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Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in

the world. Despite the involvement of B. occitanus scorpion in severe cases

of envenomation in Morocco, no study has focused yet on the proteomic

composition of the Moroccan B. occitanus scorpion venom. Mass spec-

trometry-based proteomic techniques are commonly used in the study of

scorpion venoms. The implementation of top-down and bottom-up

approaches for proteomic analyses facilitates screening by allowing a global

view of the structural aspects of such complex matrices. Here, we provide a

partial overview of the venom of B. occitanus scorpion, in order to explore

the diversity of its toxins and hereafter understand their effects. To this

end, a combination of top-down and bottom-up approaches was applied

using nano-high liquid chromatography coupled to nano-electrospray tan-

dem mass spectrometry (nano-LC-ESI MS/MS). The LC-MS results

showed that B. occitanus venom contains around 200 molecular masses

ranging from 1868 to 16 720 Da, the most representative of which are

those between 5000 and 8000 Da. Interestingly, combined top-down and

bottom-up LC-MS/MS results allowed the identification of several toxins,

which were mainly those acting on ion channels, including those targeting

sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium

channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic

peptides, myotropic neuropeptides, and hypothetical secreted proteins. This

study reveals the molecular diversity of B. occitanus scorpion venom and

identifies components that may have useful pharmacological activities.
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Each year, scorpion stings record new cases of enveno-

mation over the world with an incidence of more than

1.5 million and over 2600 deaths, mainly in tropical

and subtropical countries of South America, Asia, and

North Africa [1]. Most of these envenomation cases

were caused by scorpions belonging to the Buthidae

family, which contains dangerous species known by

their lethal venoms [2]. The venom of these family

members contains a heterogeneous cocktail of com-

pounds, including inorganic substances, enzymes,

mucopolysaccharides, allergenic compounds, and pep-

tides with high toxicity toward ionic channels of exci-

table cells [3–6]. In Morocco, 26 819 cases of scorpion

stings were reported in 2019 by the Poison Control

and Pharmacovigilance Center of Morocco, with an

incidence of 75.3 cases per 100 000 inhabitants [7].

These statistics are due to the diversified scorpion

fauna represented by over 50 species, mainly wide-

spread in the middle and southwestern provinces of

the kingdom [8]. Among these species, the yellow scor-

pion Buthus occitanus (B.occitanus) seems to be one of

the most dangerous scorpions, on account of its toxic

venom causing the majority of envenomation cases [9].

Although several studies had been carried out on this

venom [10–13], no study has yet focused on the pro-

teomic composition of the Moroccan B. occitanus

scorpion venom despite its medical importance. More-

over, there are various strategies to screen scorpion

venoms, from using conventional strategies for target-

ing one single toxin, to applying the most throughput

equipment of screening for a detailed view of all toxic

components. Nowadays, mass spectrometry-based pro-

teomic approaches are still one of the most fundamen-

tal tools to decrypt the complexity of such matrices,

owing to the revolutionary advances in instrumenta-

tion and software, in addition to improvement in

omics strategies (peptidomic, proteomic, transcrip-

tomic, and genomic) [14–19]. Among the approaches

that have improved significantly the proteomics work-

flow, there are the top-down process, which designates

a rapid analytical workflow of intact proteins, and the

bottom-up approach, which requires prior proteolytic

digestion of proteins before mass spectrometry analy-

sis. These approaches lead to acquiring mass finger-

prints, primary structural information, and post-

translational modifications [20–23]. The application of

these approaches, singly or complementary, in several

proteomic studies has increased the number of charac-

terized venoms and identified toxins [24–29]. In this

context, this work aimed to ensure an overview of the

peptidome of B. occitanus scorpion (< 30 kDa), so

exploring its toxins arsenal, using a combination of the

top-down and bottom-up approaches applied on nano-

high liquid chromatography coupled to a nano-electro-

spray tandem mass spectrometry (nano-LC-ESI MS/

MS).

Materials and methods

Venom preparation

Venom milking

Specimens of B. occitanus were collected from the region of

Oualidia (32°440N 9°010W), in eastern Morocco. The crude

venom was milked by electrical stimulation, pooled, cen-

trifuged at 10 000 g for 20 min, freeze-dried, and stored at

�20 °C until use [30].

Venom Reduction/Alkylation

At first, 2 mg of B. occitanus crude venom was subjected to

a 30 kDa ‘cutoff’ filter (Amicon� Ultra Centrifugal Filters,

Merck Millipore, Tulagreen, Ireland), then centrifuged at

16 900 g for 15 min.

Disulfide-bridged half-cysteine residues of this venom fil-

trate were reduced by 10 mM of DTT in ammonium bicar-

bonate buffer (50 mM, pH 8.3), for 45 min at a

temperature of 56 °C. Cysteine residues were carboxamido-

methylated by incubation with 50 mM iodoacetamide [IAA

in ammonium bicarbonate (50 mM, pH 8.3)] for 1 h in the

dark. Then, these proteins/peptides were desalted by ZipTip

C4 (Millipore Corporation - Billerica, USA) and concen-

trated on a Savant SpeedVac (Thermo Scientific, San Jose,

CA, USA).

Mass spectrometry-based proteomic approaches

Top-down proteomics

Intact and reduced/alkylated B. occitanus venom filtrates

were carried out on an Orbitrap FusionTM LumosTM mass

spectrometer (Thermo ScientificTM Waltham, MA, USA),

equipped with a Dionex HPLC (Fig. 1).

For the online peptide fractionation, 2 µg of samples

was loaded to a C4 µ-precolumn cartridge (300 µm i.d. 9

5 mm, C4 PepMap 300 particles with 5 µm size and 300 �A

pores); the column was equilibrated with solution A [0.1%

(v/v) formic acid (FA)]. The separation was maintained

over 120 min at 250 nL�min�1, using a linear gradient from

5% to 60% of solution B [acetonitrile (ACN) and 0.1% (v/

v) FA].

Proteins/peptides were eluted directly from the column

into the mass spectrometer and operated in positive mode

with a spray voltage of 1.6 kV. MS spectra were acquired

at a resolution setting of 120 000.

MS/MS analysis was performed on data-dependent

acquisition, the top 10 abundant precursor ions were
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selected for an EThcD fragmentations (Electron-Transfer/

Higher-Energy Collision Dissociation) with a dynamic

exclusion time of 90 s. MS/MS spectra were acquired at a

resolution setting of 120 000, and the mass range was set

from 150 to 2000 m/z.

Bottom-up proteomics

In-solution digestion

Reduced/alkylated venom filtrate was digested overnight at

a temperature of 37 °C with 0.1 lg of trypsin (Promega,

Madison, WI, USA). Tryptic digests were analyzed on a Q-

Exactive Plus instrument (Thermo Fisher Scientific, Bre-

men, Germany) coupled to an EASY-nLC 1200 chro-

matography system (Thermo Fisher Scientific). Two

micrograms was loaded on an in-house packed 50-cm

nano-HPLC column (75 lm inner diameter) filled with C18

resin (1.9 lm particles, 100 �A pore size, Reprosil-Pur Basic

C18-HD resin; Maisch GmbH, Ammerbuch-Entringen,

Germany) and equilibrated in 97% solvent A and 3% sol-

vent B (ACN, 0.1% (v/v) FA).

Peptides were eluted at 250 nL�min�1, using 3–22% gra-

dient of solvent B for 112 min, then 22–38% gradient of

solvent B for 35 min, and finally 38–60% gradient of sol-

vent B for 15 min. The instrument method for the Q-Exac-

tive Plus was set up in the data-dependent acquisition

mode. MS and MS-MS spectra were acquired at a resolu-

tion of 60 000, 10 of the most abundant precursor ions

were selected for HCD fragmentation with collision energy

adjusted to 27. Mono-charged precursors and those with a

charge state of > 7 were excluded.

In-gel digestion

At first, 2 mg of venom filtrate was unfolded for 5 min at

95 °C in sample buffer (LDS sample buffer) and then sub-

jected to a SDS/PAGE using a 4–20% of polyacrylamide

gel (SDS Precast Gel RunBlue, 4–20%, 12 well; Expedeon,

CA, USA). The electrophoresis was performed, on a Bio-

Rad system, at a constant voltage of 140 V, and the sepa-

rated proteins were stained with Coomassie Brilliant Blue

R (InstantBlue; Expedeon, CA, USA).

Stained bands corresponding to proteins/peptides with

masses < 30 kDa (Fig. S1) were manually excised into

equal small cubes of 1 mm3, then washed with Milli-Q

water, ammonium bicarbonate 50 mM, and ACN 50%.

Fig. 1. Experimental workflow performed in this study. At first, B. occitanus venom was milked by electrical stimulation and applied to a

30 kDa filter. For the top-down venomic, the flow-through containing toxins < 30 kDa was analyzed by the Thermo Scientific TM Orbitrap

Fusion Lumos Tribrid Mass Spectrometer. For the bottom-up approach, two digest methods were achieved: 1) in-solution digestion, the

flow-through containing toxin < 30 kDa was directly reduced with DTT, alkylated with IAA, and digested with trypsin; and 2) in-gel digestion,

the unstained gel was excised to small cubes, reduced, alkylated, and digested. The digest peptides were then desalted with ZipTip and

applied to the Orbitrap Q-Exactive mass spectrometer.
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Subsequently, the slices were submitted to an in-gel reduc-

tion with DTT (10 mM) in ammonium bicarbonate buffer

(50 mM, pH 8.3) for 45 min at a temperature of 56 °C.
Reduced slices were alkylated with IAA (50 mM) in ammo-

nium bicarbonate (50 mM, pH 8.3) buffer for 20 min in the

dark, followed by an overnight digestion with 0.1 lg of

trypsin (Promega) at a temperature of 37 °C [31]. The enzy-

matic reaction was stopped by adding 5 µL of FA 5%, and

desalted by loading the peptides onto ZipTip C18. After

drying, digested peptides were dissolved in 100 lL of 0.1%

(v/v) FA and applied on a liquid chromatography coupled

to tandem mass spectrometry (LC-MS/MS) system, com-

posed of a nano-flow HPLC pump and an Orbitrap Q-

Exactive mass spectrometer (Thermo Scientific) with a

nano-electrospray ion source, as described in the section

above.

Data analysis

The top-down liquid chromatography coupled to mass

spectrometry (LC-MS) data analysis of native B. occitanus

venom filtrate was deconvoluted using the Xtract algorithm

within Thermo Scientific XCALIBUR 2.2 software (Thermo

Fisher Scientific).

For protein identification, data from both of the

venomic nano-LC-MS/MS approaches were processed

using the PROTEOME DISCOVER 2.2 software (Thermo

Fisher Scientific), against the UniProtKB database,

downloaded in 2016 10 11, taxon identifier: 6855 and

4309 entries.

Parameters of processing were as follows: a mass toler-

ance of MS set at 50 p.p.m. and 0.3 Da for MS/MS. One

unique peptide was required for protein identification, min-

imum peptide length was required at five amino acids, and

the false discovery rate cutoff was 1%. Trypsin was chosen

as the specific enzyme, with a maximum number of two

missed cleavages for the bottom-up analysis. Variable mod-

ifications included oxidation of methionine and car-

bamidomethylation, while no fixed modification was set.

Results

Mass spectrometry-based proteomic approaches

The whole proteomic approaches are based only on

the UniProtKB database-dependent analysis without

any manually de novo sequence annotation; therefore,

the majority of reported peptide annotations are still

an approximation. Also, it is important to stress that

the relative abundances and the percentages of the

described peptides are purely based on total number

counts and not concentrations as long as no quantita-

tive analysis was performed.

Top-down proteomics

The total ion chromatogram (TIC) generated from the

top-down LC-MS analysis of native B. occitanus

venom filtrate (Fig. 2) gave a partial picture of the

venom complexity, with around 60 peaks, most of

them detected with high relative abundance.

The mass fingerprint of B. occitanus venom was gen-

erated from a manual deconvolution of spectra gained

by top-down LC-MS approach, thus detecting a total

of 197 monoisotopic masses ranging from 1868 to

16 720 Da (Table 1). We get one mass less than

2000 Da, 28 molecular masses ranging between 2000

and 5000 Da, 147 mass values from 5000 to 8000 Da,

and 21 masses for those over 8000 Da.

Fig. 2. TIC of native B. occitanus venom

filtrate, generated from top-down mass

spectrometry analysis (MS1). The x-axis

represents the relative abundance (%),

and the y-axis, the retention time (min).

Spectra were deconvoluted, and

generated monoisotopic masses were

distributed according to their MW.
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The most representative molecular masses were

those from 5000 to 8000 Da, followed by those

between 2000 and 5000 Da, which represents respec-

tively 74% and 10% of the total number of measured

molecular masses (Fig. 3).

The analysis of reduced/alkylated B. occitanus

venom filtrate by tandem mass spectrometry allowed

the identification of 68 peptides with a molecular

weight (MW) from 1959.13 to 7943.53 Da. The

detected experimental sequences are shown in Table 2;

Table 1. List of the 197 monoisotopic masses detected by the top-down LC-MS analysis.

Retention time (min) MW (Da)

0–10 N.D

10–20 1868.0157

20–30 2208.2634; 2506.4634

30–40 2813.4212; 2851.4287; 2966.3848; 3124.4545; 3219.5691; 3233.4756; 3461.4966; 3486.7774;3538.283; 3550.4334;

3670.8935; 3718.7023; 3823.4412; 3937.8078; 4093.8732; 4321.8654; 4366.9752; 4366.986; 5731.6152; 5919.5155.

40–50 3522.2898;3614.8741; 3807.4466; 3937.7725; 4333.933; 4366.9856; 4568.7172; 4572.9253; 5185.3781; 6148.8879;

6423.7104; 6439.6786; 6527.7246; 6539.6502; 6541.7326; 6595.7719; 6606.8166; 6610.768; 6611.7946; 6635.0442;

6744.712; 6829.8098; 6831.8926; 6832.876; 6860.9183; 6861.9012; 6872.9404; 6876.9037; 6877.9284; 6893.9821;

6940.948; 6952.1809; 6974.2357; 6979.0052; 6995.0399; 6997.024; 7014.2508; 7016.0204; 7022.0148; 7024.0653;

7107.2902; 7152.0763; 7162.3796; 7177.1647; 7218.3026; 7220.0387; 7220.2052; 7243.2414; 7297.2395;

7393.2604.

50–60 6488.9021; 6609.8127; 6611.7977; 6629.8447; 6677.8651; 6749.8876; 6765.9533; 6779.2433;6807.922; 6823.1194;

6836.974; 6837.8837; 6862.9698; 6879.9966; 6907.3347; 6919.9628; 6972.7789; 7007.0404; 7011.1444; 7012.1231;

7020.055; 7028.0976; 7035.2491; 7024.1049; 7051.0799; 7061.1245; 7062.1114; 7069.1111; 7079.1299; 7082.3444;

7115.0302; 7115.2113; 7122.274; 7130.9674; 7143.0368; 7250.1077; 7262.1172; 7266.1721; 7268.152; 7283.1496;

7307.2070; 7328.1353; 7394.3224; 7394.5252; 7400.289; 7416.5358; 7435.2763; 7449.3831; 7468.4297; 7491.1348;

7506.1972; 7534.4067; 7607.5077; 7681.4621; 7777.5363; 7840.6401; 7894.5677; 7912.5297; 7924.5736;

7943.5256; 8174.6428; 8344.5958; 9875.9204; 6896.9694; 6880.9937; 7016.998; 7056.1905; 7074.1478; 7104.0354;

7122.2913; 7115.9848; 7175.0715; 7309.2612; 7414.4224; 7600.5; 7654.5083; 7798.6334; 7817.6424; 7832.6366;

7833.6635; 8140.6441; 8159.4822; 8345.5484; 9959.0054; 11068.3376; 11243.5823;16720.7335.

60–70 6896.9694; 6880.9937; 7016.998; 7056.1905; 7074.1478; 7104.0354; 7122.2913; 7115.9848; 7175.0715; 7309.2612;

7414.4224; 7600.5; 7654.5083; 7798.6334; 7817.6424; 7832.6366; 7833.6635; 8140.6441; 8159.4822; 8345.5484;

9959.0054; 11068.3376; 16720.7335.

70–80 6809.9307; 6857.9428; 6859.9368; 6865.9432; 6875.9565; 6880.9796; 6982.0159; 6913.9378; 7009.0523;

7104.9914; 7172.1987; 7200.1528; 7214.1558; 7316.2804; 7377.2599; 7300.0933; 7394.5084.

80–90 7377.2678; 7301.1747; 9140.1069; 11377.1636; 12971.6074; 13004.7435.

90–100 7390.4025; 7466.4483; 7482.4543; 7500.4753; 7704.4655; 7791.5128; 7792.5813; 8672.6993; 8882.0067;

8978.0645; 14577.4253.

100–110 9302.1043; 12990.2825; 12985.6009.

110–120 N.D

N.D: not determined.

Fig. 3. Molecular mass distribution of the

monoisotopic masses from MS1 spectra

deconvolution. 197 components were

detected, with their MW ranging from

1868 to 16 720 Da. These peptides

distributed from 1000 to 17 000 Da with

1000 Da mass range windows. The x-axis

represents the MW in Da, and the y-axis

represents the percentage (%) based on

total number counts.
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Table 2. List of the identified peptides by top-down analysis of the reduced/alkylated B. occitanus venom filtrate. Data sets generated

from the mass spectrometer were analyzed by the PROTEOME DISCOVER 2.2 software, against UniProtKB/Swiss-Prot database. The amino acids

sequences colored in black were those detected by the analysis. Peptide entries in bold were identified by both top-down and bottom-up

approaches.

Category Accession Description Identified Sequence

NaScTx P59356 Alpha-like toxin Lqh6 MVRDGYIAQPENCVYHCIPDCDTLCKDNGGTGGHCGFKLGHGIACWCNALPDNVGIIV

DGVKCHK

P13488 Alpha-like toxin Bom3 MGRDGYIAQPENCVYHCFPGSSGCDTLCKEKGATSGHCGFLPGSGVACWCDNLPNK

VPIVVGGEKCH

P56678 Alpha-like toxin Lqh3 MVRDGYIAQPENCVYHCFPGSSGCDTLCKEKGGTSGHCGFKVGHGLACWCNALPDNV

GIIVEGEKCHS

Q9NJC4 Chain (toxin BmKaTx17)

[10–73] in toxin

BmKaTx17

MLLMTGVESGRDAYIAKNYNCVYHCFRDDYCNGLCTENGADSGYCYLAGKYGNACWC

INLPDDKPIRIPGKCHRR

Q4TUA4 Chain (alpha-toxin 4)

[20–85] in alpha-toxin 4

MNYLVFFSLALLLMTGVESVRDGYIADDKNCAYFCGRNAYCDDECKKKGAESGYCQWA

GVYGNACWCYKLPDKVPIRVPGRCNGG

P59863 Beta-toxin BotIT2 MDGYIKGYKGCKITCVINDDYCDTECKAEGGTYGYCWKWGLACWCEDLPDEKRWKSE

TNTC

P60163 Toxin Cg2 MKDGYLVNKSTGCKYSCIENINDSHCNEECISSIRKGSYGYCYKFYCYCIGMPDSTQVYP

IPGKTCSTE

P60256 Toxin Boma6b MVRDAYIAQNYNCVYDCARDAYCNELCTKNGAKSGHCEWFGPHGDACWCIDLPNNVPI

KVEGKCHRK

O77091 Chain(beta-insect

excitatory toxin BmK IT-AP)

[19–90] in beta-insect

excitatory toxin BmK IT-AP

MKFFLIFLVIFPIMGVLGKKNGYAVDSSGKVAECLFNNYCNNECTKVYYADKGYCCLLKC

YCFGLADDKPVLDIWDSTKNYCDVQIIDLS

P21150 Toxin AaHIT4 MEHGYLLNKYTGCKVWCVINNEECGYLCNKRRGGYYGYCYFWKLACYCQGARKSELW

NYKTNKCDL

P80962 Beta-insect depressant toxin

BaIT2

MDGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDDKTWKS

ETNTCG

P01485 Alpha-mammal toxin

Bot3; chain (alpha-mammal

toxin Bot3) [10–73] in

alpha-mammal toxin Bot3

MLVMAGVESVKDGYIVDDRNCTYFCGRNAYCNEECTKLKGESGYCQWASPYGNACYC

YKVPDHVRTKGPGRCN

Q86BW9 Chain (Makatoxin-2) [20–83]

in

Makatoxin-2

MNYLIVISFALLLMTSVESGRDAYIADSENCTYFCGSNPYCNDLCTENGAKSGYCQWAG

RYGNACWCIDLPDKVPIRIPGPCRGR

G4V3T9 Neurotoxin BmK AGAP-

SYPU2

MVKDGYIVDDKNCAYFCGRNAYCDDECEKNGAESGYCQWAGVYGNACWCYKLPDKV

PIRVPGRCNG

P84614 Alpha-toxin Bs-Tx28 MGVRDAYIADDKNCVYTCGSNSYCNTECTKNGAESGYCQWFGRWGNGCWCIKLPDKV

PIRIPGKCR

Q9BLM4 Toxin AahP1005; Chain

(toxin AahP1005) [20–83] in

toxin AahP1005

MNYLVMISLALLFMTGVESKKDGYIVDDKNCTFFCGRNAYCNDECKKKGAESGYCQWA

SPYGNACYCYKLPDRVSTKKKGGCNGR

P86408 Neurotoxin MeuNaTx-1 MVRDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQWAGQYGNACWCYKLPDK

VPIKVSGKCN

P60255 Toxin Boma6a MVRDAYIAQNYNCVYDCARDAYCNDLCTKNGAKSGYCEWFGPHGDACWCIDLPNNV

PIKVEGKCHRK

P15225 Neurotoxin Os3 MGVRDGYIAQPHNCVYHCFPGSGGCDTLCKENGATQGSSCFILGRGTACWCKDLPDR

VGVIVDGEKCH

P45697 Alpha-like toxin BmK-M1;

Chain (alpha-like toxin BmK-

M1) [20–83] in alpha-like

toxin BmK-M1

MNYLVMISFALLLMTGVESVRDAYIAKPHNCVYECARNEYCNDLCTKNGAKSGYCQWV

GKYGNGCWCIELPDNVPIRVPGKCHR

E4VP24 Chain [20–85] in sodium

channel neurotoxin

MeuNaTxalpha-1

MNSLVMISLALLVMTGVESVRDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQW

AGQYGNACWCYKLPDKVPIKVSGKCNGR

P55902 Alpha-insect toxin BotIT1 MVRDAYIAQNYNCVYFCMKDDYCNDLCTKNGASSGYCQWAGKYGNACWCYALPDNV

PIRIPGKCHS

E7CAU3 Chain (neurotoxin BmK AGP-

SYPU1) [2–65] in

neurotoxin BmK AGP-

SYPU1

MGRDAYIAQNYNCVYHCFRDDYCNGLCTENGADSGYCYLAGKYGHACW

CINLPDDKPIRIPGKCHRR

Q1I178 Toxin Td9 MIGMVAECKDGYLVGDDGCKMHCFTRPGHYCASECSRVKGKDGYCYAW

LACYCYNMPNWAPIWNSATNSCGKGK

A0A146CJ90 Chain [20–87] in Venom

toxin meuNa32

MNYLILISFALLVITGVESARDAYIAQNYNCVYFCLNPWSSYCDDLCTKNGAK

SGYCQIFGKYGNACWCIDLPDKVPIRIPGKCHFA
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Coverage

(%)

Measured

MW (Da)

No. of

peptides

No. of

PSMs

No. of

unique

peptides

No. of

protein

groups

No. of

AAs calc.pI

98.46 6974.21 1 4 1 1 65 6.48

98.5 7012.14 1 1 1 1 67 6.71

98.52 7215.31 1 22 1 1 68 6.48

84 7062.13 1 1 1 1 75 7.58

77.64 7218.31 1 1 0 0 85 7.5

98.36 6564.78 1 1 1 1 61 4.84

88.4 6871.92 1 1 1 1 69 6.92

98.5 7307.23 1 4 1 1 67 7.2

80 7943.53 2 6 2 1 90 5.36

98.48 7791.58 1 6 1 1 66 8.46

100 6845.9 1 4 1 1 62 5.31

87.67 7289.18 1 5 1 1 73 7.53

75.29 7062.11 1 4 1 1 85 5.25

98.48 7289.18 1 6 1 1 66 5.31

98.48 7214.2 1 1 1 1 66 8.12

75.29 7316.26 1 3 1 1 85 8.46

98.46 7218.31 1 6 1 1 65 7.85

98.5 7221.18 1 12 1 1 67 7.09

98.52 6957.15 2 6 2 1 68 6.71

76.19 7429.4 1 4 1 1 84 7.88

77.64 7336.32 1 1 1 1 85 7.85

98.48 7345.15 1 2 1 1 66 7.55

98.5 7488.32 2 8 2 1 67 7.61

86.48 7076.01 1 2 1 1 74 7.84

78.16 7690.37 1 1 1 1 87 7.53
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Table 2. Continued.

Category Accession Description Identified Sequence

P68410 Alpha-mammal toxin Ts2 MKEGYAMDHEGCKFSCFIRPAGFCDGYCKTHLKASSGYCAWPACYCYGV

PDHIKVWDYATNKC

P68726 Chain (Insect toxin 2–53) [22–82]

in Insect toxin 2–53

MKLLLLLIVSASMLIESLVNADGYIKRRDGCKVACLVGNEGCDKECKAYGGSY

GYCWTWGLACWCEGLPDDKTWKSETNTCGGKK

Q1I163 Toxin Td8; chain (toxin Td8) [21–

83] in toxin Td8

MTRFVLFLSCFFLIGMVVECKDGYLVGDDGCKMHCFTRPGHYCASECSRVK

GKDGYCYAWLACYCYNMPNWAPIWNSATNRCRGRK

P56569 Makatoxin-1 MGRDAYIADSENCTYTCALNPYCNDLCTKNGAKSGYCQWAGRYGNACWCI

DLPDKVPIRISGSCR

D8UWD3 Sodium channel neurotoxin

MeuNaTxalpha-7

MARDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQWAGQYGNACWC

YKLPDKVPIKVSGKCNGR

P0DMH9 Chain (alpha-toxin BmalphaTx47)

[20–83] in alpha-toxin

BmalphaTx47

MNYLIVISFALLLMTGVQSGRDAYIADSENCTYTCALNPYCNDLCTKNGAKSG

YCQWAGRYGNACWCIDLPDKVPIRISGSCRGR

P01483 Neurotoxin Bot2 MGRDAYIAQPENCVYECAKNSYCNDLCTKNGAKSGYCQWLGRWGNACYC

IDLPDKVPIRIEGKCHF

P17728 Chain (alpha-insect toxin LqhaIT)

[20–85] in alpha-insect toxin

LqhaIT

MNHLVMISLALLLLLGVESVRDAYIAKNYNCVYECFRDAYCNELCTKNGASS

GYCQWAGKYGNACWCYALPDNVPIRVPGKCHRK

P01496 Chain (toxin-3) [15–76] in toxin-5 MLVVVCLLTAGTEGKKDGYPVEYDNCAYICWNYDNAYCDKLCKDKKADSGY

CYWVHILCYCYGLPDSEPTKTNGKCKSGKK

Q1EG64 Chain [20–85] in sodium toxin

peptide BmKTb’

MNYLVMISFAFLLMTGVESARDAYIAQNYNCVYHCARDAYCNELCTKNGAKS

GSCPYLGEHKFACYCKDLPDNVPIRVPGKCNGG

P01488 alpha-toxin Bot1 MGRDAYIAQPENCVYECAQNSYCNDLCTKNGATSGYCQWLGKYGNACWC

KDLPDNVPIRIPGKCHF

P45698 Chain (neurotoxin BmK-M9) [15–

78] in neurotoxin BmK-M9

MISFALLLMTGVESVRDAYIAKPENCVYHCATNEGCNKLCTDNGAESGYCQW

GGRYGNACWCIKLPDRVPIRVPGKCHR

P83644 Toxin Lqh4 MGVRDAYIADDKNCVYTCGANSYCNTECTKNGAESGYCQWFGKYGNACWC

IKLPDKVPIRIPGKCR

P01487 Alpha-insect toxin Lqq3 MVRDAYIAKNYNCVYECFRDSYCNDLCTKNGASSGYCQWAGKYGNACWC

YALPDNVPIRVPGKCH

H1ZZI7 Toxin Tpa6 MSIFPIALALLLIGLEEGEAARDGYPLSKNNNCKIYCPDTDVCKDTCKNRASAP

DGKCDGWNSCYCFKVPDHIPVWGDPGTKPCMT

B8XGY6 Chain [20–85] in Putative alpha-

toxin Tx17

MNYLILISLAVLLTSGVESVRDAYIAQNYNCVYTCFKDAYCNDLCTKNGATSGY

CQWVGKYGNGCWCYALPDNVPIRVPGKCHSR

P81504 Insect toxin AaHIT5 MDGYIKRHDGCKVTCLINDNYCDTECKREGGSYGYCYSVGFACWCEGLPDD

KAWKSETNTCD

P68722 Chain (beta-insect excitatory toxin

LqhIT1b) [19–88] in beta-insect

excitatory toxin LqhIT1b

MKFFLLFLVVLPIMGVLGKKNGYAVDSKGKAPECFLSNYCNNECTKVHYADK

GYCCLLSCYCFGLNDDKKVLEISDTTKKYCDFTIIN

P60257 Toxin Boma6c MVRDAYIAQNYNCVYTCFKDAHCNDLCTKNGASSGYCQWAGKYGNACWCY

ALPDNVPIRIPGKCHRK

M1J7U4 Putative sodium channel alpha-

toxin Acra5

MVRDGYIMIKDTNCKFSCNIFKKWEYCSPLCQSKGAETGYCYNFGCWCLDL

PDDVPVYGDRGVICRTR

Q9N682 Chain (neurotoxin BmK-M11) [20–

83] in neurotoxin BmK-M11

MNYLVMISFALLLMTGVESVRDAYIAKPENCVYHCATNEGCNKLCTDNGAESG

YCQWGGKYGNACWCIKLPDDVPIRVPGKCHR

P55903 beta-insect depressant toxin

BotIT4

MDGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDD

KTWKSETNTCG

A0A0K0LBU9 Chain [20–83] in sodium channel

blocker AbNaTx26

MRAALLLAFSSLILTGVLTKKSGYPTQHDGCKIWCVFNHFCSNYCETYGGSGYCYT

WKLACWCDNIHDWVPTWSYATTKCRAK

P0C910 Alpha-toxin Amm3 MGRDGYIVDTKNCVYHCYPPCDGLCKKNQAKSGSCGFLYPSGLACWCVALPENV

PIKDPNDDCHK

P59360 Neurotoxin BmK-II VRDAYIAKPHNCVYECARNEYCNDLCTKDGAKSGYCQWVGKYGNGCWCIELPDNV

PIRIPGNCH

P81240 Insect toxin LqhIT5 MDGYIRGGDGCKVSCVIDHVFCDNECKAAGGSYGYCWGWGLACWCEGLPADREWK

YETNTCG

P01497 Chain (beta-insect excitatory toxin

1) [19–88] in beta-insect

excitatory toxin 1

MKFLLLFLVVLPIMGVFGKKNGYAVDSSGKAPECLLSNYCNNECTKVHYADKGYCCLL

SCYCFGLNDDKKVLEISDTRKSYCDTTIIN

V9P3B8 Chain [23–82] in Chain [23–82] in

Meutoxin-3

MKILTVFMIFIANFLSMTQVFSLKDRFLLINGSYELCLYEENLDEDCERLCKEQNASDG

FCRQPHCFCADMPDDYPTRPTTR
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Coverage

(%)

Measured

MW (Da)

No. of

peptides

No. of

PSMs

No. of

unique

peptides

No. of

protein

groups

No. of

AAs calc.pI

98.41 6655.84 1 6 1 1 63 7.61

71.76 6739.87 1 1 1 1 85 7.5

73.25 6986.05 1 3 1 1 86 8.34

98.46 7240.24 1 2 0 0 65 7.5

98.5 7295.24 1 1 1 1 67 8.1

75.29 7240.24 1 1 0 0 85 7.87

98.48 7240.24 1 19 1 1 66 7.55

77.64 7173.2 1 12 1 1 85 8.12

76.54 7105.03 1 20 1 1 81 7.49

77.64 7321.09 1 2 1 1 85 7.58

98.48 7074.14 1 3 1 1 66 6.92

81.01 7015.19 1 1 1 1 79 7.88

98.48 7155.25 1 3 1 1 66 8.1

98.5 6980.01 2 12 2 1 65 7.87

74.41 7059.12 1 2 1 1 86 5.38

77.64 7313.2 1 2 1 1 85 7.87

98.38 6894.89 1 8 1 1 62 4.83

79.54 7924.56 1 1 1 1 88 7.87

98.5 7308.21 2 14 2 1 67 8.31

98.52 7741.51 1 1 1 1 68 7.5

77.38 7179.21 2 2 2 1 84 7.09

100 6837.96 1 4 1 1 62 5.31

77.1 7505.2 1 1 1 1 83 8.31

98.46 7011.14 1 1 1 1 65 7.09

100 7431.33 2 14 2 1 65 7.09

100 6611,8 1 3 1 1 62 4.72

79.54 7928.54 1 10 1 1 88 7.53

73.17 7074.13 1 1 1 1 82 4.75
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five of the entries were identified with 100% sequence

coverage: neurotoxin BmK-II (P59360), beta-insect

depressant toxin BotIT4 (P55903), beta-insect depres-

sant toxin BaIT2 (P80962), insect toxin LqhIT5

(P81240), and insect toxin BsIT4 (P82814). These tox-

ins were reported for the first time in this Moroccan

venom, they corresponded to toxins already identified

in other scorpion venom. The determined sequence of

the neurotoxin BmK-II (P59360) showed 100% simi-

larity with the database sequence, whereas the

observed sequences of the other toxins showed methy-

lation in the N-terminal part compared with sequences

reported in Uniprot database (Fig. 4). Therefore, the

other peptides corresponded approximately to toxins,

previously identified in other scorpion species with a

sequence identity ranging from 17% to 98% (Fig. S2).

Therefore, the detected peptides were divided into

five categories on the basis of their molecular functions

according to the UniProtKB database (https://www.uni

prot.org); 63 neurotoxins acting on sodium channels

(NaScTxs), constitute 93% of the components and rep-

resent a MW from 6564.78 to 7943.53 Da; two neuro-

toxins acting on potassium channels (KScTxs) (2.94%,

2506.46–6889.3 Da); one antimicrobial peptide (AMP)

(1.47%, 1959.13 Da); one myotropic neuropeptide

(1.47%, 3112.45 Da); and one hypothetical secreted

protein (1.47%, 3939.79 Da) (Fig. 5A).

Additionally, we have observed, that between these

68 peptides, 27 of them (40%) were detected as chains

or fragments, for example, venom toxin meuNa32

(A0A146CJ90); potassium channel toxin Meg-beta-

KTx1 (A0A059UI30); putative alpha-toxin Tx2

(B8XGX9); sodium channel toxin NaTx4

(A0A0U4RDS7); toxin BmKaIT1(Q9GQW3); sodium

channel blocker AbNaTx26 (A0A0K0LBU9); neuro-

toxin BmK-M11 (Q9N682); beta-insect excitatory

toxin LqhIT1b (P68722); toxin-5 (P01496); toxin Td8

(Q1I163); alpha-like toxin BmK-M1 (P45697); toxin

AahP1005 (Q9BLM4); makatoxin-2 (Q86BW9); and

alpha-mammal toxin Bot3 (P01485) (Table 2).

Table 2. Continued.

Category Accession Description Identified Sequence

Q8T3T0 Depressant insect toxin

BmK ITa1

MKLFLLLLISASMLIDGLVNADGYIRGSNGCKVSCLWGNEGCNKECGAYGASYGYCW

TWGLACWCEGLPDDKTWKSESNTCGGKK

Q9GQW3 Chain (toxin BmKaIT1)

[20–83] in toxin

BmKaIT1

MNYLVMISFAFLLMTGVESVRDAYIAQNYNCVYHCARDAYCNELCTKNGAKSGSCPY

LGEHKFACYCKDLPDNVPIRVPGKCHRR

Q95WX6 Beta-insect depressant

toxin BmKITb

MKLFLLLVISASMLIDGLVNADGYIRGSNGCKVSCLWGNEGCNKECKAFGAYYGYCW

TWGLACWCQGLPDDKTWKSESNTCGGKK

P0C5H1 Beta-toxin Isom1 MKKNGYAVDSSGKAPECLLSNYCNNECTKVHYADKGYCCLLSCYCFGLSDDKKVLEIS

DTRKKYCDYTIIN

Q9GNG8 Toxin BmKaTX15 MNYLVFFSLALLVMTGVESVRDGYIADDKNCAYFCGRNAYCDDECKKNGAESGYCQW

AGVYGNACWCYKLPDKVPIRVPGKCNGG

M1JMR8 Sodium channel

alpha-toxin Acra8

MVRDGYIVDDKNCTFFCGRNAYCNDECKKKGGESGYCQWASPYGNACWCYKLPDRV

PIKEKGRCNGR

A0A0U4RDS7 Chain [20–87] in

sodium channel toxin

NaTx4

MNHLVMISLAFLFMTGVASVRDGYIAQPETCAYHCIPGSSGCYTLCKEKKGESGHCGWK

SGHGSAWWCNDLPDKEGIIVDGKGCTRR

P82814 Insect toxin BsIT4 MDGYIKGNKGCKVSCVINNVFCNSMCKSSGGSYGYCWSWGLACWCEGLPAAKKWLY

AATNTCG

B8XGX9 Chain [20–87] in

Putative

alpha-toxin Tx2

MNYLIMISLALLLMTGVESGTGVRDAYIADDKNCVYTCALNSYCNTECTKNGAESGYCQ

WLGQYGNACWCIKLPDRVPIRIPGKCRG

Q17254 Alpha-insect

toxin Bot14

MSSLMISTAMKGKAPYRQVRDGYIAQPHNCAYHCLKISSGCDTLCKENGATSGHCGH

KSGHGSACWCKDLPDKVGIIVHGEKCHR

KScTx A0A059UI30 Chain (potassium

channel toxin

Meg-beta-KTx1) [28–

91] in potassium

channel

toxin Meg-beta-KTx1

MQRNLVVLLFLGMVALSSCGLREKHFQKLVKYAVPEGTLRTIIQTAVHKLGKTQFGCPA

YQGYCDDHCQDIKKQEGFCHGFKCKCGIPMGF

Q9N661 Potassium channel toxin

BmTXK-beta-2

MQRNLVVLLFLGMVALSSCGLREKHFQKLVKYAVPEGTLRTIIQTAVHKLGKTQFGCP

AYQGYCDDHCQDIKKEEGFCHGFKCKCGIPMGF

AMP A0A0A1I6E7 AMP AcrAP1 MEIKYLLTVFLVLLIVSDHCQAFLFSLIPHAISGLISAFKGRRKRDLDGQIDRFRNFRKRD

AELEELLSKLPIY

Myotropic

neuropeptide

F8THJ9 Putative orcokinin MMFGIWILCGTAFFFCHVDAYLEYSNMAPGYNALVRRRSMKQPSEGRMFDNLGYNQE

SLVKRNFDEIDNVGFNDFGPASRPGSGRSWFPKRNWELARYNLRRLVKRATQD

ELMENKRQELDEIDKSGFGGFHKRNFDEIDRSGFNDFGKRSFDRFKLVRRADFNN

Hypothetical

secreted

protein

F1CIZ9 Hypothetical secreted

protein

MQNIFWILIGVGICITAVQCDSEMESSIRDILTKRRYLKYARSVLDDLNNQLDTLHKRSC

VLNLPGMDCEYGDITGSGKDQDYWTSGRTPGKKRRSYCSLGIGNSEECLTKQLKDDM

TDFNSWNDKFRPGKK
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Bottom-up proteomics

For the bottom-up workflow, two digest methods were

performed: (a) in-solution digestion, the flow-through

containing toxin < 30 kDa was directly reduced with

DTT, alkylated with IAA, and digested with trypsin;

and (b) in-gel digestion, the gel spot corresponding to

peptides under 30 kDa (Fig. S1) was excised to small

cubes, which after series of washings, were reduced,

alkylated, and digested.

The results generated by the bottom-up approach

using the in-gel digestion yielded the identification of

36 peptides, whereas 37 was the total of the identified

peptide by in-solution digestion. The detected peptides

showed similarity of sequences with peptides from

other scorpion species, and with their sequence cover-

age ranging from 10.23% (P68721) to 86.15%

(P01489) and from 8.75% (P0C294) to 92.86%

(P80669) for the in-gel and in-solution digestions,

respectively.

The identified categories of peptides using the in-gel

digestion were as follows: 27 NaScTxs; seven KscTxs;

and two ClTxs (Table 3). While, through the in-solu-

tion digestion, we identified in addition to 24

NaScTxs, eight KScTxs and three ClScTxs, one entry

that shares 60% of similarity with neurotoxin Tx-2

(P83406) purified from Hottentotta judaicus, could cor-

respond to a calcium channel activator ‘CaScTx’ scor-

pion. Besides neurotoxins, one amphipathic peptide

was detected by this digestion method (Table 4).

According to the results, 23 of the entries were

detected by both digestion methods (Tables 3 and 4).

Thus, 14 peptides were identified only by the in-solution

digestion method, for example, alpha-toxin Amm5

(P01482), alpha-mammal toxin Bot3 (P01485), potas-

sium channel toxin alpha-KTx 9.3 (P80669), neurotoxin

Tx-2 (P83406), neurotoxin P2 (P01498), and amphi-

pathic peptide Tx348 (B8XH50). Otherwise, regarding

the in-gel digestion results, 13 peptides were identified

only by this method of digestion, for example,

Coverage

(%)

Measured

MW (Da)

No. of

peptides

No. of

PSMs

No. of

unique

peptides

No. of

protein

groups

No. of

AAs calc.pI

71.76 6632.71 1 18 1 1 85 6.38

75.29 7012.23 1 3 1 1 85 8.12

71.76 6775.93 1 4 1 1 85 7.85

98.59 7895.47 1 35 1 1 71 7.53

77.64 7211.14 1 1 1 1 85 6.4

98.5 7218.3 1 1 1 1 67 8.29

78.16 7243.29 2 4 2 1 87 7.66

100 6954.15 1 1 1 1 63 8.31

78.16 7394.28 1 3 1 1 87 7.5

78.82 7184.3 1 5 1 1 85 8.5

70.32 6889.3 1 9 1 1 91 8.76

25.27 2506.46 1 1 1 1 91 8.57

24.32 1959.13 1 1 1 1 74 9.31

16.96 3112.45 1 1 1 1 165 9.29

25.75 3939.79 1 1 1 1 132 7.99
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Fig. 4. The detected amino acid sequences of the five toxins identified with 100% coverage by the top-down LC-MS/MS; neurotoxin BmK-

II (P59360); beta-insect depressant toxin BaIT2 (P80962); insect toxin BsIT4 (P82814); insect toxin LqhIT5 (P81240); and beta-insect

depressant toxin BotIT4 (P55903).

1878 FEBS Open Bio 11 (2021) 1867–1892 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

First proteomic analysis of the Moroccan Buthus occitanus scorpion venom K. Daoudi et al.



potassium channel toxin alpha-KTx 9.11 (B3EWX9);

sodium channel alpha-toxin Acra4 (M1JBC0); sodium

channel alpha-toxin Acra8 (M1JMR8), alpha-toxin Ac3

(fragment) (D5HR52); and beta-insect depressant toxin

BotIT5 (P55904).

Since the aim of using two methods of digestions was

to identify the maximum of peptide, the data generated

by bottom-up approaches using in-gel and in-solution

digestions were then summarized in Table 5; the

repeated molecules were deleted and thus allowed the

detection of a total of 50 peptides, which were divided

into different categories according to their molecular

functions. The generated data from the bottom-up pro-

cess confirmed that the family with the most diverse

members in this venom is neurotoxins, with 31 NaScTxs

(62%, 4.3–10.2 kDa), 13 KScTxs (26%, 2.9–10.4 kDa),

three ClScTxs (6%, 3.6–4 kDa), one CaScTx (2%,

2.9 kDa), and one toxin Acra (2%, 8.8 kDa).

In addition to these neurotoxins, we identified one

amphipathic peptide (2%, 7.8 kDa) (Fig. 5B). Also,

some peptides were detected as fragments (10% of

total): alpha-toxin Ac1 (D5HR50) and Ac3

(D5HR52); alpha-mammal toxin Bot3 (P01485); and

neurotoxin 8 (P04098).

As we mentioned above, we aimed to gain a deeper

understanding of the B. occitanus peptidome (under

30 kDa), so the molecular diversity of its toxins. In

this context, we combined data from the top-down

and bottom-up analyses and then analyzed the gener-

ated data to infer a global and comprehensive charac-

terization of this venom.

According to this study, a total of 118 peptides were

identified from B. occitanus venom; among them, 16

were identified by both approaches, for example,

potassium channel toxin BmTXK-beta-2 (Q9N661);

toxin AaHIT4 (P21150); and alpha-mammal toxin

Bot3 (Fragment) (P01485).

Among the 102 identified peptides, the most repre-

sentative category is neurotoxins, mainly NaScTxs

(77%), followed by KScTxs (14%), ClScTxs (3%),

CaScTx (1%), and toxin Acra (1%). We also charac-

terized other peptides with low percentage such as

Fig. 5. (A) Relative abundance of the different peptide categories identified in reduced/alkylated B. occitanus venom filtrate by the top-down

LC-MS/MS analysis. Peptides were divided on the basis of their molecular functions into: neurotoxins active on sodium channels (NaScTxs),

neurotoxins active on potassium channels (KScTxs), myotropic neuropeptide, AMP, and hypothetical secreted protein. (B) Relative

abundance of the different peptide categories identified in reduced/alkylated and digested B. occitanus venom by bottom-up LC-MS/MS

analysis. The peptides were divided on the basis of their molecular functions into: neurotoxins active on sodium channels (NaScTxs),

neurotoxins active on potassium channels (KScTxs), neurotoxins active on chloride channels (ClScTxs), neurotoxins active on calcium

channels (CaScTx), toxin Acra, and amphipathic peptide.
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Table 5. List of the 50 peptides detected by the bottom-up analysis of the reduced/alkylated B. occitanus venom filtrate. Data sets

generated from the mass spectrometer were analyzed by the PROTEOME DISCOVER 2.2 software, against UniProtKB/Swiss-Prot database.

Category Accession Description MW (kDa) Species Digestion method

NaScTx P86406 Neurotoxin MeuNaTx-6 7.8 Mesobuthus eupeus In-gel digestion

P59863 Beta-toxin BotIT2 6.9 Buthus occitanus tunetanus Both

D5HR52 Alpha-toxin Ac3 (Fragment) 7.8 Androctonus crassicauda In-gel digestion

P55904 Beta-insect depressant toxin BotIT5 6.8 Buthus occitanus tunetanus In-gel digestion

O77091 Beta-insect excitatory toxin BmK IT-AP 10.2 Mesobuthus martensii Both

P68723 Beta-insect excitatory toxin LqhIT1c 9.9 Leiurus quinquestriatus hebraeus In-gel digestion

P59360 Neurotoxin BmK-II 7.2 Mesobuthus martensii Both

P15224 Toxin Os1 7.6 Orthochirus scrobiculosus In-gel digestion

D5HR50 Alpha-toxin Ac1 (Fragment) 8.7 Androctonus crassicauda In-gel digestion

M1JMR8 Sodium channel alpha-toxin Acra8 7.5 Androctonus crassicauda Both

M1JBC0 Sodium channel alpha-toxin Acra4 7.1 Androctonus crassicauda In-gel digestion

Q86SE0 Toxin Aam2 9.3 Androctonus amoreuxi Both

P21150 Toxin AaHIT4 7.8 Androctonus australis Both

P01482 Alpha-toxin Amm5 7.3 Androctonus mauretanicus

mauretanicus

In-solution digestion

P01481 Alpha-mammal toxin Lqq5 7.3 Leiurus quinquestriatus

quinquestriatus

In-solution digestion

P13488 Alpha-like toxin Bom3 6.9 Buthus occitanus mardochei Both

P45698 Neurotoxin BmK-M9 8.8 Mesobuthus martensii In-solution digestion

P68721 Beta-insect excitatory toxin LqhIT1a 9.9 Leiurus quinquestriatus hebraeus Both

P0DJH8 Alpha-toxin Bu1 7.5 Buthacus macrocentrus Both

P83644 Toxin Lqh4 7.2 Leiurus quinquestriatus hebraeus Both

P01489 Alpha-toxin Lqq4 7.2 Leiurus quinquestriatus

quinquestriatus

Both

P01486 Alpha-toxin Bot11 7.5 Buthus occitanus tunetanus In-solution digestion

P60255 Toxin Boma6a 7.5 Buthus occitanus mardochei Both

P17728 Alpha-insect toxin LqhaIT 9.6 Leiurus quinquestriatus hebraeus Both

P04098 Neurotoxin 8 (Fragment) 4.1 Buthus occitanus tunetanus Both

P55902 Alpha-insect toxin BotIT1 7.3 Buthus occitanus tunetanus Both

P01488 Alpha-toxin Bot1 7.3 Buthus occitanus tunetanus Both

P81504 Insect toxin AaHIT5 6.9 Androctonus australis Both

P01485 Alpha-mammal toxin Bot3 (Fragment) 8.1 Buthus occitanus tunetanus In-solution digestion

P83406 Neurotoxin Tx-2 2.9 Buthotus judaicus In-solution digestion

Q17254 Alpha-insect toxin Bot14 9.2 Buthus occitanus tunetanus Both

P59864 Beta-insect depressant toxin BotIT6 7.3 Buthus occitanus tunetanus In-solution digestion

P0C294 Toxin Acra I-3 8.8 Androctonus crassicauda In-solution digestion

KScTx B3EWX9 Potassium channel toxin alpha-KTx 9.11 2.9 Mesobuthus gibbosus In-gel digestion

P0C161 Potassium channel toxin alpha-KTx 2.8 4.3 Centruroides elegans In-gel digestion

B8XH42 Potassium channel toxin alpha-KTx 16.6 6.5 Buthus occitanus israelis Both

P0CC12 Potassium channel toxin alpha-KTx 8.5 3.2 Odontobuthus doriae In-solution digestion

P59869 Potassium channel toxin alpha-KTx 5.4 3.5 Mesobuthus tamulus In-gel digestion

B8XH40 Potassium channel toxin BuTXK-beta 10.2 Buthus occitanus israelis In-gel digestion

Q95NJ8 Potassium channel toxin alpha-KTx 17.1 6.2 Odontobuthus doriae In-solution digestion

P83407 Potassium channel toxin alpha-KTx 19.1 3.3 Mesobuthus martensii in-solution digestion

P80669 Potassium channel toxin alpha-KTx 9.3 3 Leiurus quinquestriatus hebraeus In-solution digestion

P86399 Neurotoxin lamda-MeuTx 7.2 Mesobuthus eupeus In-solution digestion

Q9NJC6 Potassium channel toxin BmTXK-beta 10.4 Mesobuthus martensii Both

Q9N661 Potassium channel toxin BmTXK-beta-2 10.2 Mesobuthus martensii Both

ClScTx P01498 Neurotoxin P2 3.7 Androctonus mauretanicus

mauretanicus

in-solution digestion

P86436 Chlorotoxin-like peptide 3.6 Androctonus australis Both

P45639 Chlorotoxin 4 Leiurus quinquestriatus

quinquestriatus

Both

P80670 Toxin GaTx2 3.2 Leiurus quinquestriatus hebraeus In-solution digestion

Amphipathic

peptide

B8XH50 Amphipathic peptide Tx348 7.8 Buthus occitanus israelis In-solution digestion

Peptide entries in bold were identified by both top-down and bottom-up approaches.
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AMPs (1%), amphipathic peptides (1%), hypothetical

secreted proteins (1%), and myotropic neuropeptides

(1%) (Fig. 6).

The majority of described peptides were identified

for the first time in this Moroccan B. occitanus

scorpion venom. The identified peptides showed

sequence similarities with toxins previously detected

from several genera of scorpions (Fig. 7), principally

Mesobuthus sp (30%), Buthus Sp (20%), and Androc-

tonus sp (18%).

Fig. 6. Summary of the total peptides identified by top-down and bottom-up approaches. The 102 peptides were divided into neurotoxins,

including NaScTxs, KScTxs, ClScTxs, CaScTx and toxin Acra, amphipathic peptide, myotropic neuropeptide, AMPs, and hypothetical

secreted protein.

Fig. 7. Percentage of B. occitanus peptides, which showed similarity of sequences with others from several scorpion genera.
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Discussion

Envenomation following scorpion stings constitutes

one of the most encountered emergencies in large parts

of the world, especially in North Africa, where the

data show the highest incidence and lethality [1]. Mor-

occo is a country known for a high risk of envenoma-

tion owing to its huge and diversified scorpion fauna.

Among the different scorpion species living in this

country, the yellow scorpion B. occitanus is one of the

most dangerous species with venom responsible for

severe cases of envenomation.

Due to the limited knowledge about the composition

and toxin arsenal of B. occitanus venom, we aimed in

this study to elaborate the first exhaustive view of this

scorpion venom peptidome and its molecular diversity,

using mass spectrometry-based top-down and bottom-

up approaches.

Top-down data sets showed that the venom of

B. occitanus is very complex, counting around 200

MWs ranging from 1868 to 16 720 Da. A similar

number of components have been revealed by previous

studies [32–34], others showed fewer components, as

well as Leiurus abdullahbayrami (45 masses) and

Opisthacanthus elatus (106 masses) [35, 36], whereas

some other scorpion venoms were more complex, such

as the Pandinus cavimanus (390 masses) and Cen-

truroides limpidus (395 masses) [37, 38]. Additionally,

the repartition of MWs showed that < 1% were com-

ponents with molecular masses < 2000 Da, 14% were

those from 2000 to 5000 Da, 74% were those between

5000 and 8000 Da, and 10% were those over than

8000 Da, while the repartition of MW from the

French B. occitanus scorpion venom showed an abun-

dance of molecules ranging from 2000 to 3000 Da and

those less than 2000 Da [39]. Most importantly, the

whole sequences of five toxins were identified with

100% sequence coverage using the top-down

approach. These neurotoxins were detected for the

first time in this venom; they all belong to the

NaScTxs category and shared high similarities of

sequence with toxins identified from other scorpion

species: neurotoxin BmK-II (P59360), beta-insect

depressant toxin BotIT4 (P55903), beta-insect depres-

sant toxin BaIT2 (P80962), insect toxin LqhIT5

(P81240), and insect toxin BsIT4 (P82814). It is impor-

tant to stress that the observed sequence of the

P59360 entry with a MW of 7431.33 Da showed

100% similarity with the sequence of neurotoxin

BmK-II isolated from the Chinese scorpion

Mesobuthus martensii, this neurotoxin is active in

mammal and insect Nav channel [40]. In contrast, the

detected sequence of the P81240 entry (6611.8 Da)

showed the presence of methionine in the N-terminal

compared with the database sequence of the Insect

toxin LqhIT5, an excitatory insect beta-toxin from the

Leiurus hebraeus scorpion [41]. Similar to the P82814

entry (6954.15 Da), in which the observed sequence

corresponds 100% to the insect toxin BsIT4, a depres-

sant insect beta-toxins was isolated from Hottentotta

tamulus sindicus [42]. Also, the observed sequence of

the peptide corresponding to the depressant toxin

BotIT4 (6837. 96 Da) presents methionine in N-termi-

nal compared with the database sequence. This toxin,

identified for the first time from the Tunisian

Buthus tunetanus [43], showed also 100% sequence

identity with the P80962 entry (6845.9 Da), referred to

the beta-insect depressant toxin BaIT2 isolated from

the Buthacus arenicola scorpion [44]. The high similar-

ity of the amino acid sequence, in both detected

depressant toxins and in the other peptides is com-

monly observed in scorpion toxins.

Interestingly, the combined top-down and bottom-

up data sets of B. occitanus venom provide the identifi-

cation of 102 different peptides, whereas 147 proteins

were characterized from the yellow Brazilian scorpion

Tityus serrulatus, 60 of which were detected by the

top-down approach [45]. The major representative cat-

egory of components identified in our venom was neu-

rotoxins, mainly NaScTxs (77%), these neurotoxins

are abundant in species from the Buthidae family

[38,46,47] and less representative in scorpions from the

non-Buthidae family [33,48,49]. Those toxins are the

ones responsible for envenomation symptoms [39];

their high content in the B. occitanus venom could

explain the involvement of this scorpion in lethal cases

of envenoming in the country.

Between the entries corresponding to NaScTxs, there

are alpha-like toxins, this type of toxins had been

already identified in several Buthus sp; yet, the alpha-

toxin Bot1 (P01488) has never been found in other

Moroccan Buthus subspecies except from Buthus mar-

dochei [39,50–53], but identified herein with a high

sequence coverage (98.48% on top-down data set). We

should mention also that we identified for the first

time, in this scorpion venom, peptides corresponding

to atypical NaScTxs, as well as makatoxin-1, fragment

from makatoxin-2, toxin Cg2, chain [20-87] in venom

toxin meuNa32, and AaHIT4 toxin (which could bind

on receptor site 3 or 4 of sodium channel) [33].

Besides NaScTxs and KScTxs (14%), ClScTxs (3%)

were identified, these categories of peptides showed

activities against autoimmune disease and cancers,

respectively [54–58]; also, we identified one entry that

shared 60% of similarity with neurotoxin Tx-2

(P83406), a calcium channel activator identified for the
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first time from the Buthotus judaicus, this category of

toxins was identified in few scorpion species, for exam-

ple, Parabuthus transvaalicus (Kurtoxin) and

Parabuthus granulatus (Kurtoxin-like I) but never been

detected in a Moroccan scorpion venom [59, 60]. And

last but not least, peptides referring to toxin Acra cate-

gory have also been screened in B. occitanus venom,

these toxins probably acting on ion channels.

Some peptides with antibacterial activities were also

found, for example, amphipathic peptide (B8XH50)

and AMP AcrAP1 (A0A059UI30); this category was

commonly present in scorpion venom due to its role in

the protection of venom glands and its involvement in

the neurotoxic effects [61–65]. Additionally, other com-

ponents were identified with a low percentage, such as

orcokinin, a myotropic neuropeptide identified from

crustaceans, insects, and arachnids [17, 66], and hypo-

thetical secreted proteins, which are proteins with

unknown activities. Finally, we notice that some of the

detected toxins were identified as fragments and

chains, which may be due to the proteolysis of toxins.

This process seems to be a usual PTM in scorpion and

snake venoms, whereas its biological pertinence

remains obscure [17, 45].

This study decrypted the peptidome arsenal of the

Moroccan B. occitanus scorpion venom through pro-

teomic view without the de novo sequence annotation.

These findings constitute a step forward to a ‘deeper’

understanding of this scorpion venom; nevertheless,

complete identification of this complex matrix is still a

challenging task, especially with the lack of a specific

database and/or a complete sequenced genome of this

venom.

Conclusion

Herein; we reported the first proteomic study of the

Moroccan B. occitanus scorpion peptidome, using

mass spectrometry-based top-down and bottom-up

venomic approaches. The combination of these

approaches allowed the identification of 102 compo-

nents classified, with approximation, on different cat-

egories, mainly neurotoxins (96%), including

NaScTxs (77%), KScTxs (14%), ClScTxs (3%),

CaScTx (1%), and toxin Acra (1%). We also identi-

fied AMPs (1%), amphipathic peptides (1%), hypo-

thetical secreted proteins (1%), and myotropic

neuropeptides (1%). This study constitutes for sure a

step forward to a deeper understanding of the B. oc-

citanus venom; nevertheless, complete identification

of this complex matrix is still a challenging task,

especially with the lack of a specific database and a

complete sequenced genome.
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Fig. S1. SDS/PAGE profile of the < 30 kDa filtrate of

Buthus occitanus venom. Molecular weight markers

(MM) are indicated in kDa. Proteins/Peptides were

stained with Coomassie Brilliant Blue R (InstantBlue,

Expedeon, CA, USA). Stained bands corresponding to

proteins/peptides with massed < 30 kDa were manu-

ally excised into equal small cubes of 1 mm3 and sub-

jected to a nanoLC-MS/MS analysis.

Fig. S2. Detected amino acid sequences of the 68 pep-

tides identified by Top-down approach.
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