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Machine learning (ML) can aid in novel discoveries in the field
of viral gene therapy. Specifically, big data gathered through
next-generation sequencing (NGS) of complex capsid libraries
is an especially prominent source of lost potential in data anal-
ysis and prediction. Furthermore, adeno-associated virus
(AAV)-based capsid libraries are becoming increasingly popu-
lar as a tool to select candidates for gene therapy vectors. These
higher complexity AAV capsid libraries have previously been
created and selected in vivo; however, in silico analysis using
ML computer algorithms may augment smarter and more
robust libraries for selection. In this study, data of AAV capsid
libraries gathered before and after viral assembly are used to
train ML algorithms. We found that two ML computer algo-
rithms, artificial neural networks (ANNs), and support vector
machines (SVMs), can be trained to predict whether unknown
capsid variants may assemble into viable virus-like structures.
Using the most accurate models constructed, hypothetical mu-
tation patterns in library construction were simulated to sug-
gest the importance of N495, G546, and I554 in AAV2-derived
capsids. Finally, two comparative libraries were generated us-
ing ML-derived data to biologically validate these findings
and demonstrate the predictive power of ML in vector design.
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INTRODUCTION
Adeno-associated virus (AAV) is a member of the Dependoparvovi-
rus genus in the Parvoviridae family.1 AAV’s non-enveloped capsid
consists of 60 viral proteins (VPs).2 These VPs are produced in one
of three types (VP1, VP2, and VP3), which assemble in a 1:1:10 stoi-
chiometric ratio, respectively.3 Recently, AAV is proving to be a
potent gene therapy vector as demonstrated in several early-stage
clinical trials and studies using an animal model of disease.4 A pre-
dominant strategy to optimize AAV vectors is to create combinatorial
capsid libraries of the cap gene.5

One method to create an AAV capsid library is to use a “virtual family
shuffling” protocol. In this approach, multiple variable regions (VRs)
within the cap gene are altered based on alignments of numerous
(often more than 100) different isolates of AAV.6 These libraries
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can contain hundreds of millions of unique variants that then may
be subjected to selective pressures in a method known as directed evo-
lution, whereupon multiple rounds of selection are used to single out
the “fittest” sequence or sequences for the pressures applied.5,7,8 Often
this process reduces a highly complex library of millions of sequences
to a manageable number of individual sequences that display anti-
body evasion, tissue tropism, or the capsid assembling properties
that were selected.9

During the selection process, the complexity of libraries gets progres-
sively reduced. The original design is dictated by the investigator who
determines the number of positions to mutate and the potential res-
idues that each position can be mutated to; this is often more complex
than 1 � 1028 unique variants.6 The following plasmid library is an
intermediate step that is required to assemble the products into a
DNA form that can be transfected into HEK293 cells (a common
cell line for AAV production); this is typically restricted to about
1 � 108 unique variants due to the practical limitations of bacterial
cells transformation efficiencies.8 Finally, the assembled viral libraries
are known to have complexities of approximately 1 � 106 to 1 � 107

variants, which are significantly lower than the parent plasmid li-
braries.6 It is thought that the drop from plasmid library to viral li-
brary is largely due to dead-end variants that do not properly
assemble.10 If the investigator can decrease the designed complexity
to produce a plasmid library that contains fewer dead-end variants,
then it is logical to assume there will be less of a decrease in the viral
library complexity, resulting in a more representative viral capsid li-
brary that can be more effectively used in directed evolution schemas.

Fortunately, recent advancements in machine learning (ML) compu-
tational algorithms may be utilized to interpret the numerous se-
quences obtained in the pursuit of a more refined capsid library.11

Modern ML techniques are capable of capturing many complex
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interactions between variables such as thermostability,12,13 solubil-
ity,14 three-dimensional structure,15 secondary structure,16 binding-
site predictions,17 protein-ligand interaction,18,19 functional class,20,21

subcellular localization,22 and protein-protein interactions.23 ML has
been used in tandem with AAV vectors to develop novel approaches
to answering previously difficult questions, like ML-guided protein
engineering for transcranial optogenetics.24 Moreover, some groups
have integrated AAV vector design with computer algorithms using
clustering for peptide display25, ML for tropism targeting in Cre-re-
combinant mice,26 and machine-guided analysis for single amino
acid substitutions,27 all to great success using libraries with theoretical
complexities of 4 � 106, 3.4 � 1010, and 1.13 � 104 unique variants
respectively. These advancements in computational algorithms, met
with a widening acceptance in the gene therapy field, facilitate an
environment conducive to further expansion of ML applications.

Previously, our group outlined a strategy to integrate the processes of
rational capsid mutagenesis based on the biology of AAV with the pro-
cess of directed evolution to generate highly complex capsid libraries
and identify preferential motifs. One such motif in particular,
D492G493E494-D499F500 in AAV2 VR-V, exhibited superior characteris-
tics in rounds of in vivo selection.6 In the current project, we now
outline a novel strategy to improve vector design, construction, and se-
lection. Specifically, we produce an AAV2-DGE-DF-based combinato-
rial library and apply dedicated code to demonstrate an application of
ML in gene therapy vector design. The backbone of our new library in-
cludes characteristics from our previously published library (a DGE-
DF motif), monoclonal antibody-evading residues (S384T and
Q385N), and proteasome-evading residues (Y444F and S498T).6,28–33

Overall, this research focuses on producing an AAV2-scaffold combi-
natorial library based on our previous findings, utilizing advances in
next-generation sequencing (NGS), developing code for an ML pipe-
line to predict viral capsid assembly, and using this trained ML algo-
rithm to suggest improvements for future capsid libraries.

RESULTS
CapLib8 library design

We have used an AAV2-DGE-DF variant as a parent scaffold to derive
theCapLib8 library.We sought to identify derivatives of this variant that
would maintain high transduction rates while hopefully acquiring tar-
geting specificity. The library produced in this study containsmutations
introduced to 33 amino acid residues by using degenerative primers.
The design of these particular degenerate positions was driven by the
NGS analysis of the original AAV2-based library:6 no amino acid (aa)
residues were modified in VR-II, VR-III, or VR-IX as it was deemed
detrimental to the overall capsid fitness. The degenerate positions and
amino acid residues in the final design are listed in Figures 1A–1F.

CapLib8 sequence distribution

In order to better understand the properties of the dataset retrieved
after NGS, we analyzed the sequences and their distribution to verify
their eligibility for ML training. Despite an uneven distribution of
reads for the parental plasmid library and the viral progeny library,
we found that the high complexity of unique variants was sufficient
Molecular
for training ML algorithms. A calculated 1:1 molar ratio of parental
plasmid to viral progeny was anticipated to be sequenced; however,
a 1:3 ratio of sequences after NGS and data processing was observed.
The distribution of unique variants is visualized in Figure 2A. Specif-
ically, the parental plasmid library resulted in 1.03 � 107 individual
reads with 8.27 � 106 unique variants represented. The viral progeny
library resulted in 3.28� 107 individual reads representing 1.47� 107

unique variants. We concluded that only a small sampling of each
group was sequenced because the median coverage per variant was
1. The true complexity of the parental plasmid library is estimated
to be ~1.0� 108 unique variants because 7.44% of the sequenced viral
progeny variants can be found in the sequenced parental plasmid li-
brary (i.e., 13.43 times deeper sequencing of the parental plasmid li-
brary would be needed to have full coverage of the progeny variants in
the parental library).

A comparison of residue probabilities for the parental plasmid library
and viral progeny library is presented in Figure 2B. The differences in
residue probabilities between these sequence logos shows the selective
process for capsids assembly. When viral progeny sequences are
removed fromparental plasmid sequences, the resultingpool of variants
are thought to be representative of “not assembled” sequences. “Assem-
bled” sequences are those which appear in the viral progeny NGS data.
Additionally, we define accuracy in subsequent sections of this paper as
the algorithms’ ability to differentiate sequences not used in training
that fit into these classes “assembled” and “not assembled.”

Moreover, the gap in theoretical complexity and post-production
complexity indicates that designing capsid libraries with a lower theo-
retical complexity, targeting residues and positions with the intent of
increasing the post-production complexity, may result in higher
yields of capsid library viral particles, and higher post-production
complexity. Specifically, production of capsid libraries should contain
as few residues as possible that exhibit high levels of selection in order
to decrease the number of dead-end variants, therefore increasing the
number of viable capsids and as a result increasing the complexity of
the post-production library. ML is one tool that can be utilized to
design the next generation of rationally designed AAV capsid libraries
that fulfils these criteria.

ML training and tuning

To tune the artificial neural network (ANN), we adjusted for learning
rates (LRs) and the number of nodes within a shallow ANN. The
script (File S8 in Data S1) is a NumPy-based ANN that written to
be used both for deep neural networks and shallow neural networks.
A shallow ANN is used in this study to simplify the parameters tested.
Figure 3A is a representative graph showing an ANN relative cost
function and accuracy curve across 5,000 iterations for one of the
training conditions (100 nodes, LR = 0.1). In this project, we define
accuracy as the percent of unique variants in the testing/validation
set (those sequences not used to train the algorithms) that are
correctly classified as “assembled” or “not assembled.” All datasets,
training and testing, contain a 1:1 ratio of “assembled” to “not assem-
bled” variants.
Therapy: Methods & Clinical Development Vol. 20 March 2021 277
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Figure 1. AAV2 capsid library design

(A) AAV2 amino acid residue sequence for VP1 where variable residue mutations (33 residues) and constant residue mutations (9 residues) are highlighted. (B) Three-

dimensional model of a VP1 monomeric protein highlighting mutations to the backbone for the DGE-DF motif, as well as the antibody and proteasome evading mutations,

S384T, Q385N, Y444F, and S498T. (C) Assembled AAV2 capsid with 60monomers, highlighting the positions for the DGE-DFmotif and antibody evadingmutationsmade to

the backbone of the library. (D) VP1 monomeric protein highlighting mutations for the 33 residues within the VRs that will receive variable mutations. (E) Assembled AAV2

capsid with 60 monomers, highlighting the mutated residues within the VRs. (F) Table specifying the 33 codons and potential residue outcomes for each variable residue

receiving mutations in this study.
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To standardize the ANN training, we performed all tests over 5,000
iterations because this results in a plateau of accuracy improvements
while minimizing overfitting of the model to the training set. Training
sets consisted of 50,000 unique variants from the “assembled” library
and 50,000 unique variants from the “not assembled” variants pool.
Testing sets consisted of 100,000 different unique variants from the
“assembled” library and 100,000 different unique variants from the
“not assembled” variants pool. This follows a 2� validation. Figure 3B
shows the distribution of accuracies for LRs and nodes.

Across the conditions that we tested, we found that the highest accu-
racy occurred with 100 nodes and a LR = 0.1, resulting in a trained
ANN with a testing accuracy of 68.18%. In more detail, for sequences
that this trained algorithm has not yet seen, the algorithm has a
71.28% accuracy for “assembled” variants and a 65.07% accuracy
for “not assembled” variants. A receiver operating characteristics
curve visualizes these accuracies in Figure 3E.

Moreover, we found that training the ANN using a stricter dataset by
increasing the threshold for the sequencing copy number of each
278 Molecular Therapy: Methods & Clinical Development Vol. 20 March
variant to be included in the dataset results in an appreciable increase
in accuracy within the training class.We found that predictions for an
algorithm trained and testing using the top 1% of copy numbers
retrieved (those variants with greater than 21 copies sequenced) yields
a model with 76.23% accuracy (Figure 3F). Practically, this trained
model can more accurately predict whether capsids variants will be
in the top performing class.

To tune the support vector machine (SVM), we examined four
different SVM kernels and two types of data representations to deter-
mine which kernel and representation captures the trends in our data
most accurately. The four SVM kernels we tested include the radial
basis function (RBF), linear, polynomial, and sigmoidal kernels.
One representation is the binary residue representation, where each
position is divided into 20 bits, 1 bit for each of the 20 common res-
idues. Conceptually, this is a form of one-hot representation to repre-
sent nominal features.34 The second representation is the physico-
chemical representation where the physical and chemical properties
of each residue are used to train the algorithm. Properties are derived
from data gathered by Pommié et al.35 The table in Figure 3C shows
2021



Figure 2. Library characterization

(A) Series of Venn diagrams depicting the sequence distribution of parental plasmid and viral progeny libraries. Left is a Venn diagram showing the sequencing results after

NGS, illustrating how many of the viral progeny variants were not sequenced in the parental plasmid library. Center is a Venn diagram showing the estimated distribution of

reads for the parental plasmid and viral progeny libraries, with the assumption that the majority of the viral progeny sequences were sequenced. Right is a Venn diagram

representing how a more rational design of libraries would result in an increase in variants expected to make it to the viral progeny library. (B) Sequence logos illustrating the

composition of residues of libraries derived from NGS data. Top is the probability distribution for positions from NGS of the parental plasmid library. Bottom is the probability

distribution for positions from NGS of the viral progeny library.
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the unique profile for the 20 common amino acids broken into 12 bits
including volume, hydropathy, polarity, hydrogen donor, hydrogen
acceptor, positive charge, negative charge, aliphatic, aromatic, sulfur
containing, hydroxyl containing, and amide-containing resides. Vol-
ume and hydropathy are normalized.

We used the same randomized distribution of viral progeny library
and “not assembled” variants for the training and testing sets for
the SVM as we did for the ANN. Figure 3D shows the accuracies
for the kernels and representations that were tested.

The residue representation for RBF kernel was found to fit the data
most closely without resulting in overfitting. An accuracy of 68.49%
using the testing/validation set was found where 72.19% of “assem-
Molecular
bled” variants and 64.88% of “not assembled” variants were correctly
predicted. Figure 3F depicts the accuracies for the optimal hyper-
parameter (RBF with residue representation) when used with datasets
of different copy numbers. As with the ANN, we found an appreciable
increase in accuracy when the threshold of copy numbers was
increased. For the most stringent group, the top 1% of high copy
number “assembling” variants, the model had an accuracy of 77.39%.

Applying ML algorithms in a single wild-type residue assay

Now that our ML algorithms have been trained, the saved parameters
can be used to model the effects of hypothetical library mutation pat-
terns. In this paper, we devise a single wild-type residue assay to deter-
mine the relative importance of eachmutation position within a combi-
natorial library. In this assay, computer-simulated libraries are
Therapy: Methods & Clinical Development Vol. 20 March 2021 279
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Figure 3. ML training and optimization

(A) Representative graph depicting the decreasing cost and increased accuracy for ANN learning over the course of 5,000 iterations with a LR = 0.01 in a 10-node shallow

ANN. (B) Graph of testing accuracies for ANN tested with parameters in a shallow ANN for nodes 1–300 and LR = 0.01–1.0. (C) Table of physical and chemical properties for

the 20 common amino acid residues used to represent the training and testing datasets in SVMs. Volume and hydropathy are normalized and represented by continuous

values. (D) Bar graph depicting accuracies for 4 SVM kernels (linear, polynomial, RBF, and sigmoidal) and 2 representations (residues and physicochemical). Accuracies are

obtained from testing sets distinct from the training sets. Training sets include 50,000 examples of virally isolated DNA and 50,000 examples “not assembled” variants. The

testing set includes 100,000 different examples of the viral variants and 100,000 different examples of the “not assembled” variants. (E) Receiver operating characteristics

curve for the ANN and SVMoptimizedmodels depicting threshold trade-offs for true positive and false positive prediction outcomeswhere the ANN contains 100 nodes and a

LR = 0.1 and the SVM is trained using an RBF kernel and the residues representation. (F) Line graph illustrating the accuracies of ANN and SVM models for different

percentiles of copy numbers gathered from NGS of virally isolated DNA. The algorithm hyper-parameters used for training were the optimized ANN (100 nodes, LR = 0.1) and

the optimized SVM (RBF kernel with residues representation).
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produced where 32/33 mutation positions receive mutations, leaving a
single mutation position wild type. This is done for all 33 positions.
Additionally, a 34th library containing 33/33 mutations is generated
as a reference. The computer-simulated mutations are introduced in
280 Molecular Therapy: Methods & Clinical Development Vol. 20 March
accordance with the probabilistic distribution of residues for each po-
sition as determined by the degenerative codons used to make the orig-
inal library (see Figure 1F). Figure 4A depicts the outcome of the single
wild-type assay for both the ANN and SVM models.
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Figure 4. ML application and validations

(A) Graph depicting the predicted percent of “assembled” capsids given 34 different hypothetical libraries. The hypothetical libraries are computer-generated libraries

consisting of 100,000 sequences using a script that maintains the degenerate codons’ proportional output of residues. One library, “None,” includes no residues restricted to

their wild type. The remaining 33 libraries are made such that each of the 33 mutation positions receive a library where it is not mutated. (B) Graph depicting the 2-fold drop in

titer for the library containing mutations with the CR residues compared to a library containing mutations to NC residues. Statistical significance was determined using a two-

tailed Student’s t test (****p < 0.00001). (C) Graph showing the difference in the number of “assembled” and “not assembled” variants from the CR and NC mini-library.

“Assembled” variants come from the NGS of virally derived DNA. “Not assembled” variants come from the NGS of the plasmid DNA before transfection, where the variants

from the virally derived pool are removed. Notably, the theoretical complexity for these libraries is 8,000 unique variants, excluding variants with stop codons; however, both

the CR and NC mini libraries did not have all variants sequenced. The CR mini-library had 95.20% of possible variants sequenced and the NC mini-library had 98.40% of

possible variants sequenced. Statistical significance was determined using a chi-square test (****p < 0.00001). (D) Graph depicting the log2 fold change in proportion of

residues for the CR mini-library illustrating the selective pressure on these residues. (E) Graph depicting the log2 fold change in proportion of residues for the NC mini-library

illustrating the selective pressure on these residues. Values greater than 0 indicate that positive selection occurred, values less than 0 indicate that negative selection

occurred, and values equal to 0 indicate that no selection occurred.
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We found that computer-simulated libraries with mutation
excluding positions 495, 546, and 554 result in a higher percent of
predicted “assembled” capsids. These findings suggest that N495,
G546, and I554 play a more important role than the other residues
in viral assembly and packaging. In other words, these ML-selected
residues appear to be more critical than any other positions in our
library.

If a partial library were to be synthesized where 30/33 mutation posi-
tions received mutations, leaving 3 positions wild type, we would
expect a variation in the titer and final complexity. For instance, a par-
tial library where these critical residues (CRs) are left wild type would
result in a higher titer and more complex library, compared to a
different partial library where these CRs are mutated and any other
3 non-CRs (NCs) are substituted for their wild type.

Validation of ML-predicted residues

To examine the biological validity of the model, we constructed two
mini-libraries (3/33 positions receive mutations) based on the resi-
dues determined by our ML algorithms. The first mini-library, con-
taining the more CRs (CR mini-library), has mutations to position
495, 546, and 554. The second mini-library, containing examples of
NCs (NC mini-library), has mutations to positions 532, 551, and
585. The purpose of this experiment is to illustrate the different char-
acteristics during and after library production.

Figure 4B shows the difference in titers recorded for these libraries
when ten 15 cm plates are used for each library using 200 ng of
plasmid library DNA per plate. Under identical conditions, this figure
illustrates the 2-fold drop in titer for the CRs compared to the NC
mini-library.

NGS sequencing of the CR and NC mini libraries was performed
before selection (immediately after DNA assembly before transfec-
tion) and after selection (amplified viral DNA after viral purification)
to determine whether there is a difference in the distribution of
assembled variants for the two libraries. Figure 4C illustrates the dif-
ference in “assembled” and “not assembled” variants for these li-
braries. A chi-square test of independence was performed to examine
the relation between the CR and NC mini-libraries and the recorded
number of unique “assembled” capsids variants. The relation between
these variables was significant, X2 (1, n = 15,487) = 954.1545, p <
0.00001. The ML-derived CR mini-library produces significantly
fewer “assembled” capsids than the ML-derived NC mini-library.

Moreover, an analysis of selection using the log2 fold change in pro-
portion of sequenced residues is illustrated in Figures 4D and 4E.
Log2 fold change values of 0 indicate that no selection occurred since
the proportion of that residue would not have changed after selection.
A log2 fold change of 1 indicates a positive selective pressure occurred
where the proportion of that residue doubled in the process of selec-
tion. Finally, a log2 fold change of �1 indicates that a negative selec-
tive pressure occurred where the proportion of that residue halved in
the process of selection.
282 Molecular Therapy: Methods & Clinical Development Vol. 20 March
We used the magnitude of the log2 fold change in proportion for the
following statistical analysis because both negative selection and pos-
itive selection are regarded as a selective pressure. Moreover, stop co-
dons are excluded from the statistical analysis because they are ex-
pected to be approximately equally selected against for both mini
libraries. A two-tailed Student’s t test was performed to determine
whether there is a significant difference in the selective pressures
for the CR and NC mini-libraries. The magnitude log2 fold change
in the 20 residues for each of the 3 positions of the CR mini-library
(M = 1.49, SD = 1.1347) compared to the magnitude log2 fold change
in the 20 residues for each of the 3 positions of the NC mini-library
(M = 0.37, SD = 0.4569) demonstrated a statistically significant in-
crease in selective pressure among the CR mini-library residues,
t(59) = 7.02998, p < 0.00001. These findings suggest that the residues
targeted in the CR mini-library undergo significantly more selective
pressure than the residues in the NC library.

The findings of reduced titer, decreased unique variants assembled,
and higher selective pressure for the CR mini-library compared to
the NC mini-library confirm the ML algorithms’ abilities to differen-
tiate properties of residues in the selective process of capsid assembly.
DISCUSSION
Directed evolution of AAV combinatorial capsid libraries involves
two requisite selection steps: mutant capsid assembly and cell-type-
specific targeting. In this study, we developed a pipeline to use NGS
data to train ANNs and SVMs geared toward capsid assembly predic-
tion. Additionally, we demonstrated a practical application of a
trained ML algorithm in the form of a single wild-type variable resi-
due assay. In this discussion we will review the approaches taken,
address some of the concerns with our models, and suggest future
steps when using these algorithms for ML in AAV capsid library
design.

The “virtual family shuffling” approach to construct AAV combina-
torial capsid libraries is based upon simultaneous mutagenesis of
multiple capsid surface variable regions (also known as “loops”).6

Since the directed evolution of AAV must navigate rigid constrains
imposed by a virus’ biology,10 the majority of the introduced muta-
tions are multidimensional and epistatic (i.e., affecting each other)
in nature. Therefore, only a fraction of the available sequence space
can be modified without the imposition of the negative selective pres-
sure, and thus only a fraction of the designed and constructed library
derives viable capsids. One way to “weed out” dead-end variants is to
assemble individual loops as sublibraries, thus introducing an addi-
tional selection trait of structural intra-, or interloop three-dimen-
sional compatibility. Although quite effective, this approach intro-
duces additional steps complicating the protocol. In the current
project, we set out to design a ML algorithm to identify variable re-
gions’ residues critical for the capsid assembly step, as well as their
intra- and interloop dependencies. The D492G493E494-D499F500 motif
in AAV2 VR-V was used as a pre-selected molecular parent charac-
terized by high structural and transduction fitness.6
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One major potential concern is the grouping of “assembled” and “not
assembled” variants. Due to a lack of data from the viral progeny li-
brary, it is likely that not all “assembling” variants were sequenced.
The implications of this extend to the likely possibility that some se-
quences used in the “not assembled” pool of variants in fact would be
“assembling” variants. Because of the 2� coverage on average of the
viral progeny, it is assumed that a majority of assembling sequences
were sequenced, and we suspect that this issue results in only a minor
proportion of variants in the two pools being miscategorized. Conse-
quently, a deeper sequencing of the viral progeny pool would likely
ameliorate this issue. However, even with a deeper understanding
of the different classes, it remains possible that some “not assembled”
variants may in fact “assemble” given slightly different conditions
(e.g., temperature or buffer composition). We concede that our clas-
ses are binary and do not reflect the fluidity of classes that represent
more closely the truth. Knowing this, our model is still applicable in
the conditions tested in this paper and can help in the rationale design
of capsid libraries, if not individual sequences.

Another potential problem may stem from frequency divergence or
experimental population bottlenecking. While these scenarios to
describe the selection of the library may play a role in shifts in popu-
lation frequency from the parental plasmid library to the viral prog-
eny library, the biological pressures are still thought to be the primary
cause of shifts in population distribution at this stage. Data published
by Marsic et al.6 support this claim with the finding of numerous
dead-end variants when full libraries are attempted to be produced
without sublibrary intermediate.10 Moreover, multiple rounds of se-
lection are required to fully capture selective pressures;5,7,8 therefore,
even for this dataset where the parental plasmid library has already
undergone sublibrary selection, the selection to the viral progeny is
effectively the second round of intra-sublibrary interactions and the
first round of inter-sublibrary interactions. Overall, we cannot rule
out such factors as bottlenecking and frequency divergence as
contributing factors, but the biological validation data and these pre-
viously published findings support the rationale for this paper’s
approach.

To elaborate on current applications of these models, the analysis of
this type of selection may be explored through more traditional
routes, however, this paper is designed to provide a foundation for
a new approach that can be built on to answer novel questions with
limited resources. More broadly, the software developed in this study
was designed for easy adaption for processing NGS data of binary out-
comes after selective pressure in protein libraries. This paper only val-
idates the computer algorithm to predict viral assembly, however,
data collected from library selection for antibody evasion, tissue
tropism, or other desirable outcomes may be easily fed through our
peptide to train the algorithm. Despite the ease of use for the pipeline,
biological validation of the algorithm’s predictive capabilities would
need to be performed to confirm themodel’s use in these applications.

Additionally, our choice to apply the trained ANN and SVM using a
single wild-type residue assay allows us to compare drastically
Molecular
different computer algorithms on a comparatively level playing field.
This novel approach facilitates the extraction of computationally
derived knowledge that might otherwise be locked away in the
often-unreadable trained parameters of the algorithms. This is espe-
cially true for the ANNs, which are commonly referred to as “black
boxes.”36

One aspect to address is the inability to perform a deep enough
sequencing to have complete coverage of the parental plasmid library.
As stated in the results, a 1:1 ratio of plasmid library to assembled viral
progeny library was intended; however, a 1:3 ratio was retrieved after
debarcoding and sequence quality control. An average coverage of 10
or more reads per unique sequence would have been sufficient to as-
sume that the entire library had been covered. The 1:1 sequencing ra-
tio was predicated based on our lack of prior empirical evidence about
the complexity of the library. In future libraries, we suggest running at
least two SP lanes on a NovaSeq 2 � 250 platform to increase the
coverage of the plasmid library. An adjusted ratio between 1:1 and
10:1 of parental plasmid to viral progeny DNA would be appropriate.
Although we do not know for certain, our 1:3 ratio of reads could have
arisen from inaccuracies in the Qubit fluorometric quantification of
DNA concentration, incomplete barcoding of sequences due to a
more efficient reaction with viral isolated DNA, or differences in
the ligation of library adapters to the barcoded DNA. We suggest
that an additional step of sequencing using Illumina’s MiniSeq plat-
form could be used to assess the ratio of products and allow the inves-
tigator to make the necessary adjustments to ensure the desired ratio
on the NovaSeq platform is achieved.

The future direction of our research includes combining a pipeline of
ML algorithms to perform in silico selection of libraries using a com-
bined dataset of selective pressures. This may be done by subjecting
CapLib8 to individual selective pressures, such as an antibody evading
pressure, tropism pressure, and thermostability pressure, each indi-
vidually. Specifically, the ANN and SVM algorithms designed and
validated in this experiment can easily be retooled to predict se-
quences which might, for example, efficiently package, target hepato-
cytes, and evade an individual’s specific antibodies to the virus. In all,
additional datasets will be useful in expanding the utility of ML in
gene therapy vector design.

Finally, our group has designed a website (https://mountainpeak.rc.ufl.
edu/) that permits a user to use our trained ML algorithms to predict
whether a given capsid sequence will produce a viable virus-like parti-
cle. Mountain Peak, also known as theMethOd toUNiTe Artificial IN-
telligence and Predictive Evaluation of AAV unKnowns, will read in
strings of 33 amino acid residues that correlate to the 33 positions
that received variable mutations in this project. Because the dataset
used to train these algorithms contains the D492G493E494-D499F500
motif, as well as the constant mutations S384T, Q385N, Y444F, and
S498T, the predictions output is for a sequence with the variable resi-
dues designated by the user and the constant residues that the algo-
rithm trained on, with all other positions remaining wild type. The
user may choose between the trained ANN and the trained SVM.
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Moreover, the user may input either a single sequence, or multiple se-
quences, so long as each 33-character string is presented on a new line.
For large library datasets, we recommend using the command line with
the python scripts found in the supplemental files section.

In conclusion, we outline a bioinformatics pipeline to interpret big data
collected from highly complex protein libraries and predict classifica-
tion outcomes. We show practically applicable data that indicates dif-
ferences in selective pressures for residues previously considered
equally variable. Consequently, we suggest an improved rational design
for future AAV2-based capsids libraries. In doing so, we illustrate the
invaluable role that a marriage between ML and protein libraries can
play in helping to solve complex and largely enigmatic biological ques-
tions, such as virus-like particle assembly and packaging.

MATERIALS AND METHODS
Library construction

Degenerate PCR

Degenerate PCR primers (see Table S1) were ordered (Eurofins Ge-
nomics, Louisville, KY, USA) and PCR was performed using the
wild-type AAV2 cap gene from pSub201 as a template and Q5 Hot
Start High-Fidelity polymerase (M0494S, New England Biolabs, Ips-
wich, MA, USA). 25 cycles using the suggested parameters on NEB’s
website were followed. PCR products were run on a 1% agarose gel
and gel purified using a gel DNA recovery kit (D4007, Zymo
Research, Irvine, CA, USA).

Sublibrary plasmid construction

The plasmid pSub201EagApa was used as backbone for the AAV li-
brary where the ApaI sites at 3,764 and 4,049 were removed and an
EagI site at position 4,373 was added (all silent mutations). The PCR
product and pSub201 was digested in CutSmart buffer (B7204S, New
England Biolabs, Ipswich, MA, USA) with restriction endonucleases
EagI-HF (R3505S, New England Biolabs, Ipswich, MA, USA) and
ApaI (R0114S, New England Biolabs, Ipswich, MA, USA) for 25�C
overnight and 37�C for 1 h respectively. A DNA isolation kit
(D4004, Zymo Research, Irvine, CA, USA) was used to purify the di-
gested products. T4 DNA ligase (M0202S, New England Biolabs, Ips-
wich, MA, USA) was used to ligate the PCR product to the linearized
pSub201EagApa backbone (1 backbone: 3 insert molar ratio) creating a
plasmid with the capsid sublibrary inserted. A bacterial transformation
using electrocompetent DH10B E. coli from (C640003, Thermo Fisher
Scientific, Waltham, MA, USA) where cells were left for 1 h at 37�C in
Lysogeny Broth before the antibiotic, carbenicillin, was added. The cul-
ture was left to incubate at 37�C overnight. A large-scale plasmid isola-
tion according to Heilig, Elbing, and Brent37 was followed. The proced-
ure described above was completed five times, one for each sublibrary
containing one or more VR.

Sublibrary viral preparation

For each of the five libraries, ten 15 cm tissue culture plates were used,
each containing 70% confluent HEK293 cells. A PEIMax transfection
(NC1038561, Fisher Scientific, Hampton, NH, USA) was performed
using 200 ng of library DNA and 29.8 ug of pHelper per 15 cm plate.
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After 72 h, the HEK293 cells were harvested and AAV was purified
using an iodixanol gradient, as described by Zolotukhin et al.38

Parental plasmid library construction

Using non-degenerate primers (Table S1), each sublibrary underwent
PCR to generate linear DNA with overlapping regions between the
VRs. Q5 Hot Start High-Fidelity polymerase (M0494S, New England
Biolabs, Ipswich, MA, USA) was used in an overlap PCR for 18 cycles
with an annealing temperature of 60�C to generate combined subli-
braries. This was performed two at a time (i.e., A + B = AB; C +
D = CD; AB + CD = ABCD; ABCD + E = ABCDE). After every over-
lap PCR, DNA products were run on a 1% agarose gel and gel purified
using a gel DNA recovery kit (D4007, Zymo Research, Irvine, CA,
USA). This parental library was digested, purified, ligated, trans-
formed, and subjected to large-scale plasmid isolation identical to
the methods described above in the “Sublibrary Plasmid Construc-
tion” section. This product was considered the parental plasmid
library.

Viral progeny preparation

Steps identical to those described in “Sublibrary Viral Preparation”
section were followed using one set of ten 15 cm cell tissues plates
and the parental plasmid library as the DNA for transfection. The iso-
lated virus was considered the “assembled” viral library.

Mini-library preparation

Steps identical to those described in “Sublibrary Viral Preparation”
section were followed using 15 cm HEK293 cell tissues plates and
the mini-library (CR or NC) plasmid DNA as the DNA for
transfection.

Library sequencing

Barcoding samples was performed using 10 bp barcoding sequences
from Illumina’s adaptor catalog with unique dual indices using i7 bases
for forward reads and i5 bases for reverse barcodes. The barcodes were
attached to the sequences using the 30 end of the primers found in Table
S1 and added using Q5 Hot Start High-Fidelity polymerase (M0494S,
New England Biolabs, Ipswich, MA, USA) over the course of 14 cycles
with an annealing temperature of 61�C. After purification using Zymo
DNA Clean & Concentrator, samples were sent to the University of
Wisconsin-Madison Biotechnology Center and sequenced using
paired-end reading (2 � 250) with 1/4 of one SP lane containing the
library DNA, loaded on a NovaSeq sequencing platform (Illumina,
San Diego, CA, USA). 15% of the loaded DNA was spiked with PhiX
DNA to minimize the effects of the largely homologous, non-variable
regions. For the mini-library sequencing, the MiSeq v2.0 micro flow
cell was used with a 10% spike of PhiX DNA and a calculated 1:1:1:1
of plasmid CR: viral CR: plasmid NC: viral NC samples.

Training ML algorithm

Sequence data preparation

NGS data was debarcoded using the default setting of TagDust2 and
subjected to sequence quality controls (threshold Phred assigned Q
score of 30 or greater).39 Python 3.7 was used to write several scripts
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to process the NGS data. AAV-ML-02_MatchPairedEnds_v2.1.py
(File S1 in Data S1) was used to ensure that every paired-end sequence
had a match. FLASH-1.1.2.11 was used to merge the paired end
reads.40 Sequences were then converted from FASTQ to FASTA
format, aligned, and VRs were extracted from the reads (discarding
the homologous regions) using AAV-ML-04a_CapLib_v2.8.py (File
S2 in Data S1). The Unix terminal “comm” command allowed for
negative selection of sequences to create a file containing only “not
assembled” sequences from the plasmid sequences selected. A final
stage of sequence cleaning to use only sequences intended from the
NGS primers was performed using AAV-ML-04b_CleanSequen-
ces_v2.1.py (File S3 in Data S1). Generating sample sequences with
representative of the pre-selection library can be generated with
AAV-ML-04c_GeneratePre-Selection-Sequences_v1.1.py (File S4 in
Data S1). Training and validation/testing sets were created using
the “shuf,” “sed,” and “cat” Unix commands. These datasets were
created with a 10:1 ratio of training to testing/validation sequences.
Training sets contained 50,000 “assembled” sequences and 50,000
“not assembled” sequences. Testing/validation sets contained
100,000 “assembled” sequences and 100,000 “not assembled” se-
quences. AAV-ML-05a_MLprep_ANN_v1.5.py and AAV-ML-
05b_MLprep_SVMRESIDUES_v2.6.py (Files S5 and S6 in Data S1)
were used to convert the 33 variable residues into a binary matrix
(values of only 1 or 0) of 660 by 100,000 dimensions for training
sets and 660 by 200,000 dimensions for testing/validation sets for
the ANN and SVM respectively. AAV-ML-05c_MLprep_SVMPRO-
PERTIES_v1.4.py (File S7 in Data S1) was used to convert the 33 var-
iable residues’ properties representation into a format that can be read
by the SVM.

ANN training

The Python 3.7 script AAV-ML-06a_ANN-train_v11.0.py (File S8 in
Data S1) was written to train the ANN. Hyperparameters like LR,
number of iterations, and number of nodes were tuned to create
the neural network. The Python 3.7 script AAV-ML-06b_SVM-
train_v1.7.py (File S9 in Data S1) was written to train the SVM.
Two different representations (binary residues representation and
residues’ physicochemical properties representation) and several ker-
nels (RBF, linear, polynomial, and sigmoidal) were compared to opti-
mize the SVM.

Applying ML algorithms

Using the same degenerate primers to create the plasmid library, an in
silico capsid library of amino acid residue sequences were created us-
ing script AAV-ML-04d_GenerateHypotheticalCapSeq_v1.1.py (File
S10 in Data S1). This script can read in a degenerate primer sequence
and randomly create a user-defined number of sequences from the
plasmid library, followed by translation into the respective amino
acid residue sequence. These residue sequences then followed the
schema outlined in “Sequence Data Preparation.” Hypothetical alter-
ations to these primers were performed and processed through the
trained ML algorithm to determine which sequences are predicted
to form viable capsids. Specifically, 33 sample groups, each with
100,000 sequences, were generated. Each sample was designed to
Molecular
mutate all but one residue position, and this was performed for all
33 positions. Data was gathered using the AAV-ML-07b_ANN_Pre-
dict-Type2-Unknown_v4.1.py and AAV-ML-07d_SVM-Predict-
Type2-Unknown_v3.0.py (Files S11 and S12 in Data S1) code written
to predict what percentage of these hypothetical libraries will form
“assembled” capsids for the ANN and SVM trained ML algorithms.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.
1016/j.omtm.2020.11.017.
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