulated in
many human tumors.40–42 Conversely, XIAP was shown to
enhance NFκB activation constituting a positive feedback loop
to prevent apoptosis.9,43,44 Accordingly, co-application of XIAP-
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inhibiting SMAC mimetics has successfully been used to sensitize
different TRAIL-resistant tumor cells45,46 to apoptotic cell death. To
that effect, we showed co-stimulation with the SMAC mimetic
SM83 to fully re-sensitize melanoma cells to IZI1551 that had
acquired secondary resistance to the TRAIL-agonist via XIAP
depletion.
Conclusively it turned out that the DBN model combined with

the regularization strategy accurately predicted XIAP to be the key
player in conferring TRAIL resistance. This became even more
evident when we could correlate elevated XIAP expression level in
melanoma cells to intrinsic TRAIL resistance, indicating that XIAP
may serve as a biomarker for TRAIL responsiveness of mutBRAF
melanoma. Here, we provide evidence that alterations in the
abundance of the NFκB and XIAP proteins change the sensitivity
of resistant melanoma cells to IZI1551 treatment. Our studies
show that the resistance mechanism is conserved between A375
and Malme3M cells.
Taken together, these results indicate that essential network

and cell type-specific reactions can be identified using protein
measurements and regularized optimization of a DBN model. The
underlying mechanism involved upregulation of NFκB, and
predictions identified XIAP as the key player of TRAIL (IZI1551)
resistance. Based on the fact that numerous SMAC mimetics are
already used in clinical trials for numerous cancers, including
leukemia, lymphoma, and solid tumors as single agents or
combination therapies,47 one could envisage SM83-IZI1551
combinations for the treatment of kinase-inhibitor resistant
melanoma patients in the future.
Importantly, incorporation of multiple regularization functions

in optimization problems, including logical networks modelling,
may provide a promising avenue for future studies to assess the
effects of drug combinations and eventually to identify respon-
ders to selected combination therapies in a personalized
approach.

METHODS
Unless stated otherwise, results of Cell Death Detection ELISA and flow
cytometry analysis are presented as mean ± SD of three independently
performed experiments. Western-blot analyses represent one out of three
independently performed experiments. Statistical analysis of biochemical
data was performed using Student’s t-test.

Cells and reagents
Human melanoma cell lines (A375, Malme3M, WM1366, WM1346, Skmel5,
Skmel1, WM35, WM115), were maintained in RPMI 1640 medium (Gibco,
#61870-010) with 10% FCS (Gibco, #10270-106) in a humified atmosphere
of 5% CO2 at 37 °C. A375, Malme3M, WM1366, and WM1346 were
conditioned to 5 ng/ml IZI1551, A375, and Malme3M to 1 µM dabrafenib
over a period of 6 months, adding fresh compound every other day.
Primary cells were purchased from Cell Systems and used at passage 4.
Keratinocytes (#FC-0007) were maintained in Dermalife®K Complete
Medium (Cell Systems, #LN-0027), fibroblasts (#FC-0001) in DMEM (Gibco,
#41965-039) and melanocytes (#FC-0030) in Melanocyte Growth Medium
(M2, Promocell, #C-24300). For cell death induction 50 ng/ml IZI1551
(University of Stuttgart), 30 µM Cisplatin (TEVA-Deutschland, #2615.03.01),

1 µM Actinomycin-D (Sigma, #A1410), 0.1-1-10 µM SM83 (Baliopharm),
10 µM dabrafenib, or 1 µM trametinib (both Selleckchem, #S2807 and #
S2673) was added to cells.

Plasmids, cloning, and siRNA transfection
For transient expression of IκBα-SR-S32/36A, 6 × 106 A375 cells were
electroporated with 20 µg of the plasmid pBK-CMV-IκBα-SR or the empty
pBK-CMV vector and investigated 24 h later.
Gene silencing was facilitated by transfecting 5 × 104 cells with 40 pmol

siRNA for XIAP- 5′-CGAGCAGGGUUUCUUUAUATT-3′ (Ambion, #AM51331),
or lacZ-5′-GCGGCUGCCGGAAUUUACCTT-3′ (MWG Eurofins) using Lipofec-
tamine 2000 (Thermo Scientific, #11668019), 72 h prior to stimulation.

3D melanoma spheroids
Melanoma spheroids were generated using the “hanging drop” method.19

Briefly, 5 × 104 GFP-expressing melanoma cells were resuspended in 5ml
of medium containing 20% methyl cellulose (Sigma, #M0512). Forty drops
of 25 µl containing 250 cells were spotted on the lid of a 10 cm cell culture
dish and incubated for 14 days at 37 °C, 5% CO2. For in vitro stimulation
160 melanoma spheroids were collected in a 2 cm culture dish previously
coated with 1% agarose.

Flow cytometry
5 × 105 cells were blocked in PBS/2% BSA for 30min, and incubated with
the primary antibodies against TRAIL receptors R1, R2, R3, R4 (huTRAILR1-
M271, huTRAILR2-M413. huTRAILR3-M430, huTRAILR4-M444, Amgen) at
2.5 µg/ml in PBS/2% BSA, for 1 h on ice. After washing twice with PBS/1%
BSA, 2 µg/ml of the secondary goat-anti-mouse-488 antibody (Thermo
Scientific #A-11001, RRID: AB_2534069) in PBS/2% BSA were added for
30min at 4 °C. Subsequently, cells were washed twice with PBS/2% BSA
and subjected to FACS analysis (LSR II, Becton Dickinson). Excitation
wavelength used was 488 nm, the emitted green fluorescence (lmax
520 nm) was detected using (FL1) band-pass filter.

Determination of cell death and clonogenic outgrowth
Apoptosis was determined in a Cell Death Detection ELISA (CDDE, Roche,
#11920685001) according to the manufacturer’s protocol. The enrichment
of mononucleosomes and oligonucleosomes released into the cytosol is
calculated: absorbance of samples/absorbance of control cells at 450 nm
(Tecan M200). An enrichment factor of 2 corresponds to 10% apoptosis as
determined by AnnexinV-FITC/PI FACS analysis (FACSAria III, Becton
Dickinson). For clonogenic assay, 2 × 104 Malme3M or 8.5 × 102 A375 cells
were seeded into six-well plates for 8 days or until control cells had
reached confluency. Subsequently, cells were stained with crystal violet
(0.1 w/v in 20 % Methanol) for 15 min at RT. Cells were washed and crystal
violet dissolved from cells with 0.1 M KH2PO4/EtOH for 5 min at RT and
color intensity of supernatants measured at 595 nm (Tecan M200).

Western-blot analysis
Cells were lysed in lysis buffer (50mM HEPES, pH 7.5; 150 mM NaCl; 10%
glycerol; 1% Triton-X-100; 1.5 mM MgCl2; 1 mM EGTA; 100mM NaF; 10 mM
pyrophosphate, 0.01% NaN3, phosSTOP

® and Complete®). After centrifuga-
tion, supernatants were collected and the protein content determined by
DC Protein assay kit (BioRad). Sixty to 80 µg of protein extracts were
subjected to 4–15% gradient SDS-PAGE (BioRad), blotted onto nitrocellu-
lose membranes and incubated with antibodies directed against PARP,
XIAP (BD-Biosciences; #551025, RRID:AB_394009; #610717, RRID:

Fig. 4 Model analysis predicts that dysregulated XIAP and IκBα drive IZI1551 resistance in melanoma. a Combined optimization of the
grouped L1 and L1/2 regularization algorithms. BIC: The Bayesian Information Criterion (BIC) was used to obtain the best model structure.
#Parameters: The number of non-null parameters for each model variant. MSE: Logarithm of the mean squared error indicating the quality of
the fit compared to the experimental data. X-axis (left to right): increasing the L1/2 regularization. Y-axis (top to bottom): increasing the L1
grouped regularization. Tiles: blue the smallest (best) and yellow the largest (worst) values for the BIC, #Parameters and the MSE L1 vs L1/2
regularization. The red box indicates the model with the best BIC. b Comparison of the simulated node activity obtained in the optimal model
and the protein quantification for the parental and IZI1551-conditioned A375 cells. Blue dots represent the simulated node activity; green
dots the average of five measurements with standard error of the mean. c Optimal parameter values for both cell lines. The parameters are
sorted from the lowest (left) to the highest (right) difference in parameter values between cell lines. d Model predictions based on the
optimized mathematical model simulating the effect of the IκBα super repressor (IκBα-SR) and XIAP knock-out (XIAP KO) on % apoptosis being
induced upon IZI1551 treatment of parental and IZI1551-conditioned A375 cells
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AB_398040), caspase-3, IκBα, NFκB-p65, p-p65(S536), AKT, p-AKT(S473),
ERK1/2, p-ERK1/2(T202/Y204) (Cell Signaling; #9665, RRID:AB_2069872;
#4814, RRID:AB_390781; #8242, RRID:AB_10859369; #3033, RRID:
AB_331284; #2920, RRID:AB_1147620; #4060, RRID:AB_2315049; #9102,
RRID:AB_330744; #4376, RRID:AB_331772), FLIP, (Sigma #PRS2437, RRID:
AB_259702), and caspase-8 (Adipogen #AG-20B-0057, RRID:AB_2490271),

respectively. Equal loading was monitored by re-probing membranes with
antibodies against GADPH (Cell Signaling #2118, RRID:AB_561053), α-
tubulin (Thermo Scientific #MS-581-P1, RRID:AB_144075), or β-actin (Cell
Signaling #4970, RRID:AB_2223172). HRP-conjugated secondary antibodies
were purchased from GE-Healthcare (Anti-mouse-HRP, RRID:AB_772210;
Anti-rabbit-HRP, RRID:AB_772206). Bands were visualized by applying
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chemiluminescense SuperSignal® detection systems (Thermo Scientific,
#34087 and #34076). Protein expression was determined by calculating the
ratio between the protein intensities and either α-tubulin, β-actin, or
GADPH as housekeeping proteins using ImageQuant 5.2 software (GE
Healthcare). Blots derive from the same experiment and have been
processed in parallel.

Mathematical modeling
Quantitative protein expression values as determined by Western-blot
analysis were then normalized across all cell lines, experimental conditions,
and time-points, to the [0–1] interval, independently for each protein, and
the average and standard error of five replicates was calculated. Bayesian
modelling was performed using these averaged normalized relative
expression values as input.
We generated a DBN, a type of probabilistic logical network model of

the main pathways hypothesized to play a role in apoptosis resistance
from literature. In this type of network model, nodes representing the
relative activity of signalling molecules are linked by simple logical
functions. These functions can perform the basic AND, OR, and NOT
operations, and be parametrized with proportionality constants. Con-
textualized network models include parameter values (k) for each edge,
representing the relative strength of this edge. In contrast with strictly
Boolean models, which are qualitative, probabilistic logical models are thus
able to provide quantitative estimates. Their formulation however is not as
mathematically complex as Ordinary Differential Equations, which are
classically used for pharmacological models, therefore their computational
cost remains low.
We used the Matlab toolbox FALCON17 to contextualize this network

with the protein measurements. Briefly, FALCON uses gradient descent to
optimize the set of parameter values minimizing the mean of squared error
(MSE) between the simulated node intensities of a DBN46,47 and the
corresponding measured normalized protein expressions. After fitting this
network model on steady-state protein measurements, quantitative
information can be retrieved, informing on both the relative activity of
the signalling molecules in the different experimental conditions, and the
strength of interactions between molecules.
To select for context-specific interactions, we optimized the network for

both parental and IZI-conditioned cell lines in a single optimization, and
included in the objective function two regularization terms to materialize
cross-context modelling assumptions. Firstly, we used a fractional norm on
parameter values in an effort to prune the network from interactions not
strictly necessary to fit the dataset in neither of the cell lines. The use of a
fractional norm is dictated by the probabilistic nature of the modelling
framework: for each node, the sum of incoming edge strengths must be
equal to exactly 1, which renders the L1-norm ineffective to induce
sparsity. Secondly, we used a group-level L1-norm across cellular
contexts,48 using a strategy similar to Merkle et al.38 The optimal
parameter set K of P parameters k1, k2, kP was recovered using the
objective function:

arg min
K2 0;1½ �P

1
N

XN

i¼1

Xi � X̂i
� �2þλ1

XP

k¼1

ffiffiffi
k

p
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XJg

j¼1

kgj � kg
���

���
 !

(1)

with N the number of individual data points in dataset X and /hat{X} being
the set of corresponding values in the simulated network model. The first
term is the mean squared error (MSE), the second term is the Lq semi-norm
with q= 0.5, while the third term is the grouped L1-norm, with Jg the
number of members in group g, and /bar{kg} the mean value for parameter

k in group g. The scalars lambda1 and lambda2 are tuning hyper-
parameters controlling the regularization strengths for each of the
regularization objectives.
During the systematic knockout experiments, we evaluated models

using the Akaike Information Criteria (AIC), which balances goodness-of-fit
with model size. AIC is calculated as: Nlog(MSE)+ 2P.
We recovered the MSE and optimal parameter sets for 676 combinations

of lambda1 and lambda2 values (screening each one from 2−10 to 22 by
half-log steps), and computed for each of these the Bayesian Information
Criterion (BIC) as Nlog(MSE)+ log(N)P, and the topology of the optimal
network, using a minimal threshold of 0.01 for keeping edges and their
corresponding parameters in the model.
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