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Abstract
Bronchopulmonary dysplasia, or BPD, is the most common chronic lung
disease in infants. Genetic predisposition and developmental vulnerability
secondary to antenatal and postnatal infections, compounded with exposure to
hyperoxia and invasive mechanical ventilation to an immature lung, result in
persistent inflammation, culminating in the characteristic pulmonary phenotype
of BPD of impaired alveolarization and dysregulated vascularization. In this
article, we highlight specific areas in current management, and speculate on
therapeutic strategies that are on the horizon, that we believe will make an
impact in decreasing the incidence of BPD in your neonatal intensive care
units.
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Introduction
Bronchopulmonary dysplasia, or BPD, is the most common  
chronic lung disease in infants1,2. Despite many advances in  
neonatal-perinatal medicine, such as the administration of prenatal  
steroids, the introduction of surfactant, and “gentler” ventilation  
strategies, the incidence of BPD—as it has been historically 
defined—has not declined3. In the USA, the majority of infants 
developing “new” BPD have a birth weight of <1,250 g, adding 
10–15,000 new cases/year4. The burden of this disease, however, 
is exaggerated, as survivors continue to have pulmonary and  
neurodevelopmental sequelae, even as adults5.

In this commentary, we have attempted to highlight specific areas 
in the current management of premature neonates that we believe  
will make an impact in decreasing the incidence of BPD in your 
neonatal intensive care units (NICUs). We also speculate on  
therapeutic strategies that are on the horizon that would potentially 
further enable the process of continuing that trend.

Definition of bronchopulmonary dysplasia
BPD currently is most often defined in babies born before  
32 weeks using the NICHD/ORD consensus definition, which 
defines BPD based on need for supplemental oxygen at 28 days  
of life, and then grades BPD as mild, moderate, or severe depend-
ing on supplemental oxygen and respiratory support needs at  
36 weeks’ postmenstrual age (PMA)6. For this definition, the sever-
ity grades are defined as follows, based on needs at 36 weeks’ 
PMA: mild BPD is breathing room air, moderate BPD is the need 
for <30% supplemental oxygen, and severe BPD is requiring  
≥30% supplemental oxygen and/or positive pressure6.

There is growing concern that the consensus definition of BPD  
may fail to adequately classify infants, which has resulted in  
various modifications to the definition of BPD7, although all of 
the modified definitions continue to utilize supplemental oxygen 
and/or respiratory support needs. Recently, the Prematurity and  
Respiratory Outcomes Program (PROP) investigators exam-
ined various definitions for BPD and found that the incidence of  
BPD in the PROP cohort varied from 32 to 59% depending entirely 
on which definition of BPD was used7. Furthermore, in this  
cohort, 2 to 16% of patients could not be classified depending 
on which definition of BPD was used7. For additional detail and 
detailed discussion on the definition and epidemiology of BPD, 
please see a recent review8.

Pathogenesis of bronchopulmonary dysplasia
BPD occurs as a result of gene–environment interactions2,9.  
Genetic predisposition and developmental vulnerability secondary 
to antenatal and postnatal infections, compounded with exposure 
to hyperoxia and invasive mechanical ventilation to an immature 
lung, result in persistent inflammation (and its consequences,  
e.g. cell death), culminating in the characteristic pulmonary  
phenotype of BPD of impaired alveolarization and dysregu-
lated vascularization10. For the persistent inflammation and lung 
remodeling to occur, it does require a sustained duration of expo-
sure to environmental insults10. While the parameters of the early 
inflammatory response (e.g. cytokines) may not be detectable 
after prolonged exposure to the above factors, the downstream  

signaling inflammatory/immune pathways have initiated and 
affected permanent structural and functional deficits in the BPD 
lungs, as well borne out by the same being noted in children and 
adult survivors of BPD10–13. There is some clinical evidence that 
early interruption of the initial inflammatory response could result 
in the amelioration and potential reversal of these effects14.

How to decrease bronchopulmonary dysplasia today
Delivery room strategy
In 2010, while the American Heart Association (AHA), the  
European Resuscitation Council (ERC), and the International  
Liaison Committee on Resuscitation (ILCOR) issued recommen-
dations that have clearly stated that room air should be used to  
initiate resuscitation in term infants15, recommendations for  
preterm infants are still not definitive. As exposure to hyperoxia 
is a critical factor in the pathogenesis of BPD16, it is important to 
try and reduce the exposure to high concentrations of supplemental 
O

2
 as early as possible given the immature anti-oxidant defenses 

of the preterm newborn17. Pulse oximetry has been used to assess  
“normal” oxygen saturation (SpO

2
) values after birth in preterm 

infants, and the median time to achieve SpO
2
 of >80% and >90% 

was 7.3 and 8.1 minutes, respectively18. Multiple studies have 
assessed the use of low and high (including titration) concentra-
tions of supplemental O

2
 in the delivery room (DR)19–21. Meta- 

analyses have revealed that mortality and other outcomes are 
not significantly different in preterm infants when starting with 
a low (≤0.3) or high (≥0.6) fraction of inspired O

2
 (FiO

2
)22,23.  

However, given that the overall estimates of effect have a wide 
range of confidence intervals, additional data are required to be 
definitive. Currently, we would recommend initiating resuscitation 
in the DR with a default setting of FiO

2
 of 0.3–0.424 and titrating 

by 5–10% upwards or downwards. Using a T-piece resuscitator  
to provide continuous positive airway pressure (CPAP) or non- 
invasive intermittent positive pressure ventilation (NIPPV) is 
recommended. The blow-by O

2
 should be set at a FiO

2
 of 1.0.  

During the first few minutes of life, a SpO
2
 of 70–80% may be 

acceptable, as long as the heart rate is increasing, the baby is  
ventilating, and the SpO

2
 is increasing. If the SpO

2
 is <85% at  

5 minutes, increase the FiO
2
 concentration by 5–10% via the  

blender. If the SpO
2
 is >93%, gradually decrease the FiO

2
 con-

centration by 5–10% to maintain the SpO
2
 in the desired range  

(see below).

Oxygen supplementation beyond the delivery room
While there is significant ongoing controversy regarding the 
precise SpO

2
 target ranges to be employed beyond the DR for  

preterm infants25–29, we would recommend the lower alarm limit 
to be 88% and the higher alarm limit to be 96%. Attempting to 
target SpO

2
 88–92% would be appropriate17,30,31. For the older  

(>34 weeks) preterm infants on supplemental O
2
 and/or with 

retinopathy of prematurity stages 2–3 and/or to prevent/manage  
pulmonary hypertension, we would recommend a target SpO

2
 of 

93–97%, with alarm limits of 92–98%.

Support with non-invasive ventilation
As discussed above, the pathogenesis of BPD includes expo-
sure to mechanical ventilation, suggesting that by avoiding inva-
sive mechanical ventilation, i.e. mechanical ventilation via an  
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endotracheal tube, the risk for developing BPD may be decreased. 
The SUPPORT trial32 studied 1,316 infants born at <28 weeks’ 
gestation randomly assigned to intubation and surfactant or nasal 
CPAP (nCPAP) in the DR and found that the use of nCPAP was 
a safe alternative to intubation and surfactant in preterm infants. 
A recent meta-analysis33 comparing prophylactic nCPAP with 
invasive mechanical ventilation demonstrated that the use of 
nCPAP resulted in a modest decrease in the risk of develop-
ing BPD (relative risk [RR] 0.89, 95% confidence interval [CI]  
0.79–0.99, p=0.04). Another meta-analysis34 examined avoid-
ance of endotracheal mechanical ventilation and the development 
of BPD, in which the authors reported a small but significant 
benefit of avoiding endotracheal mechanical ventilation (i.e. suc-
cessfully managing with non-invasive respiratory support) on the  
development of BPD (odds ratio [OR] 0.83, 95% CI 0.71–0.96, 
p=0.01). Detailed discussion on the various modes of non- 
invasive respiratory support in the NICU for the prevention of  
BPD has been recently summarized35.

Extubate early
While avoiding endotracheal mechanical ventilation is associ-
ated with less BPD, often in these patients endotracheal mechani-
cal ventilation is necessary. This raises the question of whether  
earlier extubation decreases the risk of BPD. Robbins et al.36  
examined 224 patients born at <27 weeks’ gestation and found 
that the age at first extubation attempt correlated directly with 
endotracheal mechanical ventilation days and length of stay despite 
a median mechanical ventilation days of 32 and 65% of patients 
needing re-intubation. Furthermore, they reported that the earlier  
an extubation attempt was made, the lower the rate of BPD36.  
Berger et al.14 reported in a cohort of 262 infants born at  
≤28 weeks of gestation that the risk of BPD increased when 
extubation was delayed past the first week of life. In a large  
retrospective cohort study of extremely low-birth-weight infants  
(<1,000 g), Jensen et al.37 found that the risk of developing 
BPD increased with duration of mechanical ventilation, but the 
risk of developing BPD was not related to the number of venti-
lation courses. Since the number of extubation attempts did 
not correlate with BPD risk, it should be inferred that reduc-
ing the use of mechanical ventilation can be done safely and 
should reduce the risk for BPD and, furthermore, the sooner an  
extubation attempt is made, the lower the risk of BPD.

Role of nutrition
Nutrition plays an important role in the outcomes of preterm  
infants, and nutritional deficits are likely involved in the patho-
genesis of BPD. This raises the question of whether early nutri-
tion has an impact on the incidence of BPD. A recent report using 
national data from Sweden38 found that having a birth weight clas-
sified as small for gestational age (SGA) was a significant risk 
factor for developing BPD (adjusted OR 2.73, 95% CI 2.11–3.55,  
p<0.05). Wemhöner et al.39 reported that preterm infants who 
went on to develop BPD had significantly (p<0.01) lower cumu-
lative enteral carbohydrates, protein, and calories in the first 14 
days of life than did similar preterm infants who did not go on to 
develop BPD. Ehrenkranz et al.40 found in a cohort of 695 infants 

that as the rate of weight gain increased, the incidence of BPD  
significantly decreased. Recently, it was reported that, in a cohort 
of 1,433 very-low-birth-weight (<1,500 g) infants, exclusive for-
mula feeding increased the risk of BPD as compared to exclusive 
breastmilk feeding (OR 2.59, 95% CI 1.33–5.04, p<0.05)41. These 
association studies support the concept that early nutrition affects 
the development of BPD and that the provision of good nutrition 
using breastmilk early can potentially decrease the risk of develop-
ing BPD.

Prevent and/or treat infections
Infection has been identified as an important antecedent to 
BPD, likely through causing persistent immune regulation in a  
susceptible preterm infant with other environmental risk factors 
for BPD10. Indeed, Swedish national data for infants born at ≤32 
weeks’ gestation revealed that having one episode of late infec-
tion significantly increased the risk of developing BPD (adjusted 
OR 1.69, 95% CI 1.30–2.21) and having two or more episodes 
of late infection further increased the risk of developing BPD 
(adjusted OR 2.69, 95% CI 1.82–3.98)38. A recent  report using 
data from the California Perinatal Quality Care Collaborative 
found that nosocomial infections increased the risk of develop-
ing BPD (OR 2.74, 95% CI 2.54–2.94) and, furthermore, when 
quality improvement (QI) initiatives resulted in nosocomial infec-
tion rates falling, the rates of BPD fell as well42. Kelly et al.43 
reported in a propensity-matched retrospective cohort study in  
very-low-birth-weight infants that postnatal cytomegalovirus  
infection was associated with an increased risk of developing 
BPD (RR 1.33, 95% CI 1.19–1.50, p<0.001). Nosocomial infec-
tions (such as rhinovirus in the NICU population) may increase  
not only the rate but also the severity of BPD44.

Given the role of infection in the development of BPD, con-
sideration has been given to the use of antibiotics in high-risk  
infants. One organism that has been implicated in the develop-
ment of BPD is Ureaplasma, which has led to the notion that 
macrolides, particularly azithromycin, may be effective in prevent-
ing BPD. Nair et al.45 performed a meta-analysis and found three  
studies examining prophylactic azithromycin and BPD that dem-
onstrated a modest reduction in BPD (RR 0.83, 95% CI 0.71–0.91, 
number needed to treat=10). However, the authors concluded that 
the routine use of azithromycin in this population should wait 
for further studies, including pharmacokinetics and longer-term  
safety. This is particularly important given recent data showing 
that antibiotic use in very-low-birth-weight infants may actu-
ally increase the risk of developing BPD. For example, Novitsky  
et al.46 found in very-low-birth-weight infants that receiving  
>48 hours of antibiotics during the first week of life doubled the 
risk of developing BPD (adjusted OR 2.2, 95% CI 1.4–3.5) and 
that each additional day of antibiotics beyond the first week  
of life increased the risk of developing BPD (adjusted OR 1.2 
per antibiotic day, 95% CI 1.1–1.2). Similarly, Cantey et al.47 
recently reported that each additional day of antibiotics in the first  
2 weeks of life in infants born at <29 weeks’ gestation signifi-
cantly increased the risk of developing severe BPD (OR 1.15, 95%  
CI 1.08–1.27).
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Conclusions
In conclusion for how to decrease BPD today, consideration  
must be given to the pathogenesis and modifiable pathogenic  
factors that have supporting evidence. Obviously, prematurity is a 
significant risk factor for developing BPD, and avoiding preterm 
delivery will decrease the incidence of BPD. Non-invasive ven-
tilation should be the initial therapy of choice in preterm infants.  
If a preterm infant has to be intubated, extubation attempts should 
be done as soon as possible. Extubation should be attempted 
when there is sufficient spontaneous respiratory effort, the level of 
mechanical ventilatory support (particularly the peak inspiratory 
pressures) has been weaned to reasonable levels, and the patient 
is a suitable candidate for non-invasive mechanical support as a  
transitional therapy. Excellent nutrition should be provided as early 
as is feasible, preferably using breastmilk. Finally, prevention of 
infection using meticulous infection control measures as well as 
good antibiotic stewardship should be the standard of care for 
preterm infants. These measures, which are possible today, will 
decrease the incidence of BPD.

How to decrease bronchopulmonary dysplasia 
“tomorrow”
Newer surfactants
While surfactant treatment in preterm neonates with respiratory  
distress syndrome (RDS) has not been shown to decrease BPD 
per se48,49, some newer “enhanced” surfactants are available  
and are being tested50. No recent data have been published 
using a surfactant with recombinant surfactant protein (SP)-C  
(Venticute®) in preterm neonates50. CHF5633 (Chiesi) is a new 
synthetic surfactant which contains 0.2% SP-B and 1.5% SP-C 
analogs, along with phospholipids, and has shown some benefit 
over Survanta® in animal studies51. A phase I/II human study is 
ongoing.

Surfactant plus non-invasive intermittent positive pressure 
ventilation
The combination of using a less-invasive mode of surfactant  
delivery with non-invasive ventilation strategies appears to be  
beneficial in decreasing BPD52,53, though more data are required.

Steroids
In a double-blinded, randomized, placebo-controlled trial in  
infants <28 weeks of gestation, low-dose hydrocortisone 
(HC;  1 mg/kg/day, divided every 12 hours, for 7 days, 
followed by 0.5 mg/kg/day for 3 days; n=255 analyzed) 
versus placebo (n=266 analyzed) significantly increased 
survival without BPD  (p=0.04)54. There was a significantly 
higher rate of extubated patients from 1 week to postnatal day 
10 in the HC group. The study noted that older gestational age 
(26–27 weeks), female sex,  and HC treatment were independent 
factors for survival without  BPD, while patent ductus 
arteriosus ligation and late-onset  sepsis increased the risk 
for BPD/death using  logistic regression analysis54. There was 
a significantly (p=0.02) higher rate of sepsis in the 24–25 
weeks’ gestation HC subgroup. The number of patients who 
would be needed to treat to gain one BPD-free survival was 1254.

In a placebo-controlled trial, use of inhaled budesonide (two  
puffs [200 µg/puff] every 12 hours for 14 days, followed by one 
puff every 12 hours until infant not on supplemental O

2
 or PPV or 

reached 32 weeks’ PMA; n=437) in infants <28 weeks’ gestation 
showed a significantly (p=0.05) improved outcome of death or  
BPD versus placebo (n=419)55.

The second randomized study used placebo (n=104) or flutica-
sone (two doses every 24 hours [50 µg/dose]; n=107) for 6 weeks  
or until extubation56. This study did not find any significant dif-
ference in the primary outcome or neurodevelopmental outcomes  
at 3 years but also did not reach the intended sample size56.

Surfactant plus steroids
In another randomized study, infants (<1,500 g birth weight)  
with RDS requiring mechanical ventilation and FiO

2
 of ≥0.5 were

randomized to receive either surfactant (Survanta®; n=134) alone 
or surfactant with 0.25 mg/kg (1 ml/kg) of budesonide (n=131) 
every 8 hours, to a maximum of six doses57. There was a signifi-
cantly improved primary outcome of less death or BPD, faster 
weaning to non-assisted O

2
 therapy, and weaning to room air in  

the surfactant plus steroid group57. There was no significant  
difference in neurodevelopmental outcomes between the two  
groups at a mean age of 30 months57.

Progenitor cells
The risk for abnormal alveolar and airway development in adult 
survivors of BPD suggests defective development and repair  
capacity, possibly due to loss of progenitor cells. Data regard-
ing the pre-clinical studies using stem cells to prevent BPD have  
been recently reviewed58. Phase I human clinical trials have been 
conducted, and long-term safety and efficacy data continue to be 
collected58.

Altering the airway and/or gut microbiome?
Recently, data have been published that suggest fetal acqui-
sition of an airway microbiome in human preterm infants59.  
Interestingly, Lactobacillus was noted to be decreased at birth in 
infants with chorioamnionitis and those subsequently develop-
ing BPD59. Longitudinal alterations in ventilated preterm infants 
who eventually developed severe BPD revealed greater bacterial  
community turnover with age, with decreased acquisition of  
Staphylococcus in the first days after birth but increased pres-
ence of Ureaplasma60. The gut–lung axis could also impact on the  
immunology of the lung61. Hence, understanding dysbiosis of the 
airway and gut could potentially allow targeted probiotic therapy to 
be developed for the prevention of BPD.

Conclusions
Regarding newer surfactants, if shown to be superior to currently 
used surfactants, especially if used in combination with less- 
invasive modes of surfactant administration and non-invasive ven-
tilation strategies52, it may potentially impact on the incidence of 
BPD in the future. While the low-dose HC study is promising, the 
number of infants required to be treated is quite close to that of  
the vitamin A treatment strategy to prevent BPD. The increased  
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risk of infection, albeit in a subgroup, is also of concern. Regard-
ing the inhaled steroid trials, the duration of use is fairly long,  
with either modest or no benefit. Long-term developmental data  
are needed for the low-dose HC and inhaled budesonide studies.  
The use of surfactant as a vehicle to deliver steroids is excit-
ing and, if confirmed with larger trials and combined with less- 
invasive modes of administration and non-invasive ventilation, 
could be the next major advance in preventing BPD “tomorrow”. 
For the “day after tomorrow”, stem cells (or some part of their 
secretome) and altering the airway microbiome (intra-tracheal 

delivery of Lactobacillus with surfactant?) may be therapeutic  
approaches to look forward to in the not-too-distant future.
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