

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Salivary lipocalin family proteins from *Panstrongylus chinai*, a vector of Chagas disease

Hirotomo Kato ^a,_{*}, Ryan C. Jochim ^b, Eduardo A. Gomez ^c, Shunsuke Tsunekawa ^d, Jesus G. Valenzuela ^b, Yoshihisa Hashiguchi ^c

^a Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan

^b Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

^c Departamento de Parasitologia y Medicina Tropical, Centro de Biomedicina, Facultad de Ciencias Medicas, Universidad Catolica de Santiago de Guayaquil, Guayaquil, Ecuador

^d Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan

ARTICLE INFO

Article history: Received 24 August 2017 Received in revised form 7 September 2017 Accepted 19 September 2017 Available online 22 September 2017

Keywords: Panstrongylus chinai Saliva Lipocalin Transcriptome

ABSTRACT

The dataset in this report is related to the research article with the title: "Salivary gland transcripts of the kissing bug, *Panstrongylus chinai*, a vector of Chagas disease" (Kato et al., 2017) [1]. Lipocalin family proteins were identified as the dominant component in *P. chinai* saliva, and phylogenetic analysis of the salivary lipocalins resulted in the formation of five major clades. For further characterization, each clade of *P. chinai* lipocalin was s alignment and phylogenetic analyses together with homologous triatomine lipocalins; pallidipin 2, an inhibitor of collagen-induced platelet aggregation identified from saliva of *Triatoma pallidipennis* (clade I), pallidipin-like salivary lipocalin from *T. dimidiata* (clade III), triatin-like salivary lipocalin identified in the saliva of *T. dimidiata* (clade IV), and lipocalin-like TiLipo37 from *Triatoma infestans* (clade V).

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.actatropica.2017.06.022 * Corresponding author.

E-mail address: hirok@jichi.ac.jp (H. Kato).

http://dx.doi.org/10.1016/j.dib.2017.09.039

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Salivary lipocalins of a hematophagous insect
Type of data	Table, figure
How data was acquired	Transcriptome, alignment and phylogenetic analyses
Data format	Analyzed
Experimental factors	A dataset of transcripts from salivary grands of Panstrongylus chinai
Experimental features	Alignment and phylogenetic analyses of salivary lipocalins from Pan- strongylus chinai
Data source location	Ecuador
Data accessibility	Accession numbers of the sequence data are available in the reference [1].

Value of the data

• The data is the second report of the salivary lipocalins in a Panstrongylus species.

- The result will provide further information into the salivary biochemical and pharmacological complexity of triatomine bugs and the evolution of salivary components in blood sucking arthropods.
- cDNAs and recombinant proteins prepared from these transcripts will result in the discovery of novel pharmacologically active compounds, as well as the development of biomarkers following exposure to *Panstrongylus chinai*.

1. Data

The dominant transcripts of *Panstrongylus chinai* salivary glands were analyzed by sequence analysis of the cDNA library, and 73.7% of transcripts encoding the putative secreted proteins coded for the lipocalin family of proteins [1]. Table 1 shows the grouping of transcripts coding for lipocalin family proteins in *P. chinai* salivary glands obtained by the phylogenetic analysis [1]. Figs. 1–5 represent alignment and phylogenetic analyses of each clade of *P. chinai* salivary lipocalins together with homologous proteins; pallidipin 2, a platelet aggregation inhibitor identified from *Triatoma pallidipennis* saliva (clade I), pallidipin-like salivary lipocalin from *T. dimidiata* saliva with unknown function (clade II), salivary lipocalin from *T. dimidiata* with unknown function (clade IV), and lipocalin-like TiLipo37 from *Triatoma infestans* saliva with unknown function (clade V), showing their structural similarity and diversity.

2. Experimental design, materials and methods

The sequences of *P. chinai* salivary lipocalins were obtained in the study "Salivary gland transcripts of the kissing bug, *Panstrongylus chinai*, a vector of Chagas disease" [1]. The sequences coding for lipocalin family of proteins by BLASTx analyses were aligned with CLUSTAL W software [2] and examined using Molecular Evolutionary Genetics Analysis (MEGA) version 5.2 [3]. Phylogenetic trees by the neighbor-joining method were constructed with the distance algorithms available in the MEGA package. Bootstrap values were determined on 1000 replicates of the data sets. Accession numbers of the sequence data are available in "Salivary gland transcripts of the kissing bug, *Panstrongylus chinai*, a vector of Chagas disease" [1].

Table 1

m · .	1. 6	1. 1.	c '1					1.	1 1
Transcripts of	roding for	lipocalin	tamily	proteins	in Panstro	ngvlus	chinai	salivary	glands
in an occupied a		mpocanni		procenno			criticat	Janvary	granao.

Clade Similar to	No. of clusters	No. of seq	% seq
Clade I			
pallidipin 2 (Triatoma pallidipennis): AAA30329	16	151	46.9
Td42, similar to pallidipin 2 (Triatoma dimidiata): BAI50842	1	1	0.3
Clade II			
Td38, similar to pallidipin-like salivary lipocalin (Triatoma dimidiata): BAI50839	2	5	1.6
Td33, similar to pallidipin-like salivary lipocalin (Triatoma dimidiata): BAI50837	1	1	0.3
Clade III			
Td26, similar to salivary lipocalin (Triatoma dimidiata): BAI50831	2	11	3.4
salivary lipocalin (Triatoma infestans): ABR27920	1	8	2.4
Td40, similar to triabin-like lipocalin 4a precursor (<i>Triatoma dimidiata</i>): BAI50840	1	3	0.9
triabin-like lipocalin 4a precursor (Triatoma infestans): ABR27959	1	2	0.7
salivary lipocalin (Triatoma infestans): ABR27868	1	1	0.3
Clade IV			
Td18, similar to triatin-like salivary lipocalin (Triatoma dimidiata): BAI50824	4	66	20.5
Td11, similar to triatin-like salivary lipocalin (Triatoma dimidiata): BAI50818	1	43	13.3
Td45, similar to pallidipin-like salivary lipocalin (Triatoma dimidiata): BAI50844	1	8	2.5
Clade V			
lipocalin-like TiLipo37 (Triatoma infestans): AAQ68063	2	10	3.1
salivary lipocalin (Triatoma brasiliensis): ABH09436	1	6	1.9
Others			
Td24, similar to salivary lipocalin (Triatoma dimidiata): BAI50829	2	2	0.7
triabin-like salivary lipocalin (Triatoma infestans): ABR27927	1	1	0.3
salivary lipocalin (Triatoma infestans): ABR27831	1	1	0.3
salivary lipocalin 1 (Triatoma brasiliensis): ABH09421	1	1	0.3
Td23, similar to salivary lipocalin (Triatoma dimidiata): BAI50828	1	1	0.3
Total	41	322	100.0

А		
Pc02	* * MKMITAVTEIGITITAJAKNOETOPAMANIANFDOVIFKIPTEVVTISKNGPOINVORDHEF	60
Pc07	MKMII <mark>P</mark> VTFLGILMHAFAEECOLRPPMENFDSSRYFKVRHFYVTHSKFEPRENVC <mark>G</mark> EFNF	60
Pc08	MKMIIAITFLGILMHAFGKDCELOPAVANFNFERYFKIPHFYVTHSKNGPKERVCREHEF	60
Pc10 Pc11	MKMI I AVTFLGI I MHVFAKDCOL KPAVAN FKYDEYSKVRH FHVTHSKFEPEENI CEEFN F	60
Pc12	MITAVIFLGILMOVFAGEOLSPPAENFDPOITENTENATVIHSKRGPKETVCRDIRT MKMITAVIFLGILMHVFAKDCOLKPAVANFKYDEYSKVRHEYVTHSKFEPKENVCEEFNF	58 60
Pc14	MKMIIAVTFLGILMHVFAKDCOLKPAVANFKYDEYSKVRHFYVTHSKFEPOENICEEFNF	60
Pc16	MKMIIAVTFLGILMQVFAKC <mark>CQLK</mark> PAVANFKYEE <mark>YSKVR</mark> HFYVTHSKFKPEENICEEFNF	60
Pc18	MKMIIAVTFLGILMHVFANNCOLKPAVENFNYDEYSKVRHFYVTHSKFKPEENICEEFNF	60
Pc19 Rc20	MIIAVTFLGILMQVFAMECELSPPAENFDPQIYLNTEHAYVTHSKEGPKETVCREYRT	58
Pc20	MKMI I EVTFLGI I MHAFAEECOURPPMENEDSSRIFSI FROM HEISKROKAENVOR HEI	60 60
Pc22	MKMIIAVTFLGILMH <mark>VFAEECTLMP</mark> ATTDFNSEKYFSIPRVYAIYSKNGKAENVC <mark>R</mark> EYET	60
pallidipin 2	MKVIIAATLLGILMHAFABECELMPPGDNFDLEKYFSIPHVYVTHSRNGPKEQVCREYKT	60
Pc02	X KKIRSERIETLVLEVYSTRGTEHKTLLDCIDTPKSGKPGQFSVECKVRGTDKKILLE	117
Pc07	VKVEPNKIETLVTENYNIGGKEHNVTYNCIDTTTNENPGRVSTECDITGR-SDTTKFILQ	119
Pc08	KKIRTERIETLVLEVYTTK <mark>CKEHKTLLD</mark> CVELPKSCKPGQFSVNCDVRGTHEKIQLE	117
Pc10 Pc11	TOFOSDRVNHLVSEVYKTEGKEVRLIYOCTDTAKKGNPGOFSIECDVWGK-GNVKKVKLE	119
Pc12	IOFOSENVKTIVTEVYKTGGKEVRLIYOCTDKPKGINGGPSVECVVKGNIIKTOLE	119
Pc14	IQFQSDRVNTLVTEVYKTGGKEVRLIYQCTDKPKNGKPGQFSIECDVWGK-GTVRKVNLE	119
Pc16	IQFQSDRVNTLVSEVYKTEGKEVRLIYQCTDTAKKGNPGQFSIECDVWGK-GNVKKVKLE	119
Pc18	IQFQSDRVNTLVSEVYKTGGKEVRLIYQCTDTPKNGNSGQFSIECDVWGK-GNVNKVKLE	119
Pc19 Bo20	TKNSDGTSKTVVTSDYKIGGASRKSELDCTDTPRGTRPGQFSVECVVRGNTTKIQLE TTNPDCTIVTTVHCNHKICEKSVN-EEKCTNKEKNGSDCOELWECEIDNGSSGTIKIOVE	115
Pc20	VKVEPNKIETLVTENYNIGGKEHNVTYNCIDTTTNENPGRVSTENDITGR-SDTTKFILO	119
Pc22	TTNPDGTIVTTVHGNHKICEKSYN-EFKCTNKEKSDSPGQFHVECKIPNGSSGTIKIQVE	119
pallidipin 2	TKNSDGTTT <mark>TLV</mark> TSD <mark>YKTGGK</mark> PYHSELK <mark>CT</mark> NTPKSGVK <mark>GQFS</mark> VECEVPNGNGGKKKIHVE	120
Pc02	TSIIATDYKNYALLQSCTSTGKEDILVLQTSTNQVDLRVKAVFERMKFSLNDWYSR	173
Pc07	TSLIATDYENYVFFHTCFSDGKEEYLVLQASKDRIDD-VKDVAEGMGLSLDSWFSR	174
Pc08	TSIIATDYNKYALLQTCTQSGILITKEDILVLQTSTNQVDETVKPVFRRLKYSLDEWYFR	177
Pc10 Pc11	TSTLATDYRNYIFLHTCFSDGKEEMLVMQKENEGKDNTVKDVAARLSISLDSWFSR TSVMATDNKNYALLOTCTKTC-TCIADNVLVLOTKKDCVEECVKSVFEDANWSLDKWYSB	174
Pc12	TSIIATDYKNYIFLHTCFSDGKEEMLVMOKENEGDGKSVKDAAARLGLSLDSWFSR	175
Pc14	TSIIATDYKNYIFLHTCFSDGKEEMLVMQKENEGDGKSVKDAAARLGLSLDSWFSR	175
Pc16	TSIIATDYKNYIFLHTCFSDGKEEMLVMQKENEGKDNTVKDVAARLSLSLDSWFSR	175
Pc18	TSIIATDYKNYIFLHTCFSDCKEEMLVMOKENDNKDNSVKDVATGLNISIDOMYSK	175
Pc19 Pc20	TSVMATDNANTALLOTOTALG-TGTADNVLVLOTAKDSVELGVASVFADANWSBEAMISK TSVLSTDNEKYVVLORGSKIG-SVLIDDVVVLOTAKEGLERKVEDAFDTKGWTFSKMTSR	174
Pc20	TSLIATDYENYVFFHTCFSDCKEEYLVLQASKDRIDD-GKDVAEGMGLSLDSWFSR	174
Pc22	TSVLSTDNEKYVVLQRCSKIG-SVIIDDVVVLQTYKEGLERKVEDYFDTKGWTFSKWTSR	178
pallidipin 2	<u>TSVIATDYKNN</u> ALIQSOTKTE-SGIADDVILLOTKKEGVDPGVTSVLKSVNWSIDDWFSR	179
Pc02	AKVDCKNFKK	183
Pc07	KNVNCDNIQK	184
Pc08		187
Pc10 Pc11	KNIDCDDIKE	184 184
Pc12	KNVNCDDIKK	185
Pc14	KNVNCDDIKK	185
Pc16	KNVNCDDIKKKLVERST	192
Pc18		185
Pc19 Pc20	KKAKCDDDKK	184
Pc21	KNVNCENIQK	183
Pc22	KKAKODDDKK	188

Fig. 1. (A) Sequence alignment of pallidipin 2-like proteins from *Panstrongylus chinai* (Pc02, Pc07, Pc08, Pc10-Pc12, Pc14, Pc16 and Pc18-Pc22) together with pallidipin 2 from *Triatoma pallidipennis* (accession number: AAA30329). Black-shaded amino acids represent identical amino acids and gray-shaded amino acids represent conserved amino acids. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues. (B) Phylogenetic tree analysis of pallidipin 2-like proteins (Pc02, Pc07, Pc08, Pc10-Pc12, Pc14, Pc16 and Pc18-Pc22) from *P. chinai* with pallidipin 2 from *T. pallidipennis*. The numbers in parentheses indicate the number of transcripts of each contig. The scale bar represents 0.1% divergence. Bootstrap values are shown above branches.

Fig. 2. Sequence alignment of Td38-like proteins from *Panstrongylus chinai* (Pc85 and Pc156) together with Td38 from *Triatoma dimidiata* (accession number: AB470389). Black-shaded amino acids represent identical amino acids and gray-shaded amino acids represent conserved amino acids. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues.

A		
Pc57	MKTILAVIELGILTFABADYEP-IKECKHPTAMEGEDLDKEMECTWYVTNAKHGSTSTVC	59
Pc64	MKAIIGVLFFGIMSGAFTPDSPETDKCQQEKAASNFDSSKFFSGTWYVTHAKKIS-TSVC	59
Pc70	MRIIIAVVFFGVLQFAFGEYPPDTDACLELEDDKNFNSAKFFKGTWYVTNARYGSNSTVC	60
Pc103	MKAIFAVSFFGIMMYASAQVPVKCQEQPPMAKFRSSDFFTGARFVTHAKNGPDSAVC	57
Pc150	MKIIVLLSFFGIVTNAFRFLPNGITRCLYLYSKTDLDTDKFFTGRWHVTHAKNGSRSAVC	60
triafestin-1	MKTILAVIFFGILAFABADYBS-IPKCTHPPAMANENQKKFLEGKWYVTKAKHGSNSTVC	59
Pc57	REYRSKIRDDNGKLVLIG	117
Pc64	HQFSTTINGDTVSVTADGYYEIGRKRDFYNVPCTGKITGGKFSLNCOPKKPTSTS	114
Pc70	LEYIVKIRKNG-TINIVADGYYDFGGPPRYYRVRCEGTKEYKNGK-FYLQCRQHSRGKE-	117
Pc103	RVYQTSENKNNIIFNGDGYYGEKDAERYYQVRCTGKKNSGKNGKYSLSCTKQKPNVPG	115
Pc150	REYTASKAGGFVELIGDGYYNVGLKRNYLQVDCRGCAKKNQFNQFTLNCTQKIPSSDP	118
triafestin-1	REYRAKTKGNDQILVGDGYYSFNGGTFYFTVRCKRLPNKEVQKPLQFTCTQKSPDDP-	116
	*	
Pc57	QVKFQFPLQVTILSTDYNNFAVMYRCIQLPAKLGSLFEDNLLVLHRDATNTDDNDSK	174
Pc64	KSTINVQVEVTVMETDNTKYALLYRCATSGPHKTENYLVIQRNENEDLPT	164
Pc70	NKIKFNFQLDWTVVETDYNKFAIVYGCVRTVIKTVAFIEDNLLILHRKKNGLNRN	172
Pc103	TPNEKQITENIDLTILDTDYAQYAIVYRCATYSTLGVTKDNLLVLHRAKDAIKANIAS	173
Pc150	YRFIVDFGLELTVIETDYDSFAIIYMCTMFP-QLGSFFNDDLLILHRDKRMASYPDPQ	175
triafestin-1	SKMFKFQLEVTILDTDYANYAVMYRCVQFPEELGSHFEDNTLLLHRKLDQLVDEN-L	172
	<u> </u>	
Pc57	IKQALESQ-GSSLASLN <mark>SR</mark> KNSTCLEAP-KRNKSKTIL	210
Pc64	LKSKVLSGKVISRKQSTNVCRKQ	187
Pc70	VEETLQLY-ESSLQNFLSREDSICLPSPVKS	202
Pc103	IFRGVTRRSISGFL <mark>SRQNAKC</mark> KSSNNNSDFDSAIEQLSF	212
Pc150	VEAFLQAEYKFQLKSFRVRDNNYCLNLSI	204
triafestin-1	IERKLKLSLPSFK <mark>SR</mark> DDVVEG <mark>C</mark> RELPSKKKKTKP	206
B		(8)
	Pc103 (1)	
4	Pc15	0 (2)
	Pc70 (3)	
	00 Pc57	(10)
	100	()
	triafestin-1 (Ti)

Fig. 3. (A) Sequence alignment of triafestin-1-like proteins from *Panstrongylus chinai* (Pc57, Pc64, Pc70, Pc103 and Pc150) together with triafestin-1 from *Triatoma infestans* (accession number: BAF75464). Black-shaded amino acids represent identical amino acids and gray-shaded amino acids represent conserved amino acids. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues, and the GXW motif is indicated by ###. (B) Phylogenetic tree analysis of triafestin-1-like proteins from *P. chinai* (Pc57, Pc64, Pc70, Pc103 and Pc150) with triafestin-1 from *T. infestans*. The numbers in parentheses indicate the number of transcripts of each contig. The scale bar represents 0.1% divergence. Bootstrap values are shown above branches.

-

0.1

F

: BAF75464

Fig. 4. (A) Sequence alignment of Td18-like proteins from *Panstrongylus chinai* (Pc13, Pc15, Pc58 and Pc59) together with Td18 from *Triatoma dimidiata* (accession number: BAI50824). Black-shaded amino acids represent identical amino acids and gray-shaded amino acids represent conserved amino acids. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues, and the GXW motif is indicated by ###. (B) Phylogenetic tree analysis of Td18-like proteins from *P. chinai* (Pc13, Pc15, Pc58 and Pc59) together with Td18 from *T. dimidiata*. The numbers in parentheses indicate the number of transcripts of each contig. The scale bar represents 0.05% divergence. Bootstrap values are shown above branches.

Fig. 5. (A) Sequence alignment of lipocalin-like TiLipo37-like proteins from *Panstrongylus chinai* (Pc41-Pc43) together with lipocalin-like TiLipo37 from *Triatoma infestans* (accession number: AAQ68063). Black-shaded amino acids represent identical amino acids and gray-shaded amino acids represent conserved amino acids. Dashes indicate gaps introduced for maximal alignment. Asterisks at the top of the amino acids denote conserved cysteine residues, and the GXW motif is indicated by ###. (B) Phylogenetic tree analysis of lipocalin-like TiLipo37-like proteins from *P. chinai* (Pc41-Pc43) together with lipocalin-like TiLipo37 from *T. infestans*. The numbers in parentheses indicate the number of transcripts of each contig. The scale bar represents 0.05% divergence. Bootstrap values are shown above branches.

Acknowledgements

We are grateful to Dr. José M. C. Ribeiro (Vector Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, USA) for the development and training of all custom bioinformatics programs used in this research. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant nos. 25257501 and 15H04588).

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at http://dx. doi.org/10.1016/j.dib.2017.09.039.

References

- H. Kato, R.C. Jochim, E.A. Gomez, S. Tsunekawa, J.G. Valenzuela, Y. Hashiguchi, Salivary gland transcripts of the kissing bug, *Panstrongylus chinai*, a vector of Chagas disease, Acta Trop. 174 (2017) 122–129.
 J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment
- [2] J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.
- [3] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.