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C O M P U T E R  S C I E N C E

Generative and reproducible benchmarks or 
comprehensive evaluation machine learning classifiers
Patryk Orzechowski1,2* and Jason H. Moore3*

Understanding the strengths and weaknesses of machine learning (ML) algorithms is crucial to determine their 
scope of application. Here, we introduce the Diverse and Generative ML Benchmark (DIGEN), a collection of 
synthetic datasets for comprehensive, reproducible, and interpretable benchmarking of ML algorithms for classi-
fication of binary outcomes. The DIGEN resource consists of 40 mathematical functions that map continuous features 
to binary targets for creating synthetic datasets. These 40 functions were found using a heuristic algorithm 
designed to maximize the diversity of performance among multiple popular ML algorithms, thus providing a useful 
test suite for evaluating and comparing new methods. Access to the generative functions facilitates understanding 
of why a method performs poorly compared to other algorithms, thus providing ideas for improvement.

INTRODUCTION
The development of new machine learning (ML) algorithms has ac-
celerated to meet the demands of a variety of big data applications. 
An important type of ML algorithm is the classifier that is designed 
to accept discrete and/or continuous input features and produce 
a binary prediction or outcome that matches as close as possible a 
binary target such as the presence or absence of disease or success or 
failure of a device. This class of algorithms, sometimes referred to as 
supervised ML, is useful in many domains and is often used to com-
plement parametric statistical methods such as logistic regression. 
Examples include tree-based approaches such as decision trees (1–3), 
random forests (4, 5), kernel-based methods such as support vec-
tor machines (6), and gradient boosted trees (7), as well as and their 
many variants (8, 9).

Central to the development of ML algorithms is their evaluation. 
A good evaluation should document the strengths and weaknesses 
of the method and allow a fair and robust comparison to other state- 
of-the-art methods. The evaluation criteria often include measures 
of the accuracy of the predictions made, the computational efficien-
cy of the algorithms, the degree of fairness and bias, and the user’s 
ability to interpret the results from a fitted model. The evaluation 
results help practitioners understand when it is appropriate to use 
the method, help readers assess the trustworthiness of the results, 
and help developers generate ideas for how to make improvements. 
One approach to evaluation is to use real and/or simulated datasets 
as “benchmarks.” Two commonly used collections of real and syn-
thetic data are the University of California Irvine (UCI) ML repository 
(10) and the Library for Support Vector Machines (LIBSVM) (11), 
which provide hundreds of real datasets with open access. Public ef-
forts focused on reorganizing, standardizing, and expanding those 
repositories lead to the emergence of benchmarking repositories, such 
as the Penn Machine Learning Benchmark (12), Open Machine 
Learning 100 (OpenML100), and its curated successor OpenML-CC18 
(13). A lot of effort has been made to organize benchmarks for regression 

problems (12, 14–16). Benchmarks have also become more popular 
by competitions such as Kaggle (17) that provide data for the com-
parison of algorithms provided by contestants. The results of such 
competitions have helped the ML community evaluate and improve 
numerous algorithms.

Increased data accessibility allowed extensive testing of different 
ML algorithms. A common benchmarking practice is to select a 
subset of these datasets to illustrate one method performing better 
than others. There are several problems with this approach. It is rare 
to know what the true patterns are in real data. Hence, it is difficult 
know whether an algorithm is performing well because it is model-
ing the truth or exploiting the noise in the data (i.e., overfitting). This 
issue can be addressed by the inclusion of replicate datasets drawn 
from the same experiment or observational study. Ideally, at least three 
datasets of sufficient sample size and consistent structure would be 
available for training a model (dataset one), tuning the parameters 
of the model (dataset two), and validation (dataset three). Addition-
al validation datasets provide additional confidence that the model 
is generalizable and thus likely to be modeling the signal in the data. 
However, real data are time-consuming and expensive, and thus, 
multiple real datasets are rarely available. Even when multiple data-
sets are available, it is often difficult to know whether the examples 
are representative of the population that they were drawn from or 
whether the features were measured in the same way. Furthermore, 
the release of real data to the public can be problematic because 
of privacy, intellectual property, or confidentiality issues. These lim-
itations have led some to turn to simulated data.

A major advantage of simulated data is that the ground truth is 
known because the signal and noise are specifically engineered. This 
may provide some insights into why a method performs better or 
worse on certain datasets. Furthermore, a generative function makes 
it possible for the user to generate as many replicate datasets and 
with any shape to evaluate the methods. An important limitation of 
simulated data is that it may not be possible to know whether the 
patterns being generated are consistent with those from real data. 
Despite the strengths, there is a noticeable lack of simulated data for 
benchmarking classification algorithms. Additional limitation is that 
existing datasets are not focused on differentiating the accuracy of 
the classifiers. Thus, multiple methods commonly end up having 
similar performance for multiple available datasets. Those datasets 
in terms of benchmarking are noninformative and abundant, as 
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they do not sufficiently highlight strengths and weaknesses of clas-
sification methods.

There are several aspects that a good synthetic benchmark should 
deliver. A desirable quality of a good synthetic benchmark is the ability 
to differentiate the performance of multiple methods not only within 
a dataset but also between datasets, such that no one method would 
dominate all the others (this is commonly referred as no free lunch 
theorem in ML). A useful benchmark should also deliver insights 
regarding types of generative functions that are not suitable for the 
method being evaluated so that strategies for improving the method 
can be developed. It should be compact to offer rapid evaluation yet 
comprehensive to cover varying types of problems. Ideally, it would 
not only cover small problems but also provide the possibility to scale 
them to larger problems of any size, with the same built-in ground 
truth. It would be also great if the benchmark provided precomputed 
information on expected performance of the methods on replicated 
datasets initialized with different random seeds. Last, the benchmark 
should be reproducible so that the results across multiple machines 
and operating systems remained the same.

With the aforementioned qualities in mind, we introduce the Diverse 
and Generative ML Benchmark (DIGEN), a synthetic data resource for 
comprehensive, reproducible, and interpretable benchmarking of ML 
algorithms for classification of binary outcomes. A central goal is to generate 
a diverse set of mathematical functions that map continuously distrib-
uted features to binary outcomes or class variables for the purpose of re-
vealing the strengths and weaknesses of the ML algorithms being evaluated.

METHODS
The resulting collection of datasets has been created as a result of 
multistep optimization built on top of a heuristic algorithm that 
discovers the generative mathematical functions. The datasets are 
simulated in a specific way that yields maximum diversity of the 
performance of multiple commonly used ML algorithms. The heu-
ristic algorithm has two optimization objectives: accuracy [measured 
as the area under receiver operating characteristic curve (AUROC) 
between two selected methods] and SD between the remaining meth-
ods. The candidate functions have emerged as the result of duels be-
tween pairs of ML algorithms from the following list: decision trees, 
gradient boosting, k-nearest neighbors (18), light gradient boosting 
(LightGBM) (9), logistic regression (19), random forests, support vector 
machines, and extreme gradient boosting (XGBoost) (8). Within each 
duel, the target variables of the datasets were modified so that one 
method excelled and the other underperformed. Additional require-
ment was to maximize diversity of the performance of all the algo-
rithms. Using the optimization objectives, we selected 40 benchmarks 
with unique generative mathematical functions maximizing the di-
versity and ranking of ML algorithm performance. We provide not 
only synthetic datasets but also the generative functions used as the 
ground truth, multiple different analyses for each of the datasets, 
source code for running analysis, and a Docker script to replicate our 
study, everything as an open-source contribution for the ML community.

Details of the heuristic algorithm and its implementation can be 
found in the Supplementary Materials, which is available on GitHub 
Pages. Briefly, the DIGEN resource was built using a heavily modified 
version of the Heuristic Identification of Biological Architectures 
for Simulating Complex Hierarchical Genetic Interactions (HIBACHI) 
method and software (20) reinforced by selection of pareto-optimal 
solutions using the Non-dominated sorting genetic algorithm III 

(NSGA-III) strategy (21) and the state-of-the-art hyperparameter 
optimization framework Optuna (22). The popular scikit-learn ML 
library (23) was used for analysis with addition of XGBoost and 
LightGBM Python packages. Parameter ranges were set on the basis of 
the recommendations of the leading hyperoptimization frameworks, 
such as Optuna, auto-sklearn (24) and auto-sklearn2 (25), and hyper-
opt (26, 27), and expert knowledge. The training and testing data-
sets were split 80/20 using a 10-fold cross-validation. The exact 
parameter settings of the methods could be found on GitHub.

The DIGEN benchmark resource includes 40 datasets simulated 
from each of the generative mathematical functions. Each includes 
10 features or an independent variable generated from a normal 
distribution with a mean of zero and a variance of one, N(0,1). The 
generative mathematical function accepts these features as input 
returning a continuously distributed outcome variable. We then 
sort and convert this outcome to binary values (0,1) to create a bal-
anced binary class variable. Each of the 40 datasets has a sample size 
of n = 1000. We provide each of these 40 datasets as the benchmark. 
Datasets initiated with different random seeds or with different siz-
es could be generated using a Docker container available at GitHub. 
The functions themselves can be used with features drawn from 
the same normal distribution to generate as many datasets as desired 
with any sample and feature sizes. It would not be difficult to extend 
the heuristic algorithm to generate functions mapping other distri-
butions of input and output data for problems such as those with 
binary inputs or multiclass or continuous outcomes.

RESULTS
There are several properties that make DIGEN a unique benchmark 
in the ML community. First, DIGEN differentiates the performance 
of multiple ML methods. Figure 1A shows a heatmap of the perfor-
mance of reference ML algorithms (presented in columns) initialized 
with the default random seed and optimized with 200 hyperparam-
eter evaluations across all 40 benchmark datasets (rows). The shade 
of the color is proportional to the AUROC. Also shown are the re-
sults of a hierarchical cluster analysis of the rows and columns visu-
alized using dendrograms with shorter branches indicating higher 
similarity. Note that no method dominates all datasets. Second, 
DIGEN includes a diverse set of generative mathematical functions. 
Figure 1B shows a heatmap of the Ruzicka similarity of the 40 gen-
erative functions. The Ruzicka similarity between each pair of datasets 
represented as vectors x and y is calculated as the number of math-
ematical pairs of operators used one after another in the generative 

function and is defined as    ∑ min ( x  i  ,  y  i  ) _ ∑ max ( x  i  ,  y  i  )
   (28). Note the low similarity 

between all benchmark functions. Third, DIGEN is comprehensive. 
The heuristic algorithm optimization considered hundreds of thou-
sands of combinations of mathematical operators using millions of 
hours of computing time. Furthermore, every ML algorithm con-
sidered by the heuristic algorithm was tuned by with 200 hyperpa-
rameter combinations evaluated on the basis of AUROC score 
computed with a 10-fold cross-validation.

In addition to the computational properties outlined above, 
DIGEN has several practical qualities for benchmarking. First, DIGEN 
datasets and results are reproducible. We have provided a Docker 
container, which allows the reproduction of our analyses. New data-
sets can be generated from the same feature distributions and math-
ematical functions producing the same patterns. This will allow the 
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benchmark to be recreated as necessary, yielding similar ML results 
depending on the random seed used. Second, DIGEN is scalable. The 
generative functions allow users to generate as many datasets as they 
want and with any desired sample size. DIGEN is also compact. The 
40 benchmarks were selected from all of those generated by the heu-
ristic to be diverse and to avoid unnecessary redundancy. The goal 
was to maximize the utility without burdening the user with too 
many benchmarks to evaluate. Third, DIGEN is simple, as it allows 
the user to very quickly discover where and why their method is not 
performing as good as the reference methods. To facilitate this, we 
have provided the code in Jupyter Notebooks for running the analyses 
and comparing the ML methods covered in the benchmark. We have 
included multiple precomputed statistics for each of the 40 generative 
functions, such as a feature correlation chart and box plots (Fig. 2A), 
which reflect the optimized performance with 100 evaluations of the 
ML algorithms across 100 replicate datasets initiated with different 
random seeds (Fig.  2B), receiver operating characteristics (ROC) 
plots (Fig. 2C), and precision-recall curve (PRC) plots (Fig. 2D). All 
the statistics were computed using tuned ML methods with a spe-
cific random seed given next to the name of the DIGEN dataset. Last, 
DIGEN is open source. All the source code along with the benchmark 
datasets are available on GitHub, with extensive documentations 
and tutorials on benchmarking new methods against DIGEN, and a 
docker container used to provide reproducibility for our experiments.

DISCUSSION
Despite the widespread use of benchmarks, there is general recogni-
tion that they have important limitations both in their design and 
their application. We review a few of those limitations here and then 
present the results of a study designed to generate a comprehensive 

suite of simulated benchmarks designed to reveal the strengths and 
weaknesses of ML classification methods.

Introducing a novel ML algorithm usually requires performing 
a comparison with well-established methods that would show that 
state-of-the-art methods are outperformed on collection of datasets. 
Thus, it comes with no surprise that more modern methods (such 
as gradient boosting, XGBoost, or LGBM classifiers) tend to perform 
similar or better than earlier ones on multiple tests. It also creates 
a challenge for benchmark designers to develop such datasets that 
would demonstrate the opposite. DIGEN approaches this by battling 
one method against the other, which is supposed to promote weaker 
classifiers against stronger ones, and ultimately lead to finding more 
complex and challenging ML tasks for modern methods.

The reasons why a given method shines on some datasets and 
trails on the other are yet to be understood. Several aspects come 
into play when analyzing this phenomenon. First, it is clear that the 
choice of a random seed affects both the dataset and initial settings 
of the ML methods. Our analysis of 100 runs, each starting from a 
different random seed, has shown that such differences may be nota-
ble. Second, the choice of sampler for hyperparameter optimization 
might play an important role in determining which combinations 
of parameters are chosen and ultimately lead to choosing a different 
model. Choosing a different sampler may ultimately lead to explor-
ing different settings of ML method and improving its final perfor-
mance. Third, the settings of the ML method hyperparameters and 
the number of evaluations may play a role. A too narrow search space 
affects the performance of the method, and a too broad one may 
simply result in missing important settings and ultimately in subop-
timal performance. DIGEN addresses this by allowing each param-
eter to be found randomly with predefined distribution according 
to established guidelines for each method. The combination of the 

A B
Fig. 1. Performance and similarity of ML methods across the 40 DIGEN benchmark datasets. (A) Heatmap of AUROC scores for each ML method (columns) with re-
spect to each of the datasets (rows). (B) Heatmap of Ruzicka similarity (28) between each pair of datasets with regard to the number of common mathematical operators 
executed in proper order in the generative functions. All ML methods were tuned with respect to their hyperparameters.
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three aforementioned elements apparently leads to situations in 
which a given ML method is unable to deliver the expected perfor-
mance for a specific run initiated with a given random seed under 
a limited number of optimization constraints, although, in general, 
with multiple random seeds, it clearly outperforms the other meth-
od on the vast majority of runs, each with a different random seed.

In summary, we generated a comprehensive set of synthetic bench-
mark data to facilitate the evaluation and comparison of ML algo-
rithms for classification of discrete outcomes. Each benchmark dataset 
comes with the generative mathematical function that can be used 
to create additional datasets or be used to provide some clues as to 
why an ML algorithm might not be performing well on that particular 
generative function. The resource is diverse, easy to use, and open 
source. Furthermore, it includes tutorials, the source code and math-
ematical formulas used to simulate the data. This allows us to easily 
extend the resource or benchmark the methods under similar envi-
ronment. Sculley et al. (29) emphasized that counting the number 

of wins of a particular ML method is less important than discover-
ing its strengths and weaknesses. In line with this proposal, DIGEN 
was designed as a tool for explaining where the method underper-
formed and hopefully also understanding why.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abl4747
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