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ABSTRACT

V(D)J recombination and class switch recombina-
tion are the two DNA rearrangement events used to
diversify the mouse and human antibody repertoires.
While their double strand breaks (DSBs) are initiated

15 by different mechanisms, both processes use non-
homologous end joining (NHEJ) in the repair phase.
DNA mismatch repair elements (MSH2/MSH6) have
been implicated in the repair of class switch junctions
as well as other DNA DSBs that proceed through

20 NHEJ. MSH2 has also been implicated in the regula-
tion of factors such as ATM and the MRN (Mre11,
Rad50, Nbs1) complex, which are involved in V(D)J
recombination. These findings led us to examine
the role of MSH2 in V(D)J repair. Using MSH2�/� and

25 MSH21/1 mice and cell lines, we show here that
all pathways involving MSH2 are dispensable for
the generation of an intact pre-immune repertoire
by V(D)J recombination. In contrast to switch junc-
tions and other DSBs, the usage of terminal homology

30 in V(D)J junctions is not influenced by MSH2.
Thus, whether the repair complex for V(D)J recom-
bination is of a canonical NHEJ type or a separate
microhomology-mediated-end joining (MMEJ) type,
it does not involve MSH2. This highlights a distinction

35 between the repair of V(D)J recombination and other
NHEJ reactions.

INTRODUCTION

Two types of recombination events occur at the Immuno-
globulin (Ig) locus of B cells in mice and humans. Initially,

40combinatorial joining of gene segments that encode either the
heavy or the light chain of the Ig receptor by V(D)J recomb-
ination generates a diverse nascent repertoire (1). Following
an immune response, class switch recombination (CSR) leads
to the generation of antibodies of different isotypes (2). At the

45DNA level, both recombination events consist of a cleavage
generating a double strand break (DSB), followed by a joining
phase (3–5).

In the case of V(D)J recombination, RAG1 and RAG2 along
with other contributing factors such as HMG-1 recognize and

50bind the 12 or 23 recombination signal sequence (RSS) flank-
ing each recombining V, D or J gene segment (6–8). The RAG
complex initiates V(D)J recombination by introducing a
nick at the RSS/coding border leaving a 30-OH coding end.
A subsequent inter-strand trans-esterification reaction leads to

55the generation of a hairpin coding end and a blunt signal end
(9,10). In CSR, however, the DSB has been shown to be
induced through the action of the enzyme activation-induced
cytidine-deaminase (AID) (11–14). Recent work has shown
that AID initiates somatic hypermutation (SHM) and CSR by

60deaminating cytidines in the V-region and switch region of the
Ig locus, respectively (15–17). The resulting uridine is then
removed by uracil DNA glycosylase (UNG) resulting in an
abasic site (18,19). In the case of CSR, the generation of two
such abasic sites on opposite strands is thought to result in a

65DSB in the switch region. Indeed, when AID or UNG are
absent, CSR is completely abolished (20,21).

Whether a DSB is generated by V(D)J recombination, CSR
or DNA-damaging agents such as ionizing radiation, its repair
is essential to the viability and/or progression of the cell. In

70eukaryotes, DSBs are either repaired by homologous recomb-
ination (HR) or non-homologous end joining (NHEJ) (22,23).
As HR uses sister chromatids as the source of undamaged
template, it functions in late S/G2 phase. NHEJ however is
the prominent repair pathway during G0/G1 (24). As such,
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CSR and V(D)J recombination both use the NHEJ pathway for
the repair of DSBs and all require a set of factors that are
essential to NHEJ (25–27). These include ATM, the MRN
complex (Mre11, Rad50, Nbs1), Ku70/80 and DNA-PKcs

5 (4,23,28). However, given their distinct DSB-initiating path-
ways and different cell types in which CSR and V(D)J recomb-
ination occur, it is probable that NHEJ repair of each reaction
also utilizes a set of other unique factors, though such differ-
ences have thus far not been clearly defined.

10 A possible candidate for a pathway that might be differen-
tially involved in the NHEJ of DSBs that occur during CSR,
general DNA damage and V(D)J recombination is the mis-
match repair pathway involving MutS homologs MSH2,
MSH3 and MSH6 (29). In mice and humans, MSH2 can

15 form homodimers as well as MSH2/MSH3 or MSH2/MSH6
heterodimers (30–32). MSH2/MSH6 heterodimers bind with
high affinity to single-base pair mismatches and small 1–2 nt
insertion–deletion loops (33–35). Mismatch engagement by
MSH2/6 dimers is followed by the recruitment of down-

20 stream MMR proteins, including MLH1 and PMS2, in an
ATP-dependent manner (36–38).

MSH2 has been demonstrated to play a role in both SHM
and CSR (39–44). MSH2�/� mice have reduced A-T muta-
tions during SHM and reduced CSR activity. One study also

25 found altered characteristics of switch junctions, namely a
reduction in the usage of terminal microhomologies (45).
A similar phenotype was observed in mice deficient in
exonuclease 1, lending support to the proposed role of this
enzyme downstream of MSH2 in the mismatch repair of

30 CSR junctions (46). However, mice with a knock-in mutation
in MSH2 (MSH2G674A) which is able to recognize mis-
matches but lacks ATPase activity, exhibited an increased
usage in terminal microhomologies in their CSR junctions
(47), similar to the phenotype observed in PMS2�/� mice

35 (45). Whatever the exact nature of the role of MSH2 might
be, it is clearly involved in the repair of CSR junctions. A
recent study has also found reduced usage of terminal micro-
homologies in the NHEJ repair of a transgenic substrate in a
MSH2�/� CHO cell line (48). Other reports implicate MSH2

40 in signaling as well as cell-cycle regulation of ATM and the
MRN complex (49,50) which are not only essential to
the repair of CSR DSBs, but also involved in V(D)J recomb-
ination (28,51–54). These observations, along with the
potential for the generation of single as well as multi-base

45 mismatches in the formation of V(D)J coding joints, prompted
us to examine the role of the mismatch repair pathway and in
particular its central player MSH2, in V(D)J recombination
in vivo in the context of mouse bone marrow and ex vivo, in
the context of cell lines differing in the MSH2 status.

50 MATERIALS AND METHODS

Amplification and sequencing of DJH joints

Genomic DNA from the bone marrow of two MSH2�/� and
wild-type littermates was purified (Qiagen) to a concentra-
tion of 100 ng/ml. The mouse line has been described

55 previously (55). Dilutions of 1/4, 1/16 and 1/64 (corresponding
to 10000, 2500 and 600 cell equivalents) were used as
template. GAPDH amplification primers were GAPDH-F,
TCCACCACCGTGTTGCTGTAG, and GAPDH-R,

GACCACAGTCCATGCCATCACT. DJ joints were ampli-
60fied as described previously (56) by using the DFS primer,

AGGGATCCTTGTGAAGGGATCTACTACTGTG, which
hybridizes to the 50 RSS of all murine DH segments, and
JH4-C primer, AAAGACCTGCAGAGGCCATTCTTACC,
which hybridizes 50 bp downstream of JH4 in the JH4-Cm

65intronic region. PCR was carried out in 25 ml volumes. A cycle
of 94�C for 30 s, 50�C for 30 s and 72�C for 2.5 min was
repeated 25 times for the GAPDH primer set and 35 times for
the D/J primer set. An incubation at 72�C for 10 min followed.
PCR product (15 ml) was electrophoresed on 1.5% agarose

70(Bioshop) gels and visualized or transferred to nitrocellulose
for Southern analysis to confirm the identity of the bands.
Of the same PCR product 4 ml was used in ligation with
the PCR2.1 TA cloning vector (Invitrogen), and plated on
Kanamycin plates containing X-gal. Blue/white screening

75was used to identify colonies harboring an insert. Colonies
were grown up over night in 96-well plates using the 96-well
miniprep kit (Millipore), followed by EcoR1 digest to deter-
mine the insert size and identify the JH used. DJH4 inserts
were sequenced using the T7 primer. DJH2 and DJH3 inserts

80were sequenced using the T7 and M13R primers. Sequencing
was done by Macrogen, Korea.

Extra-chromosomal recombination assay

The Plasmid pmlDJ+ was generated from the pV81x-D-J
microloci described (57). PCR on the pV81-D-J was carried

85out using a DFL50RSS primer with an engineered BamH1 site
GGATCCGGTTTTTGCTGATGGATATAGCACTGTG and
an anti-sense primer specific for the polyoma region CAAC-
GAAGAGGTCCCTACT. After a hot start at 85�C for 5 min,
30 cycles of a 3 step PCR (94�C for 30 s, 55�C for 1 min and

9072�C for 1 min plus 5 s per cycle) was followed by 72�C for
10 min. The PCR product of 650 kb was cloned into the PCR II
vector (TA cloning kit; Invitrogen), mapped by restriction
digests and sequenced from each end. The verified products
were cloned into the backbone of pJC119 via the flanking

95BamHI sites (Figure 4). The orientation of the inserts in the
final constructs were determined by restriction digestion and
sequencing. Two Abelson murine leukemia virus (A-MuLV)
transformed pre-B cell lines (58) were transfected with the
pmlDJ+ microlocus recombination substrate. These included

10015–63 (MSH2+/�) and 8–58 (MSH2�/�), the kind gift of
Dr N. Rosenberg (Tufts University School of Medicine,
Boston). Cells were cultured in RPMI supplemented with
10% BCS, penicillin and streptomycin. The transfection
assay has been described previously (57,59). Briefly, 1 mg

105DNA was used to transfect 2 · 107 cells by the DEAE-
Dextran method. DNA recovered from transfections was trea-
ted with DpnI to digest non-replicated plasmid DNA. Southern
analysis confirmed that recombination had indeed taken place
on the microlocus. The DpnI digested transfection DNA was

110transformed into ElectroMax DH10B competent bacteria
(Invitrogen) by electroporation with a GenePulser (BioRad).
Transformants were amplified for 16 h in an additional 4 ml
Luria–Bertani containing 100 mg/ml ampicillin. Plasmids were
recovered by alkaline lysis and digested sequentially with

115BamH1 to release the insert from the vector. The resultant
DNA fragments were fractionated by gel electrophoresis and
analyzed on Southern blots with oligomer probes according to

6734 Nucleic Acids Research, 2005, Vol. 33, No. 21



the manufacturer’s suggestions (Hybond-N; Amersham). The
microlocus and its various rearrangement products differed
sufficiently in size to identify all recombinants generated
by deletion with probe 30J1CY, CCAGTCGACCTGAG-

5 GAAACGGTGACC complementary to JH1. Bands were
visualized PhosphorImager (Molecular Dynamics).

Isolation and sequencing of microhomology directed
V(D)J joints

To isolate DFL16.1/JH1 recombinants from transfected cell
10 lines, PCR was performed on 1 ml of DpnI digested transfec-

tion DNA using the DFS primer described above and the JH1
specific primer 30 J1CY which hybridizes to a sequence 40 bp
downstream of JH1 located in the JH1-2 intronic region, which
is included in the JH1 cassette of pmlDJ+. PCR conditions

15 were described as above. PCR products were electophoresed
on a 2.5% agarose gel and the region of the gel in the 100–
200 bp range (corresponding to the size of the recombinant DJ
PCR product was cut out and DNA purified using Qiagen gel
extraction kit. A second round of PCR using same primers

20 yielded a 150 bp product, which was cloned into the PCR2.1
TA vector and sequenced using the T7 primer (Macrogen).

To specifically isolate endogenous DH/JH1 joints from the
bone marrow DNA, 1 ml of the DFS/JH4-C PCR described
above was used as a template for a nested PCR using the

25 DFS/JH1 primer pair. A 150 bp product was obtained which
was cloned into the PCR2.1 TA vector and sequenced using
the T7 primer.

Western blot analysis and antibodies

Whole cell extracts were prepared from 2 · 106 cells. Proteins
30 were separated on 12% SDS–PAGE at 100V for 10 min

followed by 200V for 30 min. Proteins were transferred to
nitrocellulose membrane (Pall Gelman Laboratories) at 50V
for �4 h. Membrane was blocked in 3% BSA 1· TBS-T,
washed in 1· TBS-T and probed with anti-MSH2 or anti-b-

35 Actin antibodies for 1 h followed by secondary antibodies for
1 h. All antibodies were diluted in 1% BSA 1· TBS-T. For
MSH2, mouse anti-MSH2 antibody (Zymed) was used at a
1:5000 dilution. Secondary antibody used was goat anti-mouse
IgG-HRP (Jackson) at a 1:5000 dilution. For b-actin, rabbit

40 anti-mouse b-actin antibody (Abcam) was used at a 1:10 000
dilution. Secondary antibody used was goat anti-rabbit
IgG-HRP (Southern Biotech) at a 1:5000 dilution. Membranes
were exposed to ECL for 1 min and image was obtained using
VersaDoc.

45 RESULTS

Levels of DH to JH joining in the bone marrow of
MSH2+/+ and MSH2�/� mice

Aside from susceptibility to lymphoid tumors and microsatel-
lite instability, MSH2�/� mice have been shown previously to

50 have normal B and T cell development at the gross level (60).
Although B cells in MSH2�/� mice can also undergo SHM and
CSR, they differ in the pattern of SHM mutations and the
sequence of CSR joints from their wild-type counterparts
(44,45,61). Since the same DNA repair machinery (NHEJ) that

55 is involved in CSR is also utilized in V(D)J recombination,

we sought to examine whether the loss of MSH2 has any
influence on the fine details of V(D)J joints.

To assess whether the frequency of V(D)J rearrangements
were affected in MSH2�/� mice compared with littermate

60controls, we performed a semi-quantitative PCR analysis of
DH-JH joints. The DJH junctions were examined since their
frequency and sequence are not affected by cellular selection
of pre-B cells harboring them. The schematic representation
of the PCR assay is shown in Figure 1A. As described previ-

65ously (56), the DFS primer hybridizes with the 50 RSS of all
15 DH segments in the mouse and the JH4-C primer hybridizes
with a sequence in the intron between JH4 and Cm. Thus, this
primer pair amplifies all 60 possible DJH rearrangements in
mice. The amount of template DNA for the DJH PCR was

70normalized using a PCR for GAPDH, shown in Figure 1B
(lower panel). Starting with �10 000 cell equivalents, bone
marrow DNA from the MSH2+/+ and MSH2�/� littermates
was serially diluted and used as template for PCR using the
DFS/JH4-C primer sets. As shown in Figure 1B (upper panel),

75products of expected sizes were amplified from all four
mice. Using PCR conditions and template dilutions in the
linear range of PCR amplification, comparable total number
of DJH joints between MSH2+/+ and MSH2�/� littermates
were amplified (Figure 1B, upper panel). These results indic-

80ate that the frequency of V(D)J recombination initiation is
comparable in MSH2+/+ and MSH2�/� mice.

Sequences of the DJH joints in the bone marrow of
MSH2+/+ and MSH2�/� mice

Although the frequency of DJH joints was not affected in
85MSH2�/� mice, it was possible that the V(D)J joints differed

in their sequence, as was the case in the NHEJ-repaired switch
and other DSB junctions in MSH2�/� cells. To examine the
sequence of the DJH joints, PCR-amplified products shown in
Figure 1B were sequenced and the data is shown in Figure 2.

90We observed a similar profile of utilized DH and JH segments
between MSH2+/+ and MSH2�/� littermates. All sequences
contained deletions, N-additions and P-additions. Quantitative
analysis of end processing is shown in Figure 3. A comparison
of the distribution pattern as well as the location of the hori-

95zontal bars which represent the average number of nucleotides
added or deleted for each mouse shows no appreciable differ-
ences between the MSH2+/+ and MSH2�/� mice. That is, the
lengths of deletions or additions as well as the number of joints
that had undergone each type of modification were compar-

100able. Of particular interest, the relative number of joints which
exhibited P-nucleotides were also not significantly different
among all littermates, indicating that MSH2 does not play a
role at the hairpin-opening stage of coding end processing,
since it is the asymmetric opening of the hairpin coding end

105that leads to the addition of such palindromes (62). Based on
these data, we conclude that the mismatch repair machinery
does not influence the efficiency nor the processing of V(D)J
recombination in mouse bone marrow.

The influence of MSH2 on joining by homology
110during V(D)J recombination

MSH2 has been shown to influence the usage of terminal
microhomologies in the formation of switch junctions during
CSR (45,47) and in the repair of a transgenic substrate in CHO

Nucleic Acids Research, 2005, Vol. 33, No. 21 6735



cells (48). This suggests a role for MSH2 in the usage of short
homologous sequences during NHEJ. Thus, we examined
whether MSH2 serves a role in microhomology mediated join-
ing during NHEJ repair of coding ends generated by V(D)J

5 recombination. The most abundant and notable example of
‘joining by homology’ occurs between the two segments
DFL16.1 and JH1, which end and begin respectively in the
same 4 nt: CTAC (63). This phenomenon has been the subject
of multiple studies (64,65) since DFL16.1 is the most com-

10 monly used DH segment in early mouse B cell development
and since the DJH junction encodes for amino acids within
the CDR3 region which is the most diverse region of the Ig
molecule.

In order to examine the role of MSH2 in microhomology
15 mediated joining in V(D)J recombination, three separate

approaches were used. First, existing sequence data shown
in Figure 2 was analyzed, because the majority of DH seg-
ments terminate in the di-nucleotide ‘AC’ and JH2 begins with
this di-nucleotide sequence. As we observed no difference

20among the DJH2 joints between MSH2+/+ and MSH2�/� lit-
termates, we set out to analyze DJH1 joints using two experi-
mental approaches. We analyzed bone marrow derived DJH1
joints which include DFL16.1-JH1 among other DH segments
joined to JH1. This analysis was done using a nested PCR

25approach, with the primary reaction identical to that shown
in Figure 1 and the secondary reaction employing a JH1–JH2
intronic primer (J1CY). In the third approach, we utilized
an extra-chromosomal recombination substrate shown in
Figure 4, which contains only two gene segments, DFL16.1

30and JH1, and has been shown to undergo recombination and

Figure 1. Semi-quantitaive PCR analysis of V(D)J recombination. (A) Schematic representation of the PCR assay to amplify DH–JH joints from the mouse bone
marrow. The DFS primer hybridizes to the 50 RSS of all 15 DH segments in mice and the JH4-C primer hybridizes downstream of the JH4 segment. PCR products
corresponding to each JH segment used have a different size as shown. (B) Upper panel shows an Ethidium-bromide stained agarose gel of semi-quantitative
PCR using the DFS/JH4-C primers with serial 4-fold dilutions, starting with 10 000 total bone marrow cell equivalents. Lower panel shows PCR of GAPDH from
the same template dilution corresponding to the lanes in the top panel.
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end processing when transfected in A-MuLV pre-B cell lines
expressing RAG1/2 and terminal dideoxynucleotidyl trans-
ferase (TDT) (57). The DJ construct was transfected into
two cell lines differing in their MSH2 expression status.

5The 15–63 line is MSH2+/� and the 8–58 line is MSH2�/�.
RAG and TDT expression in these cell lines was confirmed by
RT–PCR analysis (data not shown). Western analysis showing
the MSH2 expression status of these cell lines is shown

Figure 2. DJH joint sequences from MSH2+/+ and MSH2�/� littermates. DJH PCR products from the reaction shown in Figure 1B were cloned into the PCR2.1 vector
and sequenced. (A) Upper panel shows sequences from littermate WT-1 (MSH2+/+) and lower panel shows sequences from littermate WT-2 (MSH2+/+). (B) Upper
panel shows sequences from littermate MSH2-/-1 and lower panel shows sequences from littermate MSH2�/�2. P-nucleotides are indicated in bold.

Nucleic Acids Research, 2005, Vol. 33, No. 21 6737



in Figure 6A. DJH1 sequences were obtained by PCR using the
DFS and J1CY primer pairs.

DJH1 sequences from mouse bone marrow are shown in
Figure 5 and DFL16.1/JH1 sequences from the transfection

5 assay are shown in Figure 6B. The frequency of microhomo-
logy mediated joining is shown in Table 1. The combined
frequency of joining by homology among the DFL16.1-JH1
joints in MSH2+/+ and MSH2�/� mice was 11 and 7.1%,
respectively. The frequency of joining by homology events

10 in the MSH2+/� and MSH2�/� cell lines was identical (24%).
We conclude that while the lack of MSH2 reduces the usage of

terminal microhomologies in NHEJ repair of CSR and other
DSBs, it does not have a significant effect in the usage of
microhomologies in NHEJ repair of V(D)J joints.

15DISCUSSION

It has been known that ablation of MSH2 diminishes levels of
CSR and influences usage of microhomology directed switch
junctions (43–45,47). MSH2 has been shown to associate
with transcribed S-regions in primary murine B cells activated

20for switch recombination and promoting synapsis between
S-regions (66). The same report also raises the possibility
that the ATPase-independent component of MSH2 may func-
tion in CSR, thereby providing an explanation for the differ-
ences between the MSH2�/� and MSH2G674A phenotypes. In

25a non-Ig transgene in CHO cell lines lacking MSH2, DSBs
were repaired with a lower frequency of microhomology usage
as compared with their wild-type counterpart, though in this
case the absolute number of repaired junctions was not affec-
ted (48). Thus, as general DSB repair and CSR repair both

30proceed through the NHEJ pathway, it appears that the mis-
match repair machinery is clearly tied to this mode of DSB
repair.

MSH2 has also been shown to be an important regulator of
the DNA-damage-response signaling molecule ATM and the

35MRN complex (49,50), both of which have been demonstrated
to be involved in the NHEJ repair of V(D)J junctions (4,28,54).
These findings led us to hypothesize that MSH2 may play a
direct or indirect role in the outcome of V(D)J joints. However,
our results obtained from mouse bone marrow sequences

40indicated that the loss of MSH2 does not influence the fre-
quency or the end processing of V(D)J recombination joints.

To analyze a specific phonotype in which MSH2 has been
shown to play a role in CSR as well as repair of other DSBs

Figure 3. Quantitative analysis of end processing in DJH joints from MSH2+/+ and MSH2�/� littermates. Each circle represents an individual joint sequence. Open
circles denote joints from each of the two WT (MSH2+/+) littermates and closed circles denote joints from each of the two MSH2�/� littermates. Horizontal bars
represent the average number of nucleotides deleted or added for each mouse. The left panel represents deletions into the DH segment, middle panel represents total
number of nucleotides added (including both N and P-additions) and the right panel represents nucleotides deleted from the JH segment.

Figure 4. Schematic representation of the extra-chromosomal recombination
substrate pmlDJ+. This substrate construction is described in Materials and
Methods. The episomal substrate contains the full DFL16.1 segment and JH1
segment with the flanking sequences derived from endogenous sequences
flanking each segment in the Ig locus. The substrate has an Ampicillin-
resistance cassette as well as a Polyoma origin of replication.

6738 Nucleic Acids Research, 2005, Vol. 33, No. 21



in non-lymphocytes, we examined the frequency of ‘joining by
homology’ in V(D)J recombination in the bone marrow of
MSH2+/+ and MSH2�/� littermates as well as MSH2+/+,
MSH2+/� and MSH2�/� A-MuLV pre-B cell lines. Several

5 studies have shown that when the two gene segments to be
recombined have a homology of at least 2 but up to 4 nt at the
respective 30 and 50 ends, the two segments are often joined
without further processing of the ends, with one copy of the
homologous sequence remaining, which could be assigned to

10 either segment (64,67). We analyzed joining by homology
among all JH2-containing joints, since the JH2 segment shares
a di-nucleotide microhomology with most of the DH segments
and all the JH1-containing joints, since the JH1 segment shares
a 4 nt microhomology with most DH segments, including the

15 often used DFL16.1. In addition to the analysis of joints in
the mouse bone marrow, we analyzed DFL16.1-JH1 joints
from an extra-chromosomal recombination substrate transfec-
ted into MSH2+/� and MSH2�/� cell lines. We reasoned that
this approach would not only allow for the analysis of a large

20 pool of joints between the two specific gene segments most
implicated in joining by homology, it would also shed light
on whether MSH2 plays a differential role in V(D)J recomb-
ination in mouse bone marrow as compared with V(D)J

recombination in A-MuLV cell lines which represent an
25immortalized window of B cell development. Results from

both the bone marrow and cell line generated DJH joints
indicate that joining by homology occurs with equal frequency
in the presence of absence of MSH2.

Microhomology mediated joining in V(D)J recombination
30may proceed through the same generic NHEJ pathway as all

other V(D)J recombination events. Alternatively, it may pro-
ceed through a microhomology-mediated-end joining (MMEJ)
pathway that has been shown to be independent of some of
the components that are essential to NHEJ, while still requir-

35ing others such as the MRN complex (68–70). Whatever the
case might be, mismatches generated in the joining of coding
ends are either not recognized by MSH2 or are resolved via an
alternative pathway.

While it is of very high likelihood that single or multiple
40base pair mismatches are encountered during the joining of the

two gene segments in V(D)J recombination, we show here that
they are not resolved via a MSH2-dependent mismatch repair
pathway.

We conclude that while most factors involved in NHEJ (e.g.
45ATM, DNA-PK, MRN) are involved in all NHEJ processes

including CSR and V(D)J recombination, DSBs formed by

Figure 5. DJH1 joint sequences from MSH2+/+ and MSH2�/� littermates. DJH PCR products from the reaction shown in Figure 1B were used as templates in a nested
PCR using a JH1–JH2 intronic primer (J1CY) to amplify only joints that utilized the JH1 segment. PCR products were cloned into the PCR2.1 vector and sequenced.
(A) Upper panel shows sequences from littermate WT-1 and lower panel shows sequences from littermate WT-2. (B) Upper panel shows sequences from littermate
MSH2�/�1 and lower panel shows sequences from littermate MSH2�/�2. Sequences followed by an asterisk were scored as joining by homology joints.
P-nucleotides are indicated in bold.
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these two processes also utilize a set of unique factors that
distinguishes them from each other. An interesting explanation
for the differential role of MSH2 in the repair of CSR and
V(D)J breaks may be that the coding ends formed in V(D)J

5 recombination are sequestered and ‘protected’ by the RAG

proteins as supported by experimental evidence (71–73). Cod-
ing ends in V(D)J recombination are also unique in their
hairpin structure. Thus, it is equally possible that the mismatch
repair machinery is excluded from their repair by factors

10involved in hairpin processing such as Artemis (74).
Based on the data presented here, we speculate that the lack

of MSH2 involvement in the NHEJ repair of V(D)J recomb-
ination may lead to a lower degree of restriction in the resolv-
ing of V(D)J joints, thereby contributing to further diversity

15in the Ig repertoire. In contrast, the repair of other genomic
DSBs including switch junctions may require a higher degree
of fidelity. Further biochemical studies could shed light on
whether this is indeed the case.
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