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Anomalous universal conductance as a hall-
mark of non-locality in a Majorana-hosted
superconducting island

Yiru Hao1,2,4, Gu Zhang3,4, Donghao Liu1 & Dong E. Liu 1,2,3

The non-local feature of topological states of matter is the key for the topo-
logical protection of quantum information and enables robust non-local
manipulation in quantum information. Here we propose to manifest the non-
local feature of a Majorana-hosted superconducting island by measuring the
temperature dependence of Coulombblockade peak conductance in different
regimes. In the low-temperature regime, we discover a coherent double
Majorana-assisted teleportation (MT) process, where any independent tun-
nelingprocess always involves twocoherent non-localMTs; andwealsofind an
anomalous universal scaling behavior, i.e., a crossover from a ½maxðT ,eV Þ�6
power-law to a ½maxðT ,eV Þ�3 power-law conductance behavior when energy
scale increases— in stark contrast to the usual exponential suppression due to
certain local transport. In the high-temperature regime, the conductance is
instead proportional to the temperature inverse, indicating a non-monotonic
temperature-dependence of the conductance. Both the anomalous power law
and non-monotonic temperature-dependence of the conductance can be
distinguished from the conductance peak in the traditional Coulomb block,
and therefore, together serve as a hallmark for the non-local feature in the
Majorana-hosted superconducting island.

The topological states of matter provide a non-local way to store
quantum information via their degenerate topological ground states1.
This non-local nature is the key for the topological protection of quan-
tum information2, and, more importantly, enables non-local manipula-
tion in quantum information, via e.g., fusion and braiding1–3 of hosted
non-abelian anyons. The hotly debatedMajorana zeromodes (MZMs)4,5,
which recently attracts a lot of experimental activities6–25, is still among
the simplest andmost promising candidates of non-abelian anyons. The
proposed fusion and braiding tests2,26–28 however require sophisticated
experimental devices and procedures beyond the scope of current
technology. It is thus rewarding to first reveal the non-local feature via
better-developed techniques, including the quantum transport.

Electron transport through confined quantum islands is usually
influenced by electrostatic energy, leading to the Coulomb blockade

(CB) signatures with conductance oscillations 29. Relying on non-local
electrostatic interactions, the CB effect offers a natural playground in
the detection of non-locality. In the presence of superconductivity
(SC), the signature of CB is modified. When the order parameter is
larger than the charging energy, the single electron (or 1e) tunneling is
suppressed and only the 2e Cooper pair tunneling survives, leading to
theoscillationwith 2eperiodicity30. This 2e-featuremaybehowever not
the case when facing a topological SC island. Indeed, the non-local
transport through a topological SC island31,32, known as the topological
Majorana-assisted teleportation (MT), can be generated from topolo-
gical degeneracy and the Coulomb charging energy32, and gives a 1e
periodicity in CB. Afterward, a more careful theoretical analysis was
carried out to obtain the CB signatures32–35, including: (1) for all dif-
ferent cases, the CB peak height increases while lowering the
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temperature; (2) CB oscillations with 1e and 2e period, respectively,
accompany the tunneling of 1e quasiparticles and 2eCooper pairs, and
(3) The CB peak shape of MT is the same as that of a resonant level
model32,33 captured by Breit–Wigner formula36,37. Because of these
coincidences with the standard CB features, it is not yet known whe-
ther or not the two-terminal CB island could provide a hallmark for
non-local features of a Majorana-hosted (either topological Majorana
or quasi-Majorana) SC island.

In this work, we study the two-terminal transport through a CB
island that hosts a MZM (or a quasi-Majorana pair) and two coupled
MZMs (with the coupling amplitude ν) at opposite sides of the island
(Fig. 1a). Basedonour analysis,when ν ismuch larger than the coupling
ΓR between the right lead and the uncoupled MZM, such a Majorana-
hosted SC island displays unique transport features. As the starter, the
1e conductancepeak locations are independent of the valueof ν. This is
in stark contrast to the MT where the peak position is inter-MZM
coupling dependent33. More interestingly, our system is expected to
display a non-monotonic temperature dependence at the 1e CB con-
ductance peak (Fig. 1b). In the lowest energy regime, unlike the usual
exponential conductance behavior through localized high-energy
states, we predict an exotic power-law scaling ∼ ½maxðT ,eV Þ�6 for the
peakconductancedue to anovel non-local coherent doubleMT,where
any tunneling event connecting two leads involves two coherent MT
processes. When energy increases (above the level broadening), the
paired MTs lose coherence and the conductance crosses over to
another power-law ∼ ½maxðT ,eV Þ�3 scaling. Further increasing the
energy, the 1e peak height reaches its maximum when the energy is
around the inter-MZM coupling ν. Above this energy, the 1e peak
height starts to decrease and approaches the standard MT results33

with the ~1/T scaling. The anomalous conductance features, which rely
greatly on the non-locality of the coherent double MT, can be used as
hallmarks for Majorana-assisted non-local transport, as they are in
sharp contrast to those of normal CB systems. We emphasize that our
results apply to systems with either topological Majorana or a quasi-

Majorana pair. Of the latter case, only one of these two non-
communicating quasi-Majoranas participates the non-local transport.
Meanwhile, the double Majorana-assisted teleportation is enforced to
occur due to the finite ABS energy ν: this is different from the double
zero-energy ABS structure considered in ref. 38.

Results
Model and low-energy effective theory
One possible realization of the proposed system is shown in Fig. 1c,
where a floated superconductor-proximitized nanowire (the pink line)
weakly couples to one normal lead at each side. Under the protection
of the smooth potential39, two pairs of partially separated MZMs (or
quasi-Majoranas) emerge at two ends of the nanowire in the (topolo-
gically) trivial regime39–48. As shown in Fig. 1c, we canmodel our system
with four quasi-Majoranas at each end as γ1, γ2, γ3, and γ4. With them,
we construct two independent auxiliary fermionic operators d1 = (γ1 +
iγ4)/2 and d2 = (γ2 + iγ3)/2. We tune the left tunneling barrier into a
relatively steep shape to partially overlap γ1 and γ2 with the coupling
strength ν, and consider the regime that only γ1 of the pair effectively
coupled to the left lead. The γ2-lead coupling is exponentially sup-
pressed and thus neglected. In addition, we keep the right barrier in a
shallow shape to make sure the coupling between the other pair is
negligible47. Of this structure, transport through the island is domi-
nated byMT,where theMZM γ4 plays an essential and unique role. The
change of the status of γ4 is then expected to generate a manifest
(qualitative) modification of the conductance feature. This is in sharp
contrast to transport with sequential local tunnelings. Indeed, of the
latter case, sites of the superconducting island are almost effectively
equivalent, and the hybridization of a single site induces only a minor
(quantitative) modification on conductance (Fig. 1d).

For the proposed Majorana-hosted island system (shown in
Fig. 1a), the total Hamiltonian can be written as

H =Hlead +Uc +Hcoupling +HT, ð1Þ

Fig. 1 | Possible system setups and our major predictions. a Illustration of our
system that consists of four ormoreMZMs on opposite sides of the nanowire. Two
of them (γ1 and γ2) are coupled with the strength ν, and only γ1 and γ4) are con-
nected to leads. b The CB peak conductance through our Majorana-hosted island
that is tuned to the half-filling. For more intuitiveness, we use logarithmic coordi-
nates and find that it is non-monotonic in temperature. Inset: the monotonic
temperature-dependence peak conductance of normal CB peaks. c Illustration of
another possible realization of our system. d A picture on what happens after the

hybridization of f1. Upper panel: for non-local transport, the hybridization of f1
changes the status of MZMs, including γ4 (which is essential for “teleportation”)
near the right lead, and also γ1, γ2 near the left lead. The latter two are also influ-
enced by a finite coupling ν, which is another element that both manifests non-
locality and also distinguishes our work from theMT of ref. 32. This structure leads
to a great modification of the tunneling across the island. Lower panel: for local
transport, the hybridization of the site next to the right lead simply reduces the
effective size of the island, leading to a minor modification of the tunneling.
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where Hlead =
P

k, j = L,RϵjðkÞcyj,kcj,k describes two non-interacting leads.
Uc = EcðN � ng Þ2 is the electrostatic energy induced by the Coulomb
interaction between electrons in the nanowire island. Ec is the charging
energy which is smaller than the proximity SC gap but larger than
other relevant energy scales. N represents the total number of
electrons in the island, and ng is tunable through a backgate voltage.
Hcoupling = iνγ1γ2 is the coupling term between γ1 and γ2. As γ1 and γ2 are
both close to the left lead (Fig. 1a), their coupling ν does not change
the conductance peak position (i.e., ng = 2n0 + 1/2, where n0 indicates
the number of hosted Cooper pairs). This is in stark contrast to the ν-
dependent peak position of a MT, where the inter-MZM coupling is
between twonon-localMZMs throughwhich the non-local transport is
realized. Neglecting the contribution of the quasi-particle states above
the SC gap to the electric current at low energies, the tunneling
Hamiltonian is

HT = λL
X
k,L

cykLγ1e
�iφ=2 + λR

X
k,R

cykRγ4e
�iφ=2 + h:c:, ð2Þ

where λL,R denotes the respective tunnel matrix elements, and e±iφ/2

raises/lowers N by one charge unit49.
Due to the Coulomb blockade, we can further map themodel to its

low-energy sector. With ng a half-integer (ng=2n0 + 1/2), we only need to
consider states in theHilbert space f∣00i,∣10i,∣11i,∣01ig spanned by basis
vectors that dominate low-energy current tunneling, where ∣i,j

�
refers to

the state with particle numbers i and j respectively for d1 and d2. To
further explore the relevance toMT32, we define two impurity operators:
one fermionic f 1 = ∣00i 10h ∣� ∣11i 01h ∣= ðd1 � dy

1 Þ expð�iφ=2Þ and one
bosonic f 2 = ∣00i 11h ∣� ∣10i 01h ∣= � d1d2 � dy

1d2. They are independent
since ½f 1, f 2�= f 1, f 2

� �
=0. The bosonic operator f2 is equivalent to a spin

operator, via the mapping f2 = S−, f
y
2 = S + , and Sz = f

y
2f 2 � 1=2 (see Sup-

plemental Material for more details.). With analysis above, for the peak
positions (i.e., half-filling ng= 1/2), the effective Hamiltonian becomes

Heff =Hleads � 2νSy � 2λL
X
k

cykLSzf 1 + λR
X
k

cykRf 1 +h:c:, ð3Þ

where we have used the fact that Sy = i( − S+ + S−)/2. In contrast to
pioneering topological Kondo setups49–52 tuned to the Coulomb valley
(more precisely, the Kondo valley with ng an odd integer), transport
features predicted by us emerge at energy-degenerate (half-filling)
points. More recently, ref. 53 studies the multichannel charge Kondo
effect where the island is also tuned to half-filling. Nevertheless, all
these topological Kondo setups, as far as we know, require at least
three terminals. By contrast, only two terminals are needed in our
setup, lowering the difficulty of possible experimental measurements.

It is instructive to study the equilibrium conductance behavior in
Eq. (3) at zero temperature. The impurity Hamiltonian− 2νSy has its
ground state ∣Gi= ð�i,1ÞT which has a zero Sz expectation Gh ∣Sz ∣Gi=0.
Consequently, the island tunneling to the left lead vanishes at zero-
energies (T = eV = 0), leading to a zero conductance at the low-energy
fixed point. This result can be understood that the influence of the
coupling term is to forma localizedAndreev-bound state thatprevents
non-local tunneling completely at zero energies.

Double Majorana-assisted teleportation at low energy
Let us first analyze the fluctuations near the low-energy fixed point of
the effective Hamiltonian Eq. (3) using the leading irrelevant operator.
Eq. (3) tells us that the tunneling at the left lead∝ λL changes the
impurity between the low-energy and the high-energy states. This is
classically forbiddenwhen ν≫maxðT ,eV Þ,ΓR, as the energy of the high-
energy state is unaffordable by either thermal (~T), quantum
(∼ ΓR =πρ∣λ

2
R∣, whereρ refers to the lead density of states)fluctuations,

or the non-equilibrium driving (~eV). Quantummechanically, however,
tunneling is possible via high-order tunneling operators that transport

particles through high-energy virtual states. More specifically, when f1
is occupied, we can construct a higher-order tunneling operator with
three sub-operators: (i) cyqLSzf 1, (ii) f

y
1ckR and (iii) cypLf 1Sz . Each operator

alone is forbidden at low energies due to the energy penalty [(i) and
(iii)] or Pauli exclusion principle [(ii)]. However, if high-energy states
occur virtually, these operators together combine into a higher-order
operator cypLSzf 1 � f y1ckR � cyqLSzf 1 (labeled as processA) thatbridges two
energy-allowed real states. To produce a persistent current, process A
is followed by the operator ckRf

y
1 that returns the island to its initial

state (labeled as process B). The successive occurrence of processes A
and B leads to a persistent electron transport from the right to the left
lead.Noteworthily, oneneeds a careful treatmentof theoperatorOA of
process A, since it involves two fermionic operators in the left lead.
Indeed, after a careful Schrieffer-Wolff transformation (see “Methods”,
or ref. 54), the process A operator

OA =
X

ϵp>ϵq ,k

2ðϵp � ϵqÞ
ν3

λ2LλRc
y
pLSzf 1 � f y1ckR � cyqLSzf 1 ð4Þ

contains a momentum-dependent prefactor, and a conditional
summation ϵp > ϵq, where ϵp and ϵq refer to the energy of particles
with momenta p and q, respectively, of an equilibrium reservoir. This
prefactor vanishes in zero-energy (i.e., zero-temperature and in-
equilibrium) situations where ϵp = ϵq =0 are both fixed at the Fermi
level. For finite-energy situations, ðϵp � ϵqÞ2 ∼ ½maxðT ,eV Þ�2 after the
summation over momenta.

In this low-energy situation, the effective transmission rate55

becomes τseq � 1=Γseq = 1=Γ
eff
L + 1=ΓR. where ΓeffL refers to the effective

level broadening from the higher-order operatorOA. As a higher-order
process, ΓeffL is much smaller than ΓR, i.e., the level broadening at the
right side. In addition, ΓeffL becomes less important at low energies,
since its corresponding operatorOA is irrelevant in the perspective of
renormalization group (RG) analysis. Indeed, following a standard RG
analysis56, a free lead fermionic operator at the boundary produces a
scaling dimension 1/2. A simple counting shows thatOA has a tree-level
scaling dimension 3/2 > 1. It is thus RG-irrelevant and its amplitude ΓeffL
becomes increasingly unimportant at low energies, in comparison to
the level broadening ΓR of the RG-relevant right-lead coupling. With
low-enough energies, ΓR ≫ ΓeffL , and the sequential tunneling rate

τseq ∼ 1=ΓeffL + 1=ΓR≈1=Γ
eff
L ð5Þ

which is almost determined by the effective level broadening ΓeffL . With
this knowledge in mind, we begin to analyze the system’s low-energy
conductance features in two limiting cases.

In the extremely low-energy regime maxðT ,eV Þ≪ ΓR ≪ ν, pro-
cesses A andB are coherent, leading to a coherent doubleMT as shown
in Fig. 2a. Indeed, in this regime, an Aor Bprocess alone is forbidden as
they relax the f1-right lead hybridization, leading to an energy penalty
ΓR that is unaffordable by the fluctuation maxðT ,eV Þ≪ ΓR. Conse-
quently, A and B processes always occur coherently. This coherent
double MT can be captured experimentally via the low-energy current
measurement. Indeed, the impurity operator f1 becomes dynamical in
this regime, and OA of Eq. (4) now effectively consists of six non-
interacting lead fermions. Similar treatment on the hybridization of
impurity site has been taken in, e.g., for Kondo57 and two-impurity
Kondo58 systems.OperatorOA then has the scalingdimensionα = 6 × 1/
2 = 3 at low energies, which equals six times that of one free fermionic
operator (i.e., 1/259). This scaling dimension indicates the suppressed
tunneling ∼ ½maxðT ,eV Þ�2ðα�1Þ = ½maxðT ,eV Þ�4 at low energies55,60.
This fact, in combinationwith the extrapower from theprefactor ofOA

in Eq. (4), leads to the expected low-energy conductance
G / ½maxðT ,eV Þ�6, which is anomalous and highly distinguishable from
conductance features through normal structures. This high power law
in energy is a strong signature of non-local coherent tunneling. Indeed,
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the energy-forbidding of local tunneling operators reveals the higher-
order non-local events that manifest the deep inner structures of the
system.

This anomalous conductance feature accompanies the crossover
to another feature for the regime with a slightly higher energy
ΓR ≪ maxðT ,eV Þ≪ ν. In this regime, the lead-f1 hybridization is relaxed
(after which f1 loses its dynamics), thus allowing the individual occur-
rences of A and B (Fig. 2b). Now, the operator OA has the scaling
dimension α = 3/2 (three times that of a free fermion ck), indicating the
low-energy power law ∼ maxðT ,eV Þ60. Once again, we combine this
power law with that from the prefactor of OA, leading to the con-
ductance feature G∼ ½maxðT ,eV Þ�3 for low energies.

These two anomalous conductance power laws are among the
centralpoints of ourwork. Briefly,we anticipate the crossover between
these power laws in the low-energy regime maxðT ,eV Þ≪ ν: When
maxðT ,eV Þ≫ ΓR, the conductance is determined by operator OA, with
G∼ ½maxðT ,eV Þ�3; When energy decreases, OA is modified by the
impurity-right lead coupling, and the related conductance feature
crosses over to another power law G∼ ½maxðT ,eV Þ�6 when finally
maxðT ,V Þ≪ ΓR. Both the anomalous power laws and the crossover over
between them are highly exceptional, and thus capable in the experi-
mental identification of the non-local teleportation.

For clarification, we are aware that polynomial transport features
also occur in systemswith local transport, e.g., the two-channel Kondo
model61 or a dynamical Coulomb blockade62 system. However, we

would like to emphasize that in these systems, two metallic leads are
separated by a single local impurity. By contrast, in our system, these
two leads are instead well-separated by a (finite-width) super-
conductor that has a gapped spectrum. In such a system, transmission
that relies on local transport will be exponentially suppressed, in
contrast to our predicted polynomial features. In addition, we
emphasize that the crossover of the global conductance between two
different polynomial features occurs after the hybridization of a single
fermionic state f1 (consisting of two MZMs). This non-trivial feature
also signifies the non-local transport: otherwise the hybridization of a
local single site induces only aminor (quantitative)modification of the
transport (Fig. 1d). To support our analysis, we calculate the low-bias
conductance of our system at zero temperature using Green function
technique (see “Methods”). During our calculation, we treat the
effective Hamiltonian exactly, except for OA. Indeed, as OA is RG-
irrelevant, it is safe to treat OA perturbatively to the leading order,
where the current becomes

I =
2e2

h

Z 1

�1
dteieVt=_h½Oy

AðtÞ,OAð0Þ�i, ð6Þ

with correlations evaluated without OA in the Hamiltonian. In Eq. (6),
we have taken the trick (see, e.g., refs. 60, 63 and the “Methods”) to
deal with the bias as a time-dependent phase factor: by doing so, the
correlation can be evaluated as if the system was in equilibrium. The
current calculation is tedious but rather straightforward, with which
we obtain the exact curve (see “Methods” for the analytical expression)
shown in Fig. 3. For two limiting cases, we can show that the
conductance yields

G≈
e2

h
4Γ2L

45π2ν6Γ2R
ðeV Þ6 / ðeV Þ6, when eV≪ΓR, ð7Þ

G≈
e2

h
16Γ2LΓR
3πν6

ðeV Þ3 / ðeV Þ3, when eV≫ΓR: ð8Þ

These low-bias conductance power laws, valid in the regime eV, ΓR≪ ν,
perfectly agree with our RG analysis above. Notably, the full
conductance range displayed in Fig. 3 is experimentally accessible.

Fig. 3 | Conductance calculated with Eq. (6) for our system. The blue and red
dashed lines highlight power laws in different limits. The conductance G≪ e2/h is
required in both limits.

Fig. 2 | The schematic diagrams of high-order coherent operators. a Process
A (red arrow) and B (blue arrow) are coherent in the extremely low-temperature
regime T≪ Γseq≪ ν, where they together construct the coherent double Majorana-

assisted teleportation. b In the regime Γseq≪ T≪ ν, these two processes become
incoherent.
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Indeed, the conductance in the eV≫ ΓR limit has the order ~10−2e2/h (by
choosing e.g., ν/ΓL = 3 and ν/ΓR = 25). Around this amplitude, con-
ductance and its corresponding power-law have been shown as
experimentally accessible in e.g., refs. 62, 64. In the opposite limit
eV≪ ΓR, the conductance instead drops to ~10−7e2/h. This high
precision, fortunately, has been reported in e.g., ref. 65 when
measuring the conductance quanta. In the low-conductance limit, this
requirement on the measurement precision is also achieved in e.g.,
refs. 66, 67. Especially, ref. 66 reports an extremely small conductance
~10−11e2/h, with a visible power-law feature in a long InSb nanowire.

Single-electron tunneling in the high-temperature regime
In the high-temperature regime ν≪ T≪ Ec, thermal fluctuation allows
transport processes (e.g., cypLSzf 1) that are otherwise forbidden in low-
energies regimes. It is then legitimate to evaluate the conductance via
themaster equation formalism29,33–35. Of our case, the superconducting
island contains four eigenstates, ∣o1,2

�
= ± i∣10i+ ∣01ið Þ=2 and

∣e1,2
�
= ± i∣00i+ ∣11ið Þ=2, where e and o respectively label impurity

states with even and odd parities (see Supplemental Material for more
details.). The occupation probability of each state follows the rate
equations

_Pα = �P
β

Γα!βPα +
P
β

Γβ!αPβ,

_Pβ = �P
α
Γβ!αPβ +

P
α
Γα!βPα ,

ð9Þ

where Pα and Pβ are the occupation probability of even α = ∣e1
�
,∣e2

�
and odd β= ∣o1

�
,∣o2

�
parity states, respectively, and Γi!f =

ΓLi!f + Γ
R
i!f =

P
jΓ

j
i!f represents the transition probability from state ∣ii

to ∣f
�
. They can be evaluated from the Fermi golden rule

Γjα!β =
2Γj
_

P
p
δ Eα � Eβ + ξp
� �

f ξp � μj

� �
,

Γjβ!α =
2Γj
_

P
p
δ Eβ � Eα � ξp
� �

1� f ξp � μj

� �h i
,

ð10Þ

where chemical potentials μL = eV, μR =0, and f(ϵ) is the fermionic
distribution. Eβ − Eα is the energy difference between the odd β and
even α parity states, and ξp is the electron energy in the leads.

One can solve Eq. (9) with the normalization requirement ∑αPα +
∑βPβ = 1. With them, the current can be evaluated via
I = e

P
α,βPαΓ

L
α!β � e

P
α,βPβΓ

L
β!α . At zero bias, the tunneling con-

ductance becomes (see Supplemental Material for more details)

G=
e2

2T_
ΓLΓR
ΓL + ΓR

sec h
ν

T

� �2
sec h

Ecð1� 2δg Þ
2T

� �2
: ð11Þ

In agreement with our previous analysis, the conductance arrives
at its peak value at half-filling δg = ng − 2n0 = 1/2, independent of the
inter-MZM coupling ν. As another feature, the peak conductance fol-
lows ~1/T in the high-temperature ν≪ T≪ Ec limit, where the factor
sec hðν=TÞ approximately equals one. In the above calculation, the
equilibration is reached from the self-consistent treatment of only the
lead-island couplings. However, if the thermal effects of the island is
mainly from the external environment, the island will first reach the
thermal equilibrium. We call this situation "dirty" transport, and the
conductance formula becomes slightly different (see Supplemental
Material for more details).

Combining the analysis in the low-energy regimes
(maxðT ,eV Þ≪ν) and the rate-equation calculations in the high-energy
regime (ν≪ maxðT ,eV Þ≪ Ec), we obtain the 1e conductance-peak
features over the main energy regimes, as shown in Fig. 1b. Here, the
energy that induces the largest conductance is expected to be
around maxðT ,eV Þ∼ ν, as given by the rate-equation result Eq. (11).
Indeed, the semi-classical rate-equation is legitimate near this

regime, where charge transport mainly relies on uncorrelated
sequential tunnelings. In the low-energy limit, conductance pre-
dicted by Eq. (11) decays exponentially, instead of the polynomial
feature predicted for coherent tunneling operators. In this limit, one
needs to go beyond the semi-classical picture, as coherent tunneling
has become dominant.

Discussion
We mostly focus on the 1e CB conductance peak, i.e., δg= 1/2, of our
Majorana-hosted SC island. We discover a novel double MT and
anomalous Coulomb blockade, which manifest the deep inner struc-
tures of the system and could serve as a hallmark for the non-local
transport in Majorana-hosted SC island (with either topological Major-
ana or quasi-Majorana). We emphasize that the analysis above is valid if
ν≫ ΓR: otherwise the transportmimics thatof anormalMT. In this sense,
a crossoverbetween thenormal andanomalous conductance features is
anticipated via the tuning of ν or ΓR. For instance, if maxðT ,eV Þ≪ ΓR ≪ ν

initially, we anticipate to experimentally observe the crossover from the
high-order power law feature G∼ ½maxðT ,eV Þ�6 to a constant con-
ductance via increasing the value of ΓR. We also emphasize that to
observe these anomalous power laws and the crossover between them,
the background zero-energy conductance ~ΓL,R/Ec or ~ΓL,R/Δsc must be
small, where Δsc refers to the superconducting gap.

When we tune the voltage to a different location δg = 1, electron
states N and N + 2 are degenerate and form the 2e CB conductance
peak30,33 (also refer to SI (see SupplementalMaterial formore details.)).
Wenotice that the 2epeakheight keeps almost constant in the relevant
regime of this paper (i.e., T≪Δsc, EC). The 2e peak height is also very
small compared to the largest 1e peak (i.e., the 1e peak value when
E ~ ν). Therefore, when plotting the 1e and 2e conductance peak values
in the samefigure, there expect to be twocrossover points, as shown in
Supplementary Fig.1, since 1e peak is non-monotonic (Fig. 1b) in our
model. Indeed, the ratio between the maximum 1e peak and the 2e
peak values equals Δsc/(gT)33 for the standard MT limit Δsc≫ T≫ ν,
where g≪ 1 is the dimensionless tunneling conductance. Nevertheless,
a 2e conductance peak is expected to have little influence on a 1e peak,
since they are well-separated along the ng axis, with a large enough
charging energy Ec.

Methods
Conductance evaluation
Here, we outline the derivations of the current operator and con-
ductance. In our system, a bare tunneling at the left side, i.e.,
�2λL

P
kc

y
kLSzf 1 is energetically forbidden, as it connects two

states with different energies. However, with the Schrieffer-Wolff
transformation54, it can be used to construct high-order virtual tun-
nelings

OA =
X
p,q,k

λLc
y
pLSzf 1

1
ν � ϵp

λRf
y
1ckR

1
ν + ϵq

λLc
y
qLSzf 1

≈
X
ϵp ,ϵq ,k

2ðϵp � ϵqÞ
ν3

λ2LλRc
y
pLc

y
qLckRf 1,

ð12Þ

to the leading order the energy difference ϵp − ϵq. This quantity is
proportional to the temperature or bias at low energies.

To the leading order of the RG-irrelevant operatorOA, the current
operator approximately becomes

Î = ie OA + Oy
A,f

y
1 f 1 +

X
k

cykRckR

" #
� 2ieðOA � Oy

AÞ: ð13Þ

We calculate the current at zero temperature, with a bias V applied to
the right lead. This bias can be incorporated as a time-dependent phase
via the transformation cykR ! cykR expðieVtÞ (see e.g., refs. 60, 63).
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With this trick, to the leading order of tL, the current can be
evaluated with Eq. (6). The full expression of the conductance then
becomes

G = e2
h

32Γ2LΓ
4
R

3π2ν6
�8χ2 + χ 9+ χ2

	 

arctan χð Þ+�

+ �1 + 3χ2
	 


ln 1 + χ2
	 


+ 3
2 χ

2Li2 �χ2
	 
�

,
ð14Þ

where the energy ratio χ ≡ eV/ΓR, and Lin refers to the polylogarithm
function. With Eq. (14) we plot Fig. 3. In two limiting cases, the con-
ductance Eq. (14) approximately reduces to the results displayed in
Eqs. (7) and (8).

Data availability
Data sharing is not applicable to this article, as no datasets were gen-
erated or analyzed during the current study.
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