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Direct domain adaptation
through reciprocal linear
transformations

Tariq Alkhalifah* and Oleg Ovcharenko

Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal,

Saudi Arabia

We propose a direct domain adaptation (DDA) approach to enrich the training

of supervised neural networks on synthetic data by features from real-world

data. The process involves a series of linear operations on the input features

to the NN model, whether they are from the source or target distributions, as

follows: (1) A cross-correlation of the input data (i.e., images) with a randomly

picked sample pixel (or pixels) of all images from the input or the mean of all

randomly picked sample pixel (or pixels) of all input images. (2) The convolution

of the resulting data with the mean of the autocorrelated input images from

the other domain. In the training stage, as expected, the input images are

from the source distribution, and the mean of auto-correlated images are

evaluated from the target distribution. In the inference/application stage, the

input images are from the target distribution, and the mean of auto-correlated

images are evaluated from the source distribution. The proposed method

only manipulates the data from the source and target domains and does

not explicitly interfere with the training workflow and network architecture.

An application that includes training a convolutional neural network on the

MNIST dataset and testing the network on the MNIST-M dataset achieves

a 70% accuracy on the test data. A principal component analysis (PCA), as

well as t-SNE, shows that the input features from the source and target

domains, after the proposed direct transformations, share similar properties

along the principal components as compared to the original MNIST and

MNIST-M input features.

KEYWORDS

domain adaptation, covariate shift, supervised learning, MNIST classification, deep

learning

1. Introduction

Machine learning (ML) is gaining a lot of traction as a tool to help us solve

outstanding problems in image processing, classification, segmentation, among many

other tasks. Most of the applications in many fields have relied on supervised training

of neural network (NN) models, where the labels (answers) are available (Ronneberger

et al., 2015; He et al., 2016; Osisanwo et al., 2017; Di and AlRegib, 2020). These

answers are often available for synthetically generated data as we numerically control

the experiment, or they are determined using human interpretation or human crafted

algorithms applied to real data. The challenge in training our NN models on synthetic
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data is the generalization of the trained models on real data, as

that process requires careful construction of the training set and

the inclusion of realistic noise and other features from the real

data. In other words, the synthetic and real data are usually far

from being drawn from the same distribution, which is essential

for the success of a trained NNmodel (Kouw, 2018). Thus, many

synthetically trained NN models have performed poorly on real

data. On the other hand, training on real data using supervised

learning provides models that are often, at best, as good as

the accuracy of the labels that where determined by humans

or human crafted algorithms (weak supervision). So the data-

driven feature of machine learning, in this case, will be highly

weakened (Zhou, 2017).

1.1. Related work

The concept of trying to bridge the gap between the

distributions of the training (source) and application (target)

data is referred to as domain adaptation (Kouw, 2018;

Lemberger and Panico, 2020). In this case, the training

dataset is assumed to belong to the source domain and the

application/testing data are assumed to belong to the target

domain, the target of our training. The classic theory of machine

learning assumes that the application (target) data of a trained

model come from the same general population (sampled from

the same distribution) as the training (source) set (Kouw and

Loog, 2019). So we need the probability distribution of the

synthetic (source) dataset, Ps(xs, ys), where xs are the input

features, and ys are the labels from the source domain, to be

similar to the probability distribution of the real (target) dataset,

Pt(xt, yt), where xt are the input features, and yt are the labels

for the target set. In real life, target labels are often missing or

are very limited, and thus, we have to assume that the training

task is representative of the application (inference) task. In

other words, the synthetically modeled labels reflect what we

would expect in real life granted that the input features are

similar. However, though the task might be well-represented

by the training data, like a classification of a picture of a “cat”

as a cat, and such data might be generated through computer

simulation (of a cat), the application data probably based on real

pictures might have slightly different features (i.e., background)

as compared to the training (source) data. One category of

data adaptation is referred to as subspace mapping (or more

generally, alignment) in which we find a transformation, T,

that results in the distribution of the training (source) input

features to equal that of the target data (Fernando et al., 2013;

Kouw et al., 2016). Specifically, Ps
(

T(xs)
)

= Pt(xt). This can,

also, be accomplished by projecting the source and target input

features to the eigenvectors of the two subspaces, then finding a

transformation between these projected spaces. Such projections

can be achieved by Neural network embedding, in which we

find the weights of the embedding that minimizes the distance

between the distribution of the source samples embedding

and the target samples one. There are many ways to find the

transformation or weights to make the distributions similar

including the use of optimal transport (Villani, 2008). Training

data selection through a reinforcement learning framework can

help in domain adaptation by employing training instances

relevant to the target domain (Liu et al., 2019). Even cycle

generative Adversarial networks (GANs) are used for the

purpose of learning a generator to map target input features

to source ones (Ganin et al., 2016). However, these methods

becomemore difficult to apply when the dimensions of the input

features are large. Themethod, proposed in this paper, shares the

general concept of this objective implemented in a direct fashion.

1.2. The paper’s objectives

An objective of a trained neural network model is to provide

us with an output for a given input. The output that a trained

model will give is based on the training it experienced, and that

depends mostly on the source training set and its distribution. A

trained neural network model generalizes well when the target

data are represented, as much as possible, in the source data set.

To help accomplish that when the application (target) data are

available, we propose, here, to inject the real data features into

the synthetic data training. This can be accomplished by utilizing

a combination of linear operations including cross-correlation,

auto-correlation and convolution between the source and target

input features. These operations will bring the distributions of

the training (source) input features, and the testing (target) input

features closer to each other, which will help the trained model

generalize better in the inference stage. In this paper:

• We propose a new transformation of the input features

based on linear operations that will allow us to bring their

distributions closer; we refer to this explicit process as

direct domain adaptation (DDA).

• The process is explicit and it operates exclusively in the data

domain, without intervention into the training workflow

and architecture. The method achieves 70% accuracy when

a relatively simple model is trained on the MNIST data and

applied to the MNIST-M data.

• We use principal component analysis (PCA) to show how

much the principal components of theMNIST andMNIST-

M input features after DDA came closer to each other.

The paper is organized as follows. We first describe the setup

of the problem and our scope, and then share the proposed

linear transformations. We then share the results of testing the

approach on the MNIST/MNIST-M data. Finally, we discuss

the effect of the transformation on the data, and share some

concluding remarks.
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2. Input features reciprocal
projections

To bring the distributions of the input features of the source

and target data closer, we apply linear transformations that will

allow some of the critical information, like background, of the

inputs to migrate between the two data without effecting the

key features needed for the task at hand. After transformation,

the input features will have two instances of each data (source

and target) embedded in them. The method proposed here

is applicable mainly to supervised and in some cases of

unsupervised (i.e., clustering) learning. We will focus here on

supervised learning, and specifically classification. We will first

share the setup of the problem and then describe, in details, the

proposed transformations.

2.1. Setup

For the neural network (NN) model, we consider the input

feature space χ , a subset of Rd, where d is the dimension of

the input. We also consider the label space Y , a subset of RD,

where D is the dimension of the output. We assume we do not

have labels in the target domain, and thus, we can not perform

transfer learning (a form of domain adaptation Hanneke and

Kpotufe, 2019). So in our case, the source data are labeled, but

the target real data are not. Thus, we consider sample source data

having inputs xs and labels ys, having a probability distribution

Ps(ys, xs), that is different from the target data with inputs xt and

potential labels yt, given by a probability distribution Pt(yt, xt).

We assume that the distribution difference is caused by the shift

in the input features, and thus, Ps(ys|xs) = Pt(yt|xt). This sort

of difference between the source and target datasets distributions

is referred to as a covariate shift (Fernando et al., 2013). In this

case, the issue we are addressing here is the case when the input

(features) distributions for the source and target data are not the

same, specifically Ps(xs) 6= Pt(xt).

There are many ways to measure such a shift, including

using the Kullback-Leibler (KL) divergence metric. In domain

adaptation, and similar to error bounds defined for machine

learning in general, we can define an error bound on the

application of a trained network model. This error bound is

given by the error in the training and a term related to the

complexity of the NN model (like its size). This, however,

assumes that the training and application data come from the

same distribution. For the case of a covariate shift, we have a

similar bound, given by (Ben-David et al., 2006; Lemberger and

Panico, 2020):

εt(NN ) ≤ εs(NN )+ dist(Ps(xs), Pt(xt))+ λ, (1)

where εs is the bound on the training error, and dist(., .) is the

distance between the marginal distributions of source and target

input features. Here, λ represents the optimal joint errors of the

neural network model between the source and target datasets.

So the upper bound of the application error is guided by these

three terms.

2.2. Our goal

One category of data adaptation is referred to as subspace

mapping (or more generally, alignment) in which we find a

transformation, T, that results in the distribution of the training

source input features to approximate that of the testing ones

(Fernando et al., 2013). Specifically, Ps
(

T(xs)
)

≈ Pt(xt).

Compared to previous transformations, the approach used here

does not require any eigenvalues computation, which can be

expensive for large dimensional input features.

So our objective is to devise a transformation that

minimizes the difference measure d in Equation (1) between

the distributions of the training (source) and testing/application

(target) input features. Specifically, we aim to find the

transformation xs = Ts(xs) on the source input features and

xt = Tt(xt) on the target input features so that the probability

distributions Ps(xs) ≈ Pt(xt). Figure 1 summaries that within

the framework of the training process. So the input to the

training of the Neural network (NN ) model is xs, in which the

model parameters are optimized to match the labels ys using a

loss function (L). As our focus are the input features and their

transformation, the labels, ys, for training remain the same, and

thus, the loss function used here is the classic one needed for

the task at hand, which for classification, as an example, would

be the cross entropy. The loss would be measured between the

prediction and ys. On the other hand, the input during inference

is xt. We will discuss the transformations Ts and Tt in the

next subsection.

2.3. Transforming the input features

Without loss of generality, we focus our development on

two-dimensional input features, like images. The approach is

applicable to one or three dimensional input features by using

the corresponding one or three dimensional convolution and

correlation operations.

Images in general, including pictures and medical scans, can

often be represented by a combination of reflectively, r, source

(like source of light), s, and noise n, as follows:

xit = ri ∗ si + ni. (2)

Depending on the data, all three components (r, s,n) can

vary over input target features (indexed by i), and have their

own distributions. For ML training, we often use synthetically

generated images, where the labels are known, considering
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FIGURE 1

The motivation behind the proposed data adaptation in which the training (source) dataset might have a di�erent distribution than the

application (target) dataset, in which transformations Ts and Tt will help reduce such di�erence and provide new input features to the neural

network function (NN ) to train the network to reduce loss L, and then apply to real data. Here, P is the probability distribution and we show

schematic versions of it for the source and target data, given by samples of the MNIST and MNIST-M datasets, respectively.

the data are more likely simulated. To help improve the

generalization of such trainedNNmodels on images represented

by Equation (2), we often try to include a proper representation

of these components from the target input features into the

synthetic (source) input features. However, in many cases, this

is hard and costly. and that will effect the generalization of the

trained model. For one, our synthetic data are often free of noise

or we only add random noise to them. So we propose here

operations that will transform information between the source

and target input features.

To migrate the components described in Equation (2) from

the target input data to the source, we use the following linear

operations to obtain the transformed input source features:

xis = Ts(x
i
s) = cis(x

i
s) ∗ at(xt), (3)

given as a convolution of representations from the source, cis,

and the target input features at. Specifically, to properly scale

the input source features for training, we correlate them with

randomly drawn pixel (or pixels) values, x̃
j
s, from input source

image indexed by j, as follows:

cis(x
i
s) = xis ⊗ x̃

j
s. (4)

The random index j varies per input image and per epoch to

allow for proper representation of the pixels in the training

in which the input images are correlated, with operator

⊗ representing cross-correlation. This operation amounts to

scaling the input features with representations of the source

domain. The output from this operation is then convolved

with the mean of the auto-correlated target data input features,

given by

at(xt) =
1

Nt

Nt
∑

j

x
j
t ⊗ x

j
t, (5)

where Nt is the number of input features (images) from the

target domain. The auto-correlation here, considering 2D input

features, is a two-dimensional one and is applied in the Fourier

domain, along with the convolution. In the Fourier domain,

these operations reduce to simple multiplications. The mean of

the auto-correlation of the input features provides a measure of

the distribution of the data. For example, the auto-correlation

of random noise yields a quasi delta-function at zero lag

proportional to the energy of the noise. A convolution with such

a function will incorporate that energy into the synthetic data so

that the signal-to-noise ratio (SNR) in the transformed source

input features would be comparable to that of the auto correlated

target data. To allow for the transformed input features from the

target domain to have a similar distribution to the transformed

input features from the source domain, we apply a similar

transformation to that in Equation (3) with the roles reversed.
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As such, we apply the following transformation on the target

input features during the inference stage:

xit = Tt(x
i
t) = cit(x

i
t) ∗ as(xs), (6)

which includes the same operations as in Equation (3) with the

role of the source and target input features reversed. Thus,

cit(x
i
t) = xit ⊗ x̃t = xit ⊗

1

Nt

Nt
∑

j

x̂
j
t , (7)

where, now, x̂
j
t represent randomly drawn sample pixel (or

pixels) from the input features from the target data to scale them

with the mean, x̃t . Also, the mean of the auto-correlation of the

input features from the source data is given by

as(xs) =
1

Ns

Ns
∑

j

x
j
s ⊗ x

j
s, (8)

where Ns represents the total number of input features (images)

from the source domain. The idea behind having two instances

of the input features from each domain in Equations (4), (5), (7),

and (8), is to balance their contribution in the resulting

new source and target distributions. This way, we match

properties of the input features from the source and target

domains used for training and inference, respectively, and yet

maintain the critical-for-classification features of the original

input mainly intact. Note that the convolution operation that

connects equal amounts of the source and target contributions

in Equations (3) and (6) is commutative. We will see the value

of this operation more in the next section. Meanwhile, Figure 2

(left) demonstrates the process of applying Equation (3), where

the input features correspond to the MNIST original labeled

data. On other hand, Figure 2 (right) demonstrates the process

of applying Equation (3) on the MNIST-M data, which we

assume to be label-free (the labels used for accuracy assessment).

Note that the resulting images after transformation of the

same digit look similar for the two processes. Using principal

component analysis (PCA) and t-SNE, we demonstrate later how

much these proposed transformations brought the distributions

(at least their principle components) closer to each other. Since

this approach is relatively direct, requiring no optimization

or eigenvalue projections, we refer to it as direct domain

adaptation (DDA).

The operations involved in DDA given by Equations (3)

and (6) are designed to reciprocally embed the spectral

features of one domain into the other, where the transformed

data have equal instances of both data. The auto-correlation

operation yields zero phase so that the phase information of

each data (holding most the features needed for classification)

remains intact. These features will be demonstrated in our

Fourier analysis.

2.4. A Fourier domain analysis

If we transform the target images to the Fourier domain,

considering the basic laws of the Fourier representation of

cross-correlation and convolution, Equation (2) can be written

as

Xi
t = AieIφ

i
= RiSi + Ni, (9)

where A and φ are the amplitude and phase, respectively, of

the complex-valued Fourier representation, with I representing

the imaginary unit. All capital letters indicate the Fourier

representation form of the reflectivity, source, and noise

functions in Equation (9), given respectively. As a result, we can

write Equation (3) in the Fourier domain as

Xi
s = X̄s

i
X̃s

j





1

Nt

∑

j

X̄jXj



 = X̄s
i
X̃s

j





1

Nt

∑

j

(

Aj
)2



 ,

= X̄s
i
X̃s

j





1

Nt

∑

j

(

RjSj + Nj
) (

R̄jS̄j + N̄j
)



 , (10)

where the overstrike, .̄, symbol here stands for the complex

conjugate. Note that the transformed source input features

will contain elements of the target noise and reflectivity. More

importantly these elements do not affect the shape of the features

as they have zero phase.

The application of the model on target data will involve

an input to the model given by Equation (6), which can be

represented in the Fourier domain by

X
i
t = X̄i





1

Nt

∑

j

X̂j









1

Ns

∑

j

X̄s
j
X
j
s





=
(

R̄iS̄i + N̄i
)





1

Nt

Nt
∑

j

(

R̂jŜj + N̂j
)









1

Ns

∑

j

X̄s
j
X
j
s



 ,

(11)

where R̂, Ŝ, and N̂ correspond to the aforementioned random

pixel reflectivity, source, and noise, respectively, expressed in

the Fourier domain. In this domain, for a single random pixel

case, these quantities are constant, and the summation will

render an average over the target input features. If the random

pixel value is placed in the middle of the image as we do here,

then all these quantities are real admitting no phase shifts, like

in the case of the auto-correlation in Equation (10). So from

Equations (10) and (11), we clearly notice that DAA given by

both transformed input features contain equal representations

of the source, reflectively and noise from the target domain.

Since, the two data sets, after transformation, share the same

elements sampled from their corresponding distributions, then

the distributions of the two data sets should be close, which

allows us to satisfy the requirement Ps(Ts(x)) ≈ Ps(Ts(r)) for
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FIGURE 2

The workflow chart for the proposed data adaptation applied as an example to the MNIST/MNIST-M datasets. On the left, the proposed process

used for producing the training data; on the right, the proposed process used for producing the testing/application data. The circled cross

symbol denotes a cross-correlation operation, and the star symbol denotes a convolution operation.

the generalization of the NN model. In other words, the second

term in Equation (1) will be small.

3. The MNIST data example

TheMNIST dataset has commonly been used to evaluate the

performance of supervised learning algorithms tasked to classify

images (LeCun et al., 1998). The image dataset contains 60,000

training samples and 10,000 testing samples of handwritten

digits, with their corresponding labels (the digits). Training

accuracy has reached almost 100% (Byerly et al., 2021). As

a follow up, the MNIST-M dataset was developed as a more

complicated form of MNIST. The images of the MNIST

digits were combined with patches randomly extracted from

color photos, and thus, have 3 color channels rather than

monochrome images in the MNIST dataset. The MNIST-M

dataset has been used to test newly proposed domain adaptation

methods (Long et al., 2015; Ganin et al., 2016). It is made up

of 59,000 training images and 9,000 testing images, which we

assume to be label-less.

3.1. The setup

As mentioned above, the target MNIST-M input features

are colored images described over 3 RGB channels, whereas the

available training data inputs are gray-scale. We transfer features

of source dataset to the target dataset, and vice-versa, by a

sequence of linear operations explained earlier. The transformed

source dataset then is used for training of the network while

the validation happens on the transformed target dataset. Since

the MNIST data are single channel gray-scale images, we simply

replicate the mono-channel values into the three channels.

The architecture of the deep neural network for digit

classification is inherited from Ganin et al. (2016). In this paper,

the authors introduce the concept of domain adversarial neural

networks for domain adaptation and design the generative-

adversarial architecture (DANN) for this purpose. The generator

used in their digit recognition example originally produces two

outputs—categorical for digit labels and binary to identify the

domain of the input data. We modify this generator by keeping

only categorical output, which assigns labels from 0 to 9 for the

input images. The resulting convolutional network (Figure 3) is

a variant of the classic LeNet-5 architecture for digit recognition

(LeCun et al., 1998). Specifically, the convolutional part of the

network is built as a stack two blocks where each block consists

of a convolutional layer, batch normalization and max pooling,

followed by a ReLU activation function. The classification head is

built as a set of fully-connected layers and batch normalizations

followed by ReLU. The output from the last fully-connected

layer is passed through the Softmax activation function that is

equivalent to assigning probabilities among categorical labels.

There are also two Dropout layers placed in the encoder and

classification head.

3.2. Adaptation process

We apply the DDA to the MNIST and MNIST-M data using

Equations (3) and (6), respectively. In Figures 4, 5, we show

the effect of DDA on an example image for each of the 10

digit classes. The left column of each Figure shows the training

(source) samples transformation, while the right column shows

the inference (target) samples. For each digit, we show the

color image (top row), and the corresponding individual RGB

channels (bottom row), which constitute the actual input to
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FIGURE 3

The architecture of the convolutional neural network for digit classification. The proposed method operates in the data domain and does not

require intervention into the existing training workflow.

the classification network. The images labeled cs, ct, as, and at

correspond to Equations (4), (7), (5), and (8), respectively. Note

that the final transformed input features for the source and target

data look very similar. This similarity is more profound in the

3-channel representation, which are the actual inputs. We also,

however, ended up with a reverse in polarity apparent in the

input features for digits 0, 3, 5, and 8. This will be covered by

the polarity reversal we will implement to augment the training

(source) data, and such a reversal is demonstrated in Figure 4,

as well.

3.3. Data augmentation and training

We apply DDA to the input training data on the fly.

Specifically, given a sample of input data from the source

(grayscale image), we first cross-correlate it with a random pixel

drawn from another arbitrary sample from the same dataset.

Then, we convolve the result with the mean of the auto-

correlation of the entire target dataset and re-normalize the

outcome to fit the [−1, 1] range. The re-normalization is trivial

and implies subtracting from the input features the minimum

value among all channels, then dividing by the maximum of the

previous result, which will bound the values between zero and

one, and finally we multiply the output by 2 and subtract 1.

At the inference stage, given a sample from the target dataset,

we cross-correlate it with the average of pixel values from the

same dataset (specifically, we randomly draw a pixel from each

image in the dataset and compute their average) and convolve

the result with the average of auto-correlation of the source

dataset. For inference on a sample from source dataset for

testing, we would reverse the domains and first cross-correlate

the sample with themean of pixel values from the source dataset,

followed by the convolution with the mean auto-correlation of

the target dataset.

We train the network for 100 epochs using a batch size

of 128 and an Adam optimizer (Kingma and Ba, 2014) with

the learning rate set to 1e − 3. To emphasize the capability

of our proposed DDA approach, we augment the data using

trivial methods. These include random polarity reversal of color

channels and channel-shuffling. The first one compensates for

polarity mismatch between transformed images in the two

datasets so we train the network to deal with it. The second

augmentation effectively expands the dataset by changing the

order of channels in the image.

The inference accuracy on the transformed test partition of

the source dataset reaches 99%, similar to the scenario when

the network was trained on the original data from the MNIST

dataset. This suggests that the features of source dataset are

not distorted to the point in which the score degrades. It still

maintains the resolution of the original MNIST. We also show

the performance of the DANN approach mentioned earlier for

comparison. This method reaches 90% accuracy on the colored

dataset by minimizing the domain gap during the adversarial

training. The proposed DDA method operates in the data

domain and reaches an accuracy of more than 70% for inference

on the targetMNIST-Mdataset. Meaning that the DDAmight be

integrated into the existing training routines without changing

the network architecture. Finally, we note that the classification

accuracy score reached by DDA is higher than what we would

obtain without the proposed transformation of 30% (Figure 6).

3.4. Analysis

To further analyze the proposed direct domain adaptation

(DDA) approach, we display the principal component analysis
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FIGURE 4

The transformation results for examples from digits 0 to 4 images. The left column shows the transformation of source (MNIST) data, and the

right column shows the transformation of the target (MNIST-M) data. For each input, we show the composite and the 3-channel transformation.

The last column of the second row shows the 3-channel output and its polarity reversal, which we implement in the augmentation of the

training data.
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FIGURE 5

The transformation results for examples from digits 5 to 9 images. The left column shows the transformation of source (MNIST) data, and the

right column shows the transformation of the target (MNIST-M) data. For each input, we show the composite and the 3-channel transformation.

The last column of the second row shows the 3-channel output and its polarity reversal, which we implement in the augmentation of the

training data.
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(PCA) for the source and target input features before and after

the transformations 3 and 6 (Figure 7). Prior to DDA, the

source (crosses) and the target (circles) input features occupy

two different areas and they are separated mainly by the first

FIGURE 6

The accuracy curves for application of trained networks on test

partition of MNIST (solid black) and MNIST-M (other) datasets.

The inference score on MNIST-M by CNN (dashed), DANN (blue)

and proposed method (CNN + DDA, red). The perfect score is

shown as a dotted line at 1.

principal component (the horizontal axis), which accounts for

mainly the background of the images. After DDA, the source

and target input features reasonably overlap and they follow

certain slopes that are controlled by features in the images. A

closer look is provided by Figures 8A,B in which the actual

images before and after DDA are shown, respectively, as a

function of the principal components. Along these slopes,

which are linear combinations of the two principal components

(eigenvectors corresponding to the two largest eigenvalues), we

notice the images from the source and target data having, more

or less, similar background. The source images (dashed box in

Figure 8B) gravitate toward the edges of the slopes, while target

images dominate the middle. In other words, the source images

after DDA have larger magnitude of the principal components,

or in other words, more pronounced features along the principal

components, which could be helpful for the training.

We further analyze the effect of the transformation using

t-SNE, which exposes non-linear features in the images. We

first compare the t-SNE for the MNIST (source) and MNIST-M

(target) images before and after DDA (Figure 9). The separation

between the two domains are more obvious in this plot. Thus,

an NN model trained on the source data will have a hard

time producing accurate classification on the target (MNIST-

M) data due to the obvious covariate shift. This was reflected

in the low 30% accuracy we got in applying the MNIST data

trained model on the MNIST-M dataset. After applying DDA,

we see clusters of mixed source and target data. A closeup look

in Figures 10A,B reveals that these clusters are defined by the

FIGURE 7

The PCA plots of the MNIST (circles) and MNIST-M (crosses) images with the corresponding digits they represent given in a unique color before

(left) and after (right) the proposed transformations.
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FIGURE 8

The PCA result of Figure 7 with the input images shown (A) before and (B) after the proposed transformation.

FIGURE 9

The t-SNE plots of the MNIST (circles) and MNIST-M (crosses) images with the corresponding digits they represent given in a unique color

before (left) and after (right) the proposed transformations.

new general background of these images (which is a mix of

the original backgrounds). Luckily, these clusters include both

data domains. This implies that the transformation formed new

shared backgrounds between both data (source and target),

which explains the improved accuracy in the application of the

trained model on the target data.

4. Discussions

The transforms proposed to the input features from the

source and target data are linear, explicit, and efficient to

apply. The mean of the auto-correlation (as, at) and the

mean of the randomly drawn pixel/pixels (x̂s, x̂t) can all be

computed once and then applied to the input features like

a linear layer. The Fourier domain provides a venue for an

efficient application of these terms. Unlike conventional domain

adaptation methods, the process here requires no training.

Since these operations are linear, there is generally no loss in

resolution in the input features, as these processes translate

to multiplications in the Fourier domain. So the transformed

input features carry more or less the same information as the

original features. This assertion is supported by the training

accuracy we achieved on the transformed MNIST data, which

is at the same level as the original MNIST data using the

same network.
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FIGURE 10

The t-SNE result of Figure 9 with the input images shown (A) before and (B) after the proposed transformation.

Since DDA produces input features with equal amounts

of source and target information, the distributions of the new

transformed input features are expected to be closer. DDA also

does not alter the general shape of the input feature, and thus,

is expected to be applicable to not only classification problems,

but also, segmentation, as well as other supervised learning

tasks in general.

The mean of the auto-correlation of the input features

is meant to extract the energy distribution information from

one domain and insert it into the other domain through the

convolution process. If the target domain includes a single

example, the auto-correlation will contain more information

of the energy distribution of that single example, and that

information will be embedded in the training set. Recall that

the auto correlation process admits zero phase, and thus, do

not alter the general features of the input image. For example,

if the target set only includes one sample given by the digit 7, the

auto correlation will capture the background of this single image

and the shape of this digit will be equally distributed on all the

training set, and the differences given by the images of the digits

will be maintained.

The PCA and t-SNE of the input features before and

after DDA revealed to us that the approach managed to

bring the input features (source and target) closer to each

other, at least along the principal components. For the

MNIST and MNIST-M data, the transformations produced a

shared background for the input features that has elements

from the original backgrounds of the source and target

input features.

5. Conclusions

We proposed a direct and explicit technique to precondition

the input features for a supervised neural network optimization

so that the trained model works better on available label-

free target data. This concept of direct domain adaptation

(DDA) is based on incorporating as much information from

the target input features into the training without harming the

source input features crucial for the prediction. Considering

the two domains (source and target), we specifically cross-

correlate an input section from one domain with the mean of

randomly picked samples from the same domain followed by

a convolution with the mean of the auto-correlated sections

from the other domain. For training the NN model, the input

image is from the source domain, and for the application, the

input image is from the target domain. The DDA operates

in the data domain, and thus, does not require changes

in existing network architecture and logic of the training

workflow. Thus, it might be incorporated into existing solutions

as a component of the data pre-processing routine. A test

of this approach on the MNIST data as source and the

MNIST-M data as target admitted 70% accuracy on the

target data.
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