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Abstract

Pulmonary arterial hypertension (PAH) is one kind of chronic and uncurable

diseases that can cause heart failure. Immune microenvironment plays a

significant role in PAH. The aim of this study was to assess the role of immune

cell infiltration in the pathogenesis of PAH. Differentially expressed genes based

on microarray data were enriched in several immune‐related pathways. To

evaluate the immune cell infiltration, based on the microarray data sets in the

GEO database, we used both ssGSEA and the CIBERSORT algorithm.

Additionally, single‐cell RNA sequencing (scRNA‐seq) data was used to further

explicit the specific role and intercellular communications. Then receiver

operating characteristic curves and least absolute shrinkage and selection

operator were used to discover and test the potential diagnostic biomarkers for

PAH. Both the immune cell infiltration analyses based on the microarray data

sets and the cell proportion in scRNA‐seq data exhibited a significant

downregulation in the infiltration of monocytes in PAH. Then, the intercellular

communications showed that the interaction weighs of most immune cells,

including monocytes changed between the control and PAH groups, and the

ITGAL‐ITGB2 and ICAM signaling pathways played critical roles in this process.

In addition, ITGAM and ICAM2 displayed good diagnosis values in PAH.
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This study implicated that the change of monocyte was one of the key

immunologic features of PAH. Monocyte‐associated ICAM‐1 and ITGAL‐ITGB2
signaling pathways might be involved in the pathogenesis of PAH.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a chronic
cardiopulmonary syndrome characterized by irreversible
pulmonary vascular remodeling, bringing about elevated
pulmonary artery pressure and increased pulmonary
vascular resistance, and eventually leading to right heart
failure or even death.1 The incidence of PAH ranges from
5 to 10 cases in a million people per year, and its
prevalence varies from 15 to 50 cases per million people.2

The pathogenesis of PAH is very complex and needs
further investigation. It has been reported that mito-
chondrial metabolic and dynamic dysfunction, genetic
and epigenetic factors, immunity alteration, increased
inflammation, sexual distinction, and right ventricular
adaptation are implicated in this process.3 Current
therapeutic strategies in PAH target dysfunctional
signaling pathways involved in the pulmonary vascula-
ture to reduce right ventricular afterload. Despite reports
that current therapies are of benefit to the quality of life
and time to clinical worsening, these treatments do not
decrease mortality of PAH.4 Therefore, it is urgent to
explore underlying pathogenesis and potential therapeu-
tic targets of PAH further.

In recent years, the role of immunity in PAH gains
increasing attention, which reveals novel insights into the
underlying immunopathology. With the deepening of
research, growing evidence has suggested that diverse
immune cells, such as T‐ and B‐lymphocytes, natural killer
(NK) cells, monocytes, macrophages, and dendritic cells
(DCs), involve in immune circuits, which connects the local
inflammatory landscape in the lung and heart by interorgan
communication.5 The expansion of perivascular macro-
phages and the recruitment of monocytes have been
proposed as critical pathogenic drivers of vascular remodel-
ing.6 Besides, different B‐ and T‐ lymphocytes may be critical
in the pathophysiology of PAH since circulating auto-
antibodies and regulatory T‐cells occur in animal models and
patients with PAH.7,8 Thus, understanding the process of
immune infiltration in PAH is critical to devising new
remedy and developing early diagnostic markers for PAH.

With the development of modern molecular biology
technology (such as gene chip and high‐throughput

sequencing), bioinformatics analysis based on the large
scale of data has gradually emerged, providing significant
technical supports for the research on the pathological
mechanism of complex diseases.9 By the measurement of
global gene expression levels, microarray technology can
help identify differentially expressed genes (DEGs) and
significant biological processes in the process of PAH.10

In addition, on the basis of gene expression data, the
CIBERSORT analysis tool can assess the proportion of 22
types of immune cell components between healthy and
PAH cases.11 However, gene microarray provides the
average expression of genes in the level of the whole
tissues, failing to identify the single cell type that are
potentially involved in the onset and the process of
diseases. While single‐cell RNA sequencing (scRNA‐seq)
is a developing potent technique that can uncover
molecular characteristics of diverse cell populations,
including markers of each cell cluster, interactions
between indicated cell types, and potential regulators of
single cell cluster.12 These characters mean that it is
helpful to illuminate the relationship between cells and
significant genes or pathways and explore the mecha-
nism of PAH more deeply by integrating gene chip and
single‐cell transcriptome.13

In this study, we first identified the cell subpopula-
tions closely associated with PAH by combination of
gene microarray and single‐cell transcriptome. Then, we
focused on monocytes and obtained significant
monocyte‐associated candidate genes or pathways
related to PAH. Furthermore, the diagnostic significance
of these genes or pathways was explored.

MATERIALS AND METHODS

Raw data acquisition

For the microarray data set, we retrieved the human
PAH data sets in the GEO database (https://www.ncbi.
nlm.nih.gov/geo/), and selected the GSE113439,14

GSE117261,10 GSE15197,15 and GSE4814916 data sets
for further analysis, which include large quantities of
microarray data sets of lung from patients with PAH in
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the past 10 years. We only selected the control group and
PAH group in all four data sets. Notably, the platform of
both GSE113439 and GSE113439 is GPL6244, while the
platforms of GSE15197 and GSE48149 are GPL6480 and
GPL16221, respectively. Out of the consideration that
GPL6244 can identify more gene symbols than another
two platforms, GSE113439 and GSE117261 were used to
identify DEGs and assess the immune infiltration, and all
four data sets are used to verify the diagnostic value of
identified markers.

Additionally, we obtained the scRNA‐seq data of lung
with PAH, which included three groups (control group,
monocrotaline [MCT] group, and Sugen‐5416 hypoxia
[SuHx] group) and six samples in each group, from
an open‐access online platform Mergeomics (http://
mergeomics.research.idre.ucla.edu/PVDSingleCell/).17

Although the species of samples is Rattus norvegicus, this
data set is the only one that meet the following criterion:
(1) The samples are lung tissues without cell‐sorting
technique; (2) The data sets are public and can be
obtained. In addition, the results of this data sets were
tested in the microarray data sets of human.

Data preprocessing of the microarray
data set

Due to the batch effects, the “oligo” package (version
1.56.0) in R was used for background correction and
normalization of data sets, and then principal component
analysis (PCA) was conducted.18 Additionally, we
applied hierarchical cluster analysis to evaluated the
bias of group by identification outlier samples according
to the group by the hclust function.19

Identification of DEGs and functional
enrichment analysis

The “limma” package (version 3.50.3) was to identify the
DEGs between the control and PAH groups with the
criteria of fold change >1.414 and adjusted p< 0.05.20

The “clusterProfiler” package (version 4.2.2) was then
used to conduct the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis with an
adjusted p< 0.05.21

Immune cell infiltration analysis

The immune infiltration was estimated by ssGSEA with
the “gene set variation analysis (GSVA)” package
(version 1.42.0)22 and the CIBERSORT algorithm to

validate the differences in subtypes of immune cell
between the control and PAH samples.23

Screening and verification of diagnostic
biomarkers

To discover and test the potential diagnostic biomarkers
for PAH, the least absolute shrinkage and selection
operator (LASSO) were used to predict disease status,
which was performed by the “glmnet” package (version
4.1‐4).24 Receiver operating characteristic (ROC) curves
were plotted by “pROC” package (version 1.18.0) to
evaluate the predictive value of the identified gene, and
the area under the ROC curve (AUC) was calculated to
assess the diagnostic efficacy.25

ScRNA‐seq data analysis

The Seurat objects of the scRNA‐seq data were created
through the “Seurat” package (version 4.1.1).26 Further,
to elevate quality of the data, data filtering criteria were
as followed: cells with >500 distinct genes and percent-
age of mitochondrial genes <20%. The standard Seurat
clustering pipeline were performed after normalization
and scaling, using the following functions in order:
FindVariableFeatures with 3000 genes, ScaleData, RunP-
CA, FindNeighbors with the first 20 PCs and FindClus-
ters with resolution 1, otherwise default settings.

Identification of GSVA

To illustrate the top 20 pathway involved and assess the
specific regulation information, pathway analyses were
predominantly performed on the 20 hallmark pathways
using the GSEABase package (version 1.56.0).

Cell−cell communication analysis

Based on the expression of immune‐related receptors and
ligands, the scRNA‐seq data of the control and PAH
samples were applied to explore intercellular communi-
cations by the “CellChat” package (version 1.6.0).27

Statistical analysis

All significance tests in this paper, unless otherwise
stated, were assessed using the two‐sided Wilcoxon rank‐
sum test.
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RESULTS

DEGs identification and KEGG pathway
enrichment analysis

Microarray data of human lung tissue from PAH patients
and normal controls were extracted from GSE113439 and
GSE117261 data sets. Data from GSE113439 and
GSE117261 data sets presented reliable quality and two
distinct clusters between two groups (Figure 1a−c and
Supporting Information S2: Figure 1A‐C). A total of 3976
DEGs between the two groups were identified from
GSE113439, including 2609 upregulated and 1367
downregulated genes (Figure 1d,e). Simultaneously,
there are 245 upregulated and 214 downregulated DEGs
screened from GSE117261 (Supporting Information S2:
Figure 1D,E).

To further explore the underlying roles and functions
of immune‐related pathways in the pathogenesis of PAH,
KEGG pathway analysis was carried out. Several
immune‐related pathways were enriched in the PAH‐
related DEGs from GSE113439, including NOD‐like
receptor signaling pathway, Th17 cell differentiation
signaling pathway, TNF signaling pathway, and so on
(Figure 1f). In addition, there are some pathways
relevant to immunity identified from GSE117261 which
consist of B cell receptor signaling pathway, Toll‐like
receptor signaling pathway and leukocyte transendothe-
lial migration (Supporting Information S2: Figure 1F).
The above results showed that immunity is associated
with PAH.

Immune cell infiltration analysis

To characterize the landscape of immunocyte infiltration
in PAH patients, The CIBERSORT algorithm was
performed to assess the fraction of immunocytes. The
percentages of immune cells in each sample were
analyzed (Figure 2a), and ones of eight immune cell
types were significantly changed in the PAH samples
than normal controls from GSE113439, including CD8 T
cells, monocytes, and memory B cells (Figure 2b,c).
Additionally, 28 types of immune cells were included to
estimate the immune microenvironment in lung tissue
with ssGSEA to validate the above results. The results
were presented in the form of heatmap and showed the
levels of 28 immune cell types in the PAH samples and
normal controls. The box plots presented differences
between the two groups. Compared with the control
group, 10 immune cell types (such as activated CD8 T
cells, monocytes, and regulatory T cells) showed signifi-
cant alterations in the PAH samples from GSE113439

data set (Figure 2d,e). Notably, data based on GSE117261
data set also revealed the similar results, suggesting that
many different types of immune cells participate in the
pathogenesis of PAH, including CD8 T cells and
monocytes (Supporting Information S2: Figure 2).

Identification of distinct cells types

We collected scRNA‐seq data of published rat PAH models:
MCT induction and SuHx induction to further clarify the
underlying immune features of PAH. The data set included
three groups (control group, MCT group, and SuHx group),
and each group included six samples. A total of 33,392 cells
are included. Considering the high percentage of mitochon-
drial genes of the quality control in the previous study (the
percentage of mitochondrial genes <0.5), we filtered the cells
again, and 13,947 cells are finally included in the following
analysis. We identified 21 distinct cell types expressing
established markers for epithelial, stromal, lymphoid, and
myeloid cell populations and others, including B cells, T
cells, NK cells, DCs, macrophages, monocytes, mast cells,
ciliated cells, clara cells, and fibroblasts (Figure 3a−c and
Supporting Information S2: Figure 3A). Compared with the
control group, percentages of several immune cells were
changed in PAH groups. Notably, a decrease in the
normalized cell fractions of monocytes in both MCT group
and SuHx group was observed (Figure 3d,e and Supporting
Information S2: Figure 3B,C). The above results revealed that
monocytes might be critical in the pathogenesis of PAH,
which was also reflected in the results based on microarray
data analysis.

Characteristics of monocyte gene
expression profile

The variance analysis revealed the top 10 significantly
DEG across the samples, including Cd74, Cxcl2, Il1b, and
Ccl5, which were associated with immune process
(Supporting Information S2: Figure 3E). To further explore
the role of monocytes in PAH, we compared the gene
expression profiles of monocytes between the control and
PAH samples. More than 60 DEGs were identified in
monocytes, including Ccrl2, Cd274, and Ccl3 (Supporting
Information S2: Figure 3D), which played critical roles in
immunity, and all of which increased in PAH group.
Chemokine receptor‐like 2 (CCRL2) can bind with
chemokine‐like receptor 1 (CMKLR1) and promote the
recruitment of CMKLR1‐expressing immune cells, such as
monocytes, DC, and NK cells.28 The protein expression of
CMKLR1 in lung tissues was elevated in a rat model
of PAH.29,30 Cd274, also known as programmed cell
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FIGURE 1 Identification of DEGs and KEGG pathway enrichment analysis based on GSE113439 data set. (a) Data after normalization
of GSE113439 data set are shown. (b) Two distinct clusters are presented by principal component analysis (PCA). (c) Sample clustering was
performed. (d, e) DEGs between two groups are shown in a heatmap (d) volcano plot (e). The red and green ones represent upregulated and
downregulated DEGs in the volcano plot, respectively. (f) KEGG enrichment analysis of DEGs are shown. DEGs, differentially expressed
genes; KEGG, kyoto encyclopedia of genes and genomes; PAH, pulmonary arterial hypertension.
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death‐ligand 1 (PD‐L1), can bind with programmed death
protein‐1 (PD‐1) to inhibit lymphocyte activation and
proliferation.31 A previous study has found that PD‐1 and
PD‐L1 proteins were overexpressed on both T and B cells in
idiopathic PAH patients, which is similar with our

findings.32 Chronic hypoxia or inflammation may upregu-
late the expression of PD‐L1 in monocyte‐derived macro-
phages (MoMs), and can further induce the release of
cytokines, which may promote PAH.33 Additionally,
consistent with our result, C‐C Motif Chemokine Ligand

FIGURE 2 Immune cell infiltration analysis based on GSE113439 data set. (a−c) Data were analyzed by the CIBERSORT algorithm. (a)
The fractions of immune cells in each sample are shown. (b) The immune infiltration levels of each sample are shown in the heatmap. (c)
The fractions of 22 types of immune cells between two groups are shown. (d, e) Data were analyzed by ssGSEA. (d) Twenty‐eight immune‐
related gene sets were enriched and shown in the heatmap. (e) The fractions of immune cells between two groups are presented. ns: no
significance; * p< 0.05, ** p< 0.01, *** p< 0.001.
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FIGURE 3 Cell composition analysis with scRNA‐seq data. (a) TSNE plot displays the aggregate cells. (b) TSNE plot shows the cell
types of different clusters based on identified markers. (c) The identified cell populations in different groups (six control samples, six MCT
samples, and six SuHx samples) are shown in the TSNE plot. (d, e) The fractions of different cell types are shown (d), and the fractions of the
immune‐related cells are shown between different groups (e). MCT, monocrotaline; scRNA‐seq, single‐cell RNA sequencing; SuHx,
Sugen‐5416 hypoxia.
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3 (CCL3), also called MIP‐1α, can activate chemokine
receptor 5 (CCR5) to mediate inflammation via inflamma-
tory monocytes and neutrophils, which was elevated in
chronic thromboembolic PAH patient plasma.34 Besides,
the expression of MIP‐1α would be further increased due to
promoted secretion by MoMs.35 All these results demon-
strated that with decreased proportion and changes in
immune related genes, monocytes in patients with PAH
showed a significant immune dysregulation, which inevita-
bly promoted the process of PAH. Then, GSVA analysis
was performed on monocytes and the results suggested that
metabolism‐related pathways might play important roles in
monocytes in PAH (Supporting Information S2: Figure 3F).

Intercellular communications between
monocytes and fibroblasts in PAH

To illustrate how the change in fraction of cells affect the
pathogenesis of PAH, we analyzed intercellular commu-
nications with the CellChat package. The results showed
that the intercellular communications of alveolar macro-
phages were most active (Figure 4a,b). Due to the
complicated cell−cell communication network, we cen-
tered on single type of cells to further compare the two
groups and found that not only monocytes but also other
immune cells varied a lot (Supporting Information S2:
Figure 4). However, monocytes and interstitial macro-
phages varied most in the scatter plot between the
control and PAH groups (Figure 4c). Furthermore, the
heatmap exhibited that monocytes interact with fibro-
blasts most in both groups, indicating that the interaction
of monocytes and fibroblasts might be the key to the
onset of PAH (Supporting Information S2: Figure 5A,B).
Notably, although in PAH group the number of interac-
tions between fibroblasts and monocytes decreased, the
interaction strength increased (Figure 4d). Therefore, the
incoming and outgoing signaling patterns of monocytes
and fibroblasts were analyzed to further clarify the
details in the interaction between monocytes and
fibroblasts. In control group, no outgoing signals from
monocytes to fibroblasts were detected. Interestingly, not
only signals from monocytes to fibroblasts but also
fibroblasts to monocytes were increased in the PAH
group (Figure 4e).

ICAM and ITGAL‐ITGAB2 pathways
between monocytes and fibroblasts
in PAH

Then, 45 signaling pathways are detected among the
12 cell populations to analyze which pathways between

monocytes and fibroblasts changed in PAH (Supporting
Information S2: Figure 5C). We found that the ICAM and
ITGAL‐ITGAB2 pathways were changed in the interac-
tion between monocytes and fibroblasts in PAH as
compared to normal controls (Supporting Information
S2: Figure 5C). In addition, the cell−cell communications
mediated by multiple ligand−receptors were visualized
by bubble plot, which also suggested that ligand−recep-
tors (L‐R) in ICAM and ITGAL‐ITGAB2 pathways
changed between monocytes and fibroblasts (Supporting
Information S2: Figure 5D). Among the communications
between monocytes and fibroblasts, we noticed that the
fibroblasts−monocytes interaction showed more changed
ligand−receptors than the monocytes‐fibroblasts interac-
tion (Figure 5a and Supporting Information S2: 6A,B).
Additionally, Itgb2‐Icam1 (ITGAL‐ITGAB2 pathway),
Icam1‐Itgal (ICAM pathway), and Icam1‐(Itgal+Itgb2)
(ICAM pathway) increased in PAH than control
(Figure 5a,b). Next, we focused on ICAM and ITGAL‐
ITGAB2 pathways, and in PAH, the interactions between
monocytes and fibroblasts presented great significance in
both pathways (Figure 5c,d and Supporting Information
S2: 6C,D). Furthermore, the expression of Itgal, which is
the ligand or receptor in ICAM or ITGAL‐ITGAB2
pathways changed significantly in monocytes
(Figure 5e), which may be the potential reason of the
phenomenon that in PAH group the number of interac-
tions between fibroblasts and monocytes decreased, but
the interaction strength increased (Figure 4d). Above
results indicated that although the percentage of
monocyte decreased, monocytes may increase the
interaction strength with fibroblasts by ICAM and
ITGAL‐ITGAB2 pathways to influence the process
of PAH.

Identification and verification of
diagnostic markers in PAH

The contribution of each L‐R pair in the ITGAL‐ITGAB2
and ICAM pathways were calculated to identify the key
L‐R pairs. In the ITGAL‐ITGAB2 pathway, Itgb2 was the
key molecule and Itgb2‐Icam2 was decreased in the PAH
group compared to the control group (Figure 6a,b).
Simultaneously, Icam1‐(Itgam+Itgb2) and Icam2‐(Itgam
+Itgb2) in the ICAM pathway were both disappeared in
PAH group. Compared to control group, Icam1‐(Itgal
+Itgb2) in ICAM pathway was obviously increased in the
PAH group (Figure 6c,d). According to the above results,
ROC curves were plotted based on the human microarray
data (GSE113439, GSE117261, GSE15197, GSE48149),
which contained 108 PAH samples and 50 normal
controls (Table S1). The AUCs of ITGB2, ICAM2, ITGAL,
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FIGURE 4 (See caption on next page).
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and ITGAM were 0.642, 0.654, 0.604, and 0.759,
respectively. The sensitivity and specificity of ITGB2,
ICAM2, and ITGAL were 40.6% and 86.5%, 84.0% and
44.2%, and 79.2% and 42.3%, respectively. ITGAM had a
sensitivity of 81.1% and a specificity of 65.4%, which
displayed a good diagnosis value (Figure 6e). Further-
more, the LASSO was performed and two genes (ITGAM
and ICAM2) demonstrated the high discriminatory
power to diagnose PAH (Figure 6f).

DISCUSSION

PAH is a chronic and severe cardiopulmonary disorder,
attributed to small pulmonary arteries proliferation and
fibrosis, which causes exacerbations progressively in
pulmonary vascular resistance.2 Even though intense
research efforts have been made in PAH associated field
in recent years, the pathogenesis remains to be further
elucidated, and the therapeutic effect is unsatisfactory. In
this research, we characterized features of infiltration of
immune cells and explored underlying biomarkers in
PAH patients by integrating gene microarray and single‐
cell transcriptome based on bioinformatics analysis.

For investigating functions of immune cells in PAH,
immune infiltration analysis was performed with micro-
array data by utilizing CIBERSORT. Our results showed
that percentage of monocyte was decreased in lung
tissues of PAH as compared to the control group, which
was in consist with extensive profiling of cellular
composition through using scRNA‐seq. This is also
consistent with results published by other groups.17

However, an increased permeability of monocytes has
been found in peripheral blood of PAH in another
study.11 This might be related to monocyte recruitment
and polarization. The recruitment and the polarization of
monocytes are modulated by the microenvironment and
facilitated by the local stimuli.36,37 It has been demon-
strated that chronic hypoxia is a critical pathogenic
driver for the recruitment of monocytes to the lung. The
findings suggested that monocytes have abilities to sense
hypoxia, infiltrate pulmonary arteries, and promote
vascular remodeling, contributing to the development
of PAH.38 In addition, it has been previously reported
that blood‐borne monocytes expand in lung explants

from patients with PAH, which exacerbates muscular-
ization of small pulmonary arteries and modulates local
immune responses.6 Thus, we speculated that increased
monocyte infiltration in peripheral blood of PAH might
be associated with mobilization of monocytes, while
decreased monocyte in lung tissues might be related to
transition of monocyte to macrophage or other types of
cells. Data from murine models suggested that LY6Chi

monocytes can transform into nonresident CD11b+
infiltrating macrophages, thereby mediate pulmonary
fibrosis, and result in alveolar epithelial cell‐specific
injury.39–41 In another study, depletion of Ly6Chi

circulating monocytes by systemic administration of
liposomal clodronate resulted in a reduced fibrotic
response in mice, as well as a reduction in M2
macrophage numbers.42 This is consistent with our
experimental results that monocytes were reduced but
macrophages (including M0, M1, and M2) tended to
increase in PAH compared with control samples
(Figures 2b and 3c). Moreover, in our results based on
scRNA‐seq, the percentage of alveolar macrophages and
interstitial macrophages increased in SuHx and MCT
group, respectively, which may give us a clue on the
decreased percentage of monocytes (Figure 3e). These
data suggest that circulating monocytes can transform
into lung macrophages and play an important role in
pulmonary fibrosis.

To better understand the pathogenic role of monocyte
during PAH, our current study identified two significant
monocyte‐associated candidate signaling pathways
(ICAM and ITGAL‐ITGB2) related to PAH using
scRNA‐seq data analysis. Intercellular adhesion
molecule‐1 (ICAM‐1) is critical in monocyte adhesion.
Monocyte adhesion is a key process of monocyte
trafficking across the vessel wall, which is regarded as
a tightly regulated process, including the process of
rolling, adhesion, and transmigration. Once monocytes
attach to the endothelium, ICAM‐1 enables monocytes to
adhere firmly to the endothelium and migrate through
the endothelial cell barrier into the site of inflammation
and injury.43 Mechanistically, ICAM‐1 signaling pathway
increases monocyte−endothelial cell interaction, which
may contribute to the progression of secondary vascular
inflammation and PAH development.44 In addition,
ICAM‐1 is a potential biomarker for PAH, which is

FIGURE 4 Intercellular communications between monocytes and fibroblasts in PAH. (a, b) Overview of the intercellular
communication networks in the number of interactions or interaction strength are measured by network centrality analysis and are
presented by circular network plots (a) and bar plots. (c) Scatter diagrams show signals of monocytes changed most as senders and receivers
in control and PAH group. (d) Heatmaps show differential number of interactions (left) and differential interaction strength among the 12
cell clusters in the overall signaling patterns between control and PAH group. (e) The signals of monocytes and fibroblasts in control and
PAH group are shown. PAH, pulmonary arterial hypertension.
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FIGURE 5 Visualization of signaling pathways or ligand−receptors mediated intracellular communications. (a, b) The increased (a)
and decreased (b) ligand−receptor pairs are shown in the dot plot, which contribute to the signals between fibroblasts and monocytes. (c)
Circular network plot shows the network centrality analysis of ICAM signaling pathway in control group (left) and PAH group (right). (d)
Circular network plot shows the network centrality analysis of ITGAL‐ITGAB2 signaling pathway in control group (left) and PAH group
(right). (e) The between‐group level of expression of molecules in ICAM signaling pathway and ITGAL‐ITGAB2 signaling pathway are
shown in violin plot. PAH, pulmonary arterial hypertension.
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FIGURE 6 Identification of the key L‐R pairs and diagnostic significance of correlated genes. (a−d) The contributor of each L‐R pair in
ITGAL‐ITGAB2 pathway (a, b) and ICAM pathway (c, d) in control group (left) and PAH group (right). (e) ROC curves of critical genes
(ITGB2, ICAM2, ITGAL, and ITGAM) in ITGAL‐ITGAB2 pathway and ICAM pathway are shown. (f) Least absolute shrinkage and selection
operator (LASSO) logistic regression algorithm are shown. L‐R, ligand−receptors; PAH, pulmonary arterial hypertension; ROC, receiver
operating characteristic.

12 of 16 | ZHONG ET AL.



elevated in the serum of both adults and children with
PAH.45,46 Therefore, ICAM‐1 becomes a potential thera-
peutic target in PAH, and monitoring ICAM‐1 levels
might be useful in looking for the development of PAH.
The combination of integrin alpha L chain (ITGAL) and
beta 2 chain (ITGB2) forms the lymphocyte function‐
associated antigen‐1 (LFA‐1), which plays a critical role
in the extravasation of immune cells from the blood-
stream to the local tissues.47 Through inside‐out signal-
ing, chemokine signals induce a conformational change
in LFA‐1 converting LFA‐1 to a moderate‐affinity state,
which can promote cell adhesion to endothelial cells by
the means of binding to ICAM‐1.48 Thus, we speculated
that blockage of the interaction between LFA‐1 and
ICAM‐1 might relieve the development of PAH.

A previous study displayed that ITGAL expression is
critical for murine microglia CX3C chemokine receptor
1 (CX3CR1) expression and fractalkine (CX3CL1)‐
directed motility.49 CX3CL1 and CX3CR1 are critical
mediators in the vascular and tissue damage of several
chronic diseases, including PAH. High levels of CX3CL1
and CX3CR1 expressed in monocytes are indispensable
for survival, retention, migration, and recruitment to
the site of injury. Moreover, genetic deficiency of
CX3CR1 caused defective proliferation of pulmonary
artery smooth muscle cell and remodeling of the lung
vasculature in vitro and vivo model of PAH.6,36 So, we
guessed that inhibition of ITGAL expression might
improve pulmonary vascular remodeling in PAH via
suppressing CX3CL1/CX3CR1 signaling. Furthermore,
the mRNA level of ITGAL is significantly upregulated in
peripheral blood monocytes from PAH patients com-
pared to the controls, indicating that ITGAL‐ITGB2
signaling pathway might participate in PAH patho-
genesis and that ITGAL can serve as a potential
diagnostic biomarker.50

In addition, previous studies also have shown that
MCP‐1/CCR2 signaling pathway plays an important role
in monocyte recruitment to the lung.51 Recruitment of
inflammatory monocytes is CCR2 dependent. Inflamma-
tory monocytes exit from bone marrow, enter to lung,
and give rise to inflammatory DCs and exudative
macrophages under inflammatory conditions via the
activity of CCR2.52,53 Therefore, depletion of CCR2 may
abolish inflammatory monocyte aggregation. Moreover,
the progression of PAH can be facilitated by early
recruitment of alternatively activated (M2) macrophages,
which are thought to be polarized and activated by helper
T cell type 2 cytokines (i.e., IL‐4 or IL‐13, IL‐6) and the
chemokine CCL2.54,55 Additionally, blocking CCL2
expression attenuates disease severity.56 Taken together,
consistent with CX3CL1/CX3CR1 signaling, CCL2 may
also regulate PAH progression.

The activation of pulmonary fibroblasts is one of the
key components of pulmonary arterial remodeling in
PAH. The primary stromal cell in the adventitia is the
fibroblasts, which raises the possibility of significant
fibroblast‐immune cell cross‐talk.57 Fibroblasts can also
release chemokines to recruit immune cells, and has
some capacity for phagocytosis and antigen presenta-
tion.58–60 Except for the interaction between fibroblasts
and monocytes, that between fibroblasts and macro-
phages in the adventitia of blood vessels also facilitates
the transmission of inflammatory signals and the
progression of PAH.37 Studies have reported that
fibroblasts have abilities to recruit and activate macro-
phages, leading to vascular inflammation and vascular
remodeling in PAH.61 At the same time, studies have
found that macrophages can receive and combine the
signals sent by fibroblasts and then carry out disparate
transcriptomics and metabolomics programming to keep
a more stable lung microenvironment during the
pathogenesis of PAH.8,37 The crosstalk between fibro-
blasts and macrophages in the microenvironment of the
adventitia of blood vessels are also expected to play a
great therapeutic significance in improving the process of
pulmonary vascular remodeling.

However, several limitations still exist in our study.
First, this study focused more on immune cell infiltration
in PAH and nonimmune cells that participate in the
pathogenesis of PAH were not further investigated.
Besides, the sample size and total number of cells
involved in our study are not very large, which leads to
the defect that the annotation of some cell subclusters
and results of intercellular communication may not be
detailed enough. Nevertheless, our study can provide
foundations for further exploration of the mechanism
of PAH.

CONCLUSION

The present study implicates that the change of
monocyte is one of the key immunologic features of
PAH. Monocyte‐associated ICAM‐1 and ITGAL‐ITGB2
signaling pathways might be involved in the patho-
genesis of PAH. Therefore, diagnostic identification
coupled with therapeutic targeting of monocyte‐
associated genes or pathways may hold great promise
in the diagnosis of PAH.
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