
RESEARCH ARTICLE

Strategies of data layout and cache writing for

input-output optimization in high

performance scientific computing:

Applications to the forward

electrocardiographic problem

Louie Cardone-Noott, Blanca Rodriguez, Alfonso Bueno-Orovio*

Department of Computer Science, University of Oxford, Oxford, United Kingdom

* alfonso.bueno@cs.ox.ac.uk

Abstract

Input-output (I/O) optimization at the low-level design of data layout on disk drastically

impacts the efficiency of high performance computing (HPC) applications. However, such a

low-level optimization is in general challenging, especially when using popular scientific file

formats designed with an emphasis on portability and flexibility. To reconcile these two

aspects, we present a novel low-level data layout for HPC applications, fully independent of

the number of dimensions in the dataset. The new data layout improves reading and writing

efficiency in large HPC applications using many processors, and in particular during parallel

post-processing. Furthermore, its combination with a cached write mode, in order to aggre-

gate multiple writes into larger ones, substantially decreased the writing times of the pro-

posed strategy. When applied to our simulation framework for the forward calculation of the

human electrocardiogram, the combined strategy resulted in drastic improvements in I/O

performance, of up to 40% in writing and 93–98% in reading for post-processing tasks.

Given the generality of the proposed strategies and scientific file formats used, our results

may represent significant improvements in I/O performance of HPC applications across

multiple disciplines, reducing execution and post-processing times and leading to a more

efficient use of HPC resource envelopes.

Introduction

The optimization of high performance computing (HPC) codes is an area of active research,

underpinning a continuous and cost-effective development of both established and emergent

industrial and scientific sectors. As a representative example, the progress we are experiencing

in computational medicine based on HPC applications is allowing the translation of mathe-

matical models of physiological systems such as the heart to biomedical research and clinical

practice. Within the field of cardiac electrophysiology, these include investigations on multi-

scale mechanisms of disease and lethal arrhythmias [1, 2], drug action [3, 4], electrical therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cardone-Noott L, Rodriguez B, Bueno-

Orovio A (2018) Strategies of data layout and

cache writing for input-output optimization in high

performance scientific computing: Applications to

the forward electrocardiographic problem. PLoS

ONE 13(8): e0202410. https://doi.org/10.1371/

journal.pone.0202410

Editor: Rafael Sachetto Oliveira, Universidade

Federal de Sao Joao del-Rei, BRAZIL

Received: January 5, 2018

Accepted: August 2, 2018

Published: August 23, 2018

Copyright: © 2018 Cardone-Noott et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: L. Cardone-Noott was supported by the

Engineering and Physical Sciences Research

Council (EP/G03706X/1; https://www.epsrc.ac.uk/).

B. Rodriguez was supported by a Wellcome Trust

Senior Research Fellowship in Basic Biomedical

Science (100246/Z/12/Z; https://wellcome.ac.uk/).

A. Bueno-Orovio is funded by a BHF Intermediate

https://doi.org/10.1371/journal.pone.0202410
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202410&domain=pdf&date_stamp=2018-08-23
https://doi.org/10.1371/journal.pone.0202410
https://doi.org/10.1371/journal.pone.0202410
http://creativecommons.org/licenses/by/4.0/
https://www.epsrc.ac.uk/
https://wellcome.ac.uk/

[5, 6], causes of inter-patient variability in response to treatment [7, 8], the role of myocardial

structure in modulating heart function [9, 10], identification of novel biomarkers for clinical

diagnosis [11, 12], and the stratification of patients at high risk of sudden cardiac death [13],

among others.

In scientific computing, substantial efforts to improve HPC performance are frequently

placed on the optimization of the numerical solution of the underlying physical models. As in

other disciplines, in cardiac electrophysiology this involves the development of strongly scal-

able solvers [14, 15], improved problem-specific preconditioners [16, 17], temporal and/or

spatial adaptivity [18, 19], higher-order numerical schemes [20, 21], or the use of reduced

models to alleviate model complexity [22, 23]. Additional areas of active HPC performance

improvements include multithreading, load-balance, compiler optimization, or optimization

at the application and operating system levels. Critically, scientific applications in large HPC

systems often read and write vast amounts of data. However, much less attention is given in

general to the input-output (I/O) optimization of these codes, frequently assumed as an inevi-

table burden with little scope for improvement, leaving I/O as a challenging factor in the over-

all performance of HPC applications [24].

Ideally, the first stage of I/O optimization in HPC applications should take place at the low-

level design of the output structure, based on the most frequent access patterns to data. This is,

however, a laborious task, in particular when using popular scientific file formats, designed

with a focus on portability and flexibility (such as the HDF5 file format considered here [25]).

To circumvent this complexity, the use of higher level analysis tools is usually preferred for

HPC I/O optimization [26–29], commonly based on the profiling of communication, latencies

and computation overheads in parallel applications. Other diagnostic tools also provide com-

prehensive summaries of data access patterns [30–32], which can then be used in later stages

of I/O optimization. Additional middleware file formats with improved write and read perfor-

mance have also been developed [33], although their acceptance in scientific applications still

remains low.

To simplify such a delicate crafting process of low-level I/O optimization, in this work

we present a general algorithm for the automatic design of data layout, solely based on the

size of the dataset and one additional parameter, the target chunk size in bytes. When com-

bined with a cached write mode, the new algorithm (applied to our simulation framework

for the forward calculation of the human electrocardiogram) resulted in overall improve-

ments in I/O performance of up to 40% in writing to disk, and between 93% to 98% in read-

ing for different post-processing tasks. Given the generality of the proposed strategies and

the scientific file formats used (HDF5 as a standard for portability and flexibility, and of

widespread use among the scientific computing community), our methodology may be

broadly applied to other scientific areas, yielding significant improvements in I/O perfor-

mance of HPC applications and a more efficient use of HPC resources across multiple scien-

tific disciplines.

Materials and methods

Bidomain equations in a bath

The bidomain equations [17] describe the evolution of the electrical activity in the heart

(Oh), surrounded by a conductive passive medium (i.e. the bath, Ob). Two overlapping

domains are assumed in the heart: the intracellular and extracellular domains, with respec-

tive potentials ϕi and ϕe, whose difference provide the transmembrane potential (Vm = ϕi −
ϕe). The formulation of the problem is then given by the system of partial differential

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 2 / 16

Basic Science Research Fellowship (FS/17/22/

32644; https://www.bhf.org.uk/). B. Rodriguez and

A. Bueno-Orovio also acknowledge additional

support from an Impact for Infrastructure Award of

the National Centre for the Replacement,

Refinement & Reduction of Animals in Research

(NC/P001076/1; https://www.nc3rs.org.uk/), and

the CompBioMed Centre of Excellence in

Computational Biomedicine (European

Commission Horizon 2020 research and innovation

programme, grant agreement No. 675451; https://

ec.europa.eu/programmes/horizon2020/). We also

acknowledge the support of the BHF Centre of

Research Excellence (RE/13/1/30181). This work

made use of the facilities of the UK National

Supercomputing Service (Archer Leadership

Award e462). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202410
https://www.bhf.org.uk/
https://www.nc3rs.org.uk/
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/

equations (PDEs):

wðCm@tVm þ IionÞ � r � ðsir�iÞ ¼ � Ii; in Oh ð1Þ

r � ðsir�i þ ser�eÞ ¼ 0; in Oh ð2Þ

r � ðsbr�eÞ ¼ 0; in Ob ð3Þ

@tu ¼ fðu;VmÞ; in Oh ð4Þ

together with boundary conditions n � (σirϕi) = 0 and n � (σbrϕe) = Ie on the heart and the

external bath boundaries, respectively, where n represents the outward-facing unit normal.

In the equations above, σi and σe are the intracellular and extracellular conductivity tensors,

σb is the bath conductivity, χ is the surface-area-to-volume ratio, and Cm the membrane

capacitance per unit area. The vector u contains cell-level variables (such as ionic concentra-

tions and membrane gating variables), and Iion(u, Vm) is the ionic current per unit surface

area, as given by the cellular electrophysiological model f. The source term Ii is the intracellu-

lar stimulus per unit volume, whereas Ie is a stimulus current per unit area at the external

boundary of the bath (zero in the absence of an external electrical field).

Simulation environment

For the numerical solution of the bidomain equations we used Chaste (Cancer, Heart, and Soft

Tissue Environment) [34, 35], an open-source electrophysiology solver package using the

finite element method. Main dataset I/O used HDF5 version 1.8.14 on a Lustre filesystem.

MPI was provided by the Cray MPT, based on MPICH 3. Simulations were performed on the

ARCHER UK National Supercomputing service (http://www.archer.co.uk/). Our new HDF5

chunking algorithm with caching as described in this work is publicly available as part of the

/io/src/ subfolder of Chaste’s open-source distribution (https://github.com/Chaste/).

Benchmark problem

The HPC scientific computing framework for which the I/O strategy is optimized in this work

is illustrated in Fig 1. The bidomain with bath equations were solved in an anatomically realis-

tic human ventricular and torso (i.e. the bath, also containing lungs and bones) mesh. The

Fig 1. Illustration of the HPC scientific computing framework for which the I/O strategy was optimized in this

work. From left to right: anatomically realistic human heart-torso mesh, also containing lungs and thoracic cage (left).

The colored spheres indicate the location of the virtual electrodes for the calculation of the electrocardiogram, using

standard (European) color-coding. Two double-precision floating-point numbers representing electric scalar fields in

time and space are recorded at each node in the tetrahedral mesh (middle). These electric fields are finally post-

processed to generate multiple time series (e.g. lead II as shown in the right panel), representing a simulated 12-lead

electrocardiogram.

https://doi.org/10.1371/journal.pone.0202410.g001

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 3 / 16

http://www.archer.co.uk/
https://github.com/Chaste/
https://doi.org/10.1371/journal.pone.0202410.g001
https://doi.org/10.1371/journal.pone.0202410

combined heart-torso mesh has a total of about 3.25 million nodes and 19.4 million tetrahedra.

A detailed description of model parameterization is provided in [36]. The ten Tusscher-Panfi-

lov model [37] was used to describe human ventricular electrophysiology at the cellular level.

For this mesh resolution with two double-precision outputs per printing time step (Vm and

ϕe), each printing time step requires storage of 8B × 3253316 × 2� 52.1MB.

The PDE time step was 25 μs, with temporal adaptivity between consecutive PDE time steps

for the numerical solution of the cellular electrophysiology model. For feasibility in generating

the benchmark solutions, the printing time step was set to the PDE time step, and the total run

time was 150 printing time steps. To include other types of data access, the post-processing of

ventricular maps of activation times and peak transmembrane voltage were enabled, which

involve reading from the main results dataset. Finally, all datasets were converted to VTK visu-

alization files as an additional post-processing step.

Results

General considerations on HDF5 default data layout

At the hardware level, digital data storage is one-dimensional, so obviously there must be a

mapping between the multidimensional datasets represented in HDF5 files and the disk. The

default method simply serializes the in “row-major order”, which might or might not be suit-

able depending on the access pattern (the order in which each process accesses values in the

dataset).

Suppose we have a two-dimensional 10 × 10 dataset using this default layout (Fig 2). In

row-major order the data are serialized by rows, e.g. elements 1 to 10 (labelled) are contiguous

on disk, and the same for the following rows. Using conventional matrix notation indexed

from 1, if a process wants to read entries (3,4) to (3,8) inclusive, i.e. the 24th to 27th elements

(shaded, top panel), then it can do this very efficiently by reading a contiguous region on disk

(solid arrows). On the contrary, if a process wants to read entries (4,3) to (8,3) inclusive, i.e.

the 33rd, 43rd, 53rd, 63rd, and 73rd elements (shaded, bottom panel), then it must perform a

number of relatively expensive disk seeks between each row (dotted arrows). Clearly, for good

performance the data layout must be based on the access pattern.

Fig 2. Default data layout in HDF5, and differences between reading a row and a column. A row (left) may be read

efficiently because the elements are contiguous (solid arrow); reading a column (right) by contrast requires a disk seek

(dotted arrows) before every read. The columns and rows of the dataset are labelled 1–10. Four data elements are

labeled with their locations on disk (1,10, 91 and 100). Adapted from the HDF5 support webpage: https://support.

hdfgroup.org/HDF5/doc/Advanced/Chunking/.

https://doi.org/10.1371/journal.pone.0202410.g002

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 4 / 16

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/
https://doi.org/10.1371/journal.pone.0202410.g002
https://doi.org/10.1371/journal.pone.0202410

Since data layout on disk has a significant influence on performance, HDF5 allows the spec-

ification of customized chunk shapes based on typical access patterns. A chunked dataset is

divided into repeating units of the chunk dimensions, and space for each chunk is allocated

contiguously on the disk. In the second example on column-reading above, we might utilize

chunking by setting the chunk dimensions to the shape of a column in the dataset. With

chunks that coincide with columns, the library would lay the data out on the disk column by

column, so that any access from a column becomes a single, fast, contiguous read.

For cardiac applications, HDF5 datasets in our simulation package are three-dimensional

objects, over time in the first dimension, nodes in the second, and variables in the third. A typ-

ical chunk has size {Ct, DN, Dv}, where: Ct depends on the number of printing time steps, Dt;

DN is the total number of nodes; and Dv is the total number of variables. In other words, each

chunk spans the dataset in the ‘nodes’ and ‘variables’ dimensions, with ceil(Dt/Ct) chunks in

the time dimension. This strategy is fairly efficient for simulations with a small number of pro-

cessors and nodes as each chunk will be relatively small and easy to cache. It is, however,

poorly suited to large parallel applications as discussed below.

Considering parallel performance, using chunks that span the node dimension is subopti-

mal due to the way the problem is partitioned across parallel processes. At the start of a simula-

tion, the mesh is partitioned and each process is assigned a subset of the nodes that remains

unchanged for the duration of the simulation. For simplicity, the nodes are reordered so that

the nodes owned by each process are indexed contiguously. Using the earlier notation, each

process will access a contiguous block of approximately size {Dt, DN/j, Dv}, where j is the num-

ber of processes (assuming an equal partition of nodes between processes). Recalling the

chunk shape, we note that it is “orthogonal” to the regions owned by each process (Fig 3).

At this point it is necessary to briefly introduce two of the HDF5 drivers of our simulation

package, and how they differ in reading and writing a chunked dataset. When writing, it uses

the MPI-IO driver, which is specialized for parallel applications. The chunk shape has rela-

tively little impact on writing because the MPI-IO driver uses direct access to the disk, and col-

lective writes are used (designed to improve performance when writing from many processes

to a single file by first concentrating data onto intermediate aggregators). When reading, how-

ever, (e.g. post-processing or generating visualization files) the default driver is used which

uses standard POSIX operations. Unlike the MPI-IO driver, the default driver attempts to

cache an entire chunk when data in it are accessed. Furthermore, the caching implementation

in the default driver dictates that access can only be done on whole chunks. In other words,

even if a process attempts to read just one entry from a chunk and it is possible for the chunk

to be cached, then the process will read the entire chunk into the cache before continuing. If

the chunk is too large to be cached then the cache is bypassed completely and direct access is

used.

From the preceding paragraphs it becomes clear why using chunks that span the node

dimension is suboptimal. First, consider an HDF5 reader being used to perform post-process-

ing on a dataset in parallel. Each process is expected to access all the variables for all its nodes

for all times. Depending on the size of each chunk compared to the size of the chunk cache

there are two possibilities:

• If chunks are small relative to cache size, then when a process requests a value in its block it

must first read the entire chunk into its cache, despite most of the nodes belonging to other

processors and being therefore of no interest. This might yield acceptable performance if

enough chunks can be cached and the access pattern is conducive, which is not the case in

frequent post-processing tasks. For example, imagine the reader accesses all the time points

for one node, then all the time points for the next node, etc. Unless all the chunks can be

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0202410

cached at once, the reader will be forced to read the entire dataset on every iteration, just to

get the values for each node.

• If chunks are larger than cache size, then each process will access the dataset independently

and directly. In this case, the potential performance improvement from using the cache is

lost, but the requirement to read in whole chunks is dropped, possibly resulting in less disk

activity. Still, for optimal performance the use of caching should be favored.

As mentioned above, writing to the HDF5 file is expected to be less affected by chunk set-

tings than reading, since the MPI-IO driver only uses direct access with collective writes. Nev-

ertheless, the chunk shape results in every chunk being accessed simultaneously by all

processes (Fig 3), possibly resulting in increased library overhead to track modifications and

maintain consistency between processes. A chunk layout more closely resembling the process

boundaries would alleviate this issue.

I/O optimization in large HPC systems

A new chunking algorithm. The most methodical way for optimal chunk design would

be to set the chunk shape based on an analysis of the most frequent access patterns, within

some chunk capacity limits. The chunk size is important because (1) disks are generally better

at reading fewer, larger regions than more, smaller regions, and (2) it influences the size of

chunk cache needed for good read performance. Unfortunately, two opposing modes of access

coexist in our case at different stages of the simulation. When solving, the fastest varying

dimension is the variable dimension, followed by nodes, and finally time. When performing

post-processing, it is not uncommon to instead access the variables for each node over all time.

An access-based approach might also result in highly problem- and/or machine-specific algo-

rithms, that might show good performance in some applications at the expense of others.

Fig 3. Typical chunk layout. This example depicts a dataset of size 350 in the time dimension and a large number in

the nodes direction (grey). The chunks are of size 100 ×DN (solid lines), so 50 elements (12.5% of the file) are wasted at

the edge (white). Each process is concerned with a slice of the dataset shaped orthogonally to the chunks (dashed lines).

The third dimension has been suppressed for clarity, since the chunks and process boundaries span it.

https://doi.org/10.1371/journal.pone.0202410.g003

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0202410.g003
https://doi.org/10.1371/journal.pone.0202410

Instead, a general algorithm was developed to set the chunk size based only on the size of

the dataset and one parameter, the target chunk size in bytes (TB). For maximum generality

and in order to ensure its applicability to any number of dimensions, the new chunk algorithm

is designed to treat all dimensions equally. Another design requirement is that the chunk

shape should result in high storage efficiency. HDF5 allocates the minimum integer number of

chunks required to contain the dataset (recall Fig 3). Most conceivable chunk shapes a priori
might therefore result in unacceptable amounts of wasted space at the edges of the dataset,

because the chunk size is unlikely to be (close to) a factor of the dataset size in every

dimension.

Central to the proposed solution is the variable “target size”, T (not to be confused with TB).

First, for each dimension, the rounded-up division of the dataset size by the target size gives

the minimum number of target-sized chunks that would span the dataset. Second, the

rounded-up division of the dataset size by this number of chunks gives the actual size of chunk

that is closest to the target size while still being close to a multiple. The problem then reduces

to finding the target size that best satisfies the chunk size requirement in bytes. The solution

can be written concisely as follows. Let the chunk and dataset sizes be vectors denoted by ~C
and ~D, respectively:

~C ¼ ðC1;C2; . . . ;CNÞ ð5Þ

~D ¼ ðD1;D2; . . . ;DNÞ ð6Þ

where N is the number of dimensions in the dataset (usually 3 for time, nodes and variables).

We therefore get ~C by finding the largest T such that

8
YN

i¼1

Ci � TB ð7Þ

Ci � Di ð1 � i � NÞ ð8Þ

Ci ¼
Di

dDi=Te

� �

ð1 � i � NÞ ð9Þ

where in Eq (7) represents the chunk size constraint (each element is 8 B), in Eq (8) limits the

chunk to the dataset size in each dimension, and Eq (9) defines the chunk size given the dataset

size and target size in such a way as to minimize wasted space.

Algorithm 1 New HDF5 chunk size algorithm

1: ~D ▷ Dataset size in elements
2: ~C ▷ Chunk size in elements
3: CB 0 ▷ Chunk size in B
4: T 0 ▷ Target chunk size in elements
5: TB 128 × 210 ▷ Target chunk size in B
6: U False ▷ Whether chunk spans dataset
7:
8: function SETCHUNKSIZE
9: while (CB < TB) &!U do ▷ While chunk is smaller than target
10: Increment T
11: ð~C;CB;UÞ CALCULATECHUNKDIMS(T)
12: end while
13: if CB > TB then ▷ If chunk has exceeded target
14: Decrement T

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0202410

15: ð~C;CB;UÞ CALCULATECHUNKDIMS(T)
16: end if
17: end function
18:
19: function CALCULATECHUNKDIMS(T)
20: CB 8 ▷ 8 B per element
21: U True
22: for i in dimensions do ▷ For each dimension
23: x CEIL(Di/T)
24: Ci CEIL(Di/x)
25: CB CB × Ci
26: U U & (x $ 1)
27: end for
28: return ~C;CB;U

29: end function

The method for solving the above is described in Algorithm 1. The dataset size (~D) and tar-

get chunk size (TB) are assumed as predetermined. The first while loop (line 9) increases the

target size (T) and calculates the resulting chunk dimensions (~C) until the target size in bytes

(TB) is reached, or the chunk spans the entire dataset (U is True). Note that a binary search for

T between 1 and max ð~DÞ (for example) would be faster, but as invoked only once per dataset

(resulting in a negligible overhead in overall wall times) this does not represent a significant

increase in performance, and we chose to present the algorithm here in incremental form in

the interest of clarity. After leaving the while loop, if TB has been exceeded (line 13), the algo-

rithm brings the size back below the target. Once given a target size in elements, the CALCULA-

TECHUNKDIMS function (line 19) calculates chunk dimensions that aim for the target size in

each dimension while minimizing wasted space at the dataset edge as outlined above. First, it

calculates the minimum number of chunks of size T that would be required to span the dataset

(x, line 23). Then, given x chunks, it calculates the minimum number of elements required in

each chunk to span the dataset (line 24). This function also calculates the actual chunk size in

bytes (CB) and determines U. The chunk size in bytes is the product of 8 B and all the elements

of~C (line 24). Finally, if x = 1 on every iteration, then one chunk spans the entire dataset and

U is True (line 26).

The choice of TB depends on the problem size and the computer. The default value was set

to 128 kB as this resulted in consistent performance in the small profiling tests that are run reg-

ularly to monitor performance. For large problems it was increased to 1 MB, in agreement

with the default stripe size in Archer as discussed next.

Data striping. At the filesystem level, data striping is a common technique in HPC sys-

tems (including the Lustre filesystem in Archer) to increase data throughput by splitting files

into segments and dividing the segments amongst multiple physical storage targets (e.g. hard

disk drives).

For performance improvements at this level, two parameters may be set on a file or direc-

tory basis: the stripe size (S) and stripe count (c). The former is the size (in bytes) of each stripe,

whereas the latter is the number of Object Storage Targets (OSTs) over which to divide the

stripes (see Fig 4). The system defaults on Archer are 1 MB and 4, respectively, and there are

48 OSTs at the time of writing this work, each capable of writing at roughly 500 MB/s.

Optimal values for S and c can only be found through experimentation. For reference, the

Lustre documentation (see Section 18.2.1 in [38]) recommends a stripe size between 512 kB and

4 MB. Smaller sizes are not recommended ‘because the Lustre file system sends 1 MB chunks

over the network’; more is not recommended because ‘stripe sizes larger than 4 MB may result

in longer lock hold times and contention during shared file access’. Finally, the stripe size must

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0202410

be a multiple of the page size (enforced to a multiple of 64 kB for compatibility). The default

stripe size on Archer (1 MB) is generally optimal and other values will not be considered here.

The stripe count c will be investigated below. For writes from many processors to a single

file a large stripe count is recommended, but not too many counts as this results in extra over-

head for diminishing returns. A starting point based on the Lustre documentation is to use

approximately ‘1 stripe per GB’ to ‘1 stripe per 4 GB’ of file size. As an example, for 100 print-

ing time steps of our benchmark problem (expected dataset size of *5.21 GB), c should proba-

bly be between 2 and 6. Another is to “load balance” by using an integer factor of the number

of processors, such as one stripe per compute node so that each node gets one aggregator.

Cached writes. Regardless of the data layout used, the simulation results are written to the

HDF5 file every print time step of simulation time. Recall from our benchmark description

(see Methods) that one printing time step of data in our benchmark consumes about 50 MB

on disk. Large HPC parallel file systems have good sustained throughput and are typically opti-

mized for high bandwidth (such as the 500 MB/s per OST in Archer as mentioned above), but

performance for small writes is much lower. They work best with a small number of large, con-

tiguous I/O requests whereas small ones are generally discouraged. We should therefore expect

several hundred 50 MB writes to show worse performance than, say, one 40 GB write.

The chunk cache provided by HDF5 might have been a viable answer, but it is currently not

available when using the MPI-IO driver in write mode. The selected solution was to implement

a memory cached mode in the HDF5 writer, whose constructor now takes an argument speci-

fying if the cache will be enabled. This simplifies the implementation of our strategy over mak-

ing the cache switchable, which would require extra logic like flushing the cache when

switching. A new vector member with a reserved size of Ct × Nn × Nv acts as the cache, where

Ct is the size of a chunk in the time dimension (as calculated by the new chunking algorithm),

Nn is the number of nodes owned by a process, and Nv is the number of variables. Once the

number of elapsed print time steps equals Ct, each process writes the contents of its cache to

the HDF5 file. As collective writes are still used, the library then takes care of consolidating the

data onto aggregators as normal.

Input-Output efficiency

Performance testing. In this section, the described data layout and cache writing strate-

gies will be evaluated to investigate I/O efficiency. Their performance will be measured in the

benchmark problem detailed in Methods, for both a small (8) and a medium (20) number of

compute nodes (i.e. 192 and 480 cores, respectively) to test parallel scaling, and for three values

of stripe count c (4, 24 and 42). Specifically, we compare:

Fig 4. Data striping. This example depicts a 4.5 MB file striped across 3 OSTs with 1 MB stripe size. The first OST is

chosen at random by the filesystem in order to load-balance, and in this example it is OST6. 1 MB stripes are then

placed round-robin on each of the three OSTs, ending with a 0.5 MB stripe on OST7.

https://doi.org/10.1371/journal.pone.0202410.g004

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0202410.g004
https://doi.org/10.1371/journal.pone.0202410

1. Default chunks of size 41 in the time dimension, i.e. chunk size {41, 3253316, 2} (*2 GB,

the maximum single write size in ROMIO/MPI-IO).

2. New-style chunks of target size 1 MB, specifically {151, 434, 2} (1048544 B) as a result of

applying Algorithm 1 to the dimensions of our dataset.

3. As in (2), but with caching enabled.

Benchmark results are shown in Fig 5. The three stacked bars in each panel correspond to

the three strategies detailed above. The bars display the time spent (in minutes) in each of the

following I/O categories: Output (writing to disk), PostProc (performing post-processing),

and DataConv (HDF5 conversion to VTK visualization files). The three rows from top to bot-

tom show results for each considered stripe count on the HDF5 file (4, 24, and 42, respec-

tively). Finally, the left and right columns show results from 8 and 20 compute nodes (192 and

480 cores, respectively). Each simulation was performed three times in isolation to account for

machine load. The times are presented as means and standard error of the mean (S.E.M.) of

Fig 5. Summary of I/O results. Time spent writing to disk (Output), converting to VTK visualisation files

(DataConv), and performing post-processing (PostProc) by each of the three methods: default-style chunks, new-style

chunks, and new-style chunks with caching. The left and right columns represent results for simulations on 8 and 20

compute nodes, respectively. From top to bottom, the panels show results using stripe counts of 4, 24, and 42,

respectively. Times are means from three repeats (in minutes), whereas error bars represent the S.E.M. Full data

provided in S1 Table.

https://doi.org/10.1371/journal.pone.0202410.g005

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0202410.g005
https://doi.org/10.1371/journal.pone.0202410

the three repeats. Performing additional repeats was unfeasible due to time and resource

requirements.

The principal results of this study are as follows. In all cases, the default chunk layout (1)

spent little time in Output and substantial time in DataConv and PostProc. The former point

is likely due to the small number of chunks (just three), resulting in very little overhead when

coordinating collective writes. The latter point, however, clearly illustrates the high cost of

reading results from a poorly laid out dataset for additional post-processing tasks. Conversely,

the new layout (2) spent the vast majority of time in Output and little in DataConv or Post-

Proc. The writing of the resulting 7497 new style chunks is evidently slow, but the smaller,

squarer chunks allow the post-processing and conversion steps to happen extremely quickly

by leveraging the built-in HDF5 chunk-caching functionality. Moreover, the effect of enabling

the custom chunk-writing cache on the new style method is striking (3). In this case, the bene-

fits of the new data layout to DataConv and PostProc are retained, whereas the time spent in

Output is reduced to under 30 s in all cases. Clearly the new algorithm with cached writes

offers superior performance on Archer compared to the considered alternatives.

Fig 5 further illustrates the results for each method with respect to stripe and node counts,

of importance for performance optimization. First, comparison by rows (stripe count effects)

for the default chunk (1) illustrates increased DataConv times with 24 or 42 stripes compared

to 4 stripes, both with either 8 or 20 nodes. Clearly, the DataConv process is unable to leverage

the extra bandwidth offered by the large stripe counts, probably due to either an overhead of

communicating with many OSTs, or technical advantage from concentrating on a small num-

ber of OSTs (e.g. internal OST caching). PostProc showed the same trend. In contrast, the unc-

ached new chunks (2) were faster with 24 or 42 stripes than 4, showing performance benefits

in parallel I/O. The severe bottleneck in Output is alleviated with a larger number of stripes,

suggesting that the performance with 4 stripes is either limited by the OSTs or due to over-

whelming the 4 threads assigned to aggregators. If we interpret the large error bars on Output

as a sign of sensitivity to the machine load then the answer is probably the former. Finally, this

method performed better with 24 stripes than 4 or 42, supporting the rule of thumb that a sin-

gle large file written to by many processors should be striped, but not excessively, to avoid

incurring large overheads. Another well-suited characteristic of the new-chunk cached method

(3) for large HPC systems is its insensitivity to stripe counts, which alleviates optimization

needs at the file system level, in particular for novice users.

Second, by comparing columns (node count effects), performance is improved for the

default chunks (1) going from 8 to 20 nodes, both in DataConv and PostProc. This suggests

that in spite of the sub-optimal I/O performance of these chunk layouts, the post-processing

stage is somewhat able to utilize additional cores. The un-cached new algorithm (2), however,

scales poorly at best, showing no significant difference between 8 and 20 nodes. In the case of

4 stripes, Output is still slow, perhaps exacerbated by the larger number of nodes. Yet again,

there were no significant differences in performance for the cached new method (3) with node

counts, highlighting its robustness for scalable applications.

The previous results also indicate that a strip count c of 4 simultaneously yields the best

studied I/O performance for both the default chunks and new cached algorithm. This agrees

with the initial estimate on that c should be between 2 and 6. A comparative summary of

benchmark times for these 4 stripes on 8 compute nodes is presented in Table 1 for all the con-

sidered I/O strategies (see S1 Table for rest of stripes and compute nodes). These represent rel-

ative improvements in I/O performance of the new strategy over the default layout method of

40% in HDF5 writing to disk, 93% in post-processing, and 98% in HDF5 conversion to visuali-

zation files.

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0202410

Alignment of new chunks with caching. As described in the presentation of our new

chunking algorithm, any chunking algorithm is unlikely to produce chunks of exactly the tar-

get size. In addition, chunks are located by default at irregular locations within the file.

Together, these two statements imply that a given chunk is unlikely to align perfectly with the

stripe boundaries of the file. In such circumstances, accessing a chunk requires reading stripes

from more than one OST. For example, if the stripe size and chunk target size are 1 MB and

the true chunk size is slightly less than 1 MB, then reading a chunk is likely to involve requests

to two OSTs. When the chunk and stripe size are similar, it might therefore be preferable for

each chunk to be padded slightly with empty space so that each chunk starts on a stripe bound-

ary. Note however that such an approach should be used with caution in order to avoid exces-

sive wasted space.

The benchmark problem was used to test the performance with and without alignment (as

implemented natively in the HDF5 library) in the new cached chunking algorithm. Results

(mean ± S.E.M., in seconds) are shown in Table 2 for 110 and 113 repetitions of the unaligned

and aligned cases, respectively.

Whereas HDF5 alignment did not substantially affect the overall performance of the new

method, no improvements were attained in any of the considered I/O categories. A possible

explanation for this is that the processes regularly read and write across chunk boundaries (i.e.

the partition boundaries rarely fall exactly on chunk boundaries), so placing each chunk into

its own stripe rarely results in a reduction in the number of OSTs accessed. Enabling alignment

might also introduce small gaps into otherwise contiguous data, reducing performance

slightly. The theoretical advantage of aligning chunks to stripes might however become appar-

ent in larger problems.

Conclusion

In this work, we have presented significant improvements in the I/O performance of our elec-

trocardiogram-simulation framework in large HPC infrastructures, particularly in the chal-

lenging and frequently neglected areas of data writing, post-processing, and data conversion.

A general algorithm for the efficient design of data layouts in HDF5 files (as a leading scientific

file format for data storage and portability) was developed, and further optimized using cached

writes. The efficiency of the resulting I/O strategy with respect to native concurrent layouts has

been shown, independently to stripe and node count effects in large HPC filesystems, as well

as to data alignment within the resulting files. Furthermore, as a single parameter (the target

Table 2. Benchmark times for the new chunking algorithm. Cached writings are used (4 stripes on 8 compute nodes), with and without HDF5 alignment set to the stripe

size. Times given in seconds (mean ± S.E.M.). Full data provided in S2 Table.

Method Output (s) DataConv (s) PostProc (s)

Unaligned 20.7 ± 0.4 30.2 ± 1.3 7.5 ± 0.2

Aligned 23.8 ± 1.2 31.0 ± 1.3 8.4 ± 0.2

https://doi.org/10.1371/journal.pone.0202410.t002

Table 1. Benchmark times for 4 stripes on 8 compute nodes. Results correspond to those illustrated in the top-left panel of Fig 5. Times are given in seconds

(mean ± S.E.M.; full data provided in S1 Table.). The default chunk layout is fast in Output but slow in the other two categories. The new chunk shape is the opposite.

With caching of writes enabled on the new shape the time spent in all three areas is low.

Data Layout Output (s) DataConv (s) PostProc (s)

1. Default 49.5 ± 13.0 431.2 ± 8.0 608.7 ± 98.5

2. New 2333.5 ± 940.4 27.5 ± 3.2 10.0 ± 2.9

3. New + cache 29.9 ± 6.5 30.6 ± 5.0 14.6 ± 7.3

https://doi.org/10.1371/journal.pone.0202410.t001

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0202410.t002
https://doi.org/10.1371/journal.pone.0202410.t001
https://doi.org/10.1371/journal.pone.0202410

chunk size in bytes) is responsible in our algorithm for the low-level design of the underlying

datasets regardless their number of dimensions, this guarantees a maximum generality and its

applicability to other scientific areas beyond the one considered in this work.

The most substantial contribution is the method in which HDF5 files are written to disk,

including the design of a novel low-level data layout independent to the number of dimensions

in the dataset. Two actions are central to this I/O strategy. Firstly, the data layout (the so-called

chunk shape) was modified to improve efficiency when reading small amounts of data, which

is common in large HPC applications using many processors. This yielded a significant reduc-

tion in times for post-processing of simulation results and their conversion to other visualiza-

tion formats, which are common scientific requirements across disciplines. A side effect of the

new data layout was an increase in the output times required for the writing of results to the

HDF5 file, due to the nature of storage systems in large HPC systems. This was overcome by

implementing a cached write mode which bundles multiple small writes into larger ones, sub-

stantially reducing the aggregate writing times. The overall result was a drastic reduction in the

time spent in all I/O stages of our simulation framework, with relative improvements over

default HDF5 layouts of 40% in writing, 93% in post-processing, and 98% in data conversion.

Previous efforts have also been deployed for the optimization of I/O performance in HPC

applications. Of particular relevance for our work are write-optimized middleware systems,

such as ADIOS (Adaptable IO System, [39]) or PLFS (Parallel Log-structured Filesystem,

[40]). These high-level I/O Application Programming Interfaces (APIs) allow for a more

aggressive writing and efficient reordering of data locations in the case of ADIOS, and for a

decoupling of concurrent writes to improve the speed of checkpoints in the case of PFLS,

resulting in up to 100 × improvements in writing in selected applications [40, 41]. Importantly,

these write-optimized APIs have been also shown to not penalize read speeds [33]. However,

they both introduce intermediate file formats that require conversion for analysis to standard

scientific formats, or to be mounted as stackable filesystems on top of an existing parallel

filesystem.

On the contrary, the simplicity of the I/O strategies presented in this work, solely based on

the size of the dataset (independent to its number of dimensions) and the straightforward

implementation of a cached write mode, could easily be incorporated into codes using popular

scientific file formats like HDF5, which has a history of optimization on popular HPC plat-

forms [42]. This would alleviate the need of using intermediate API layers and the associated

additional complexity to end users, while resulting in important savings in writing, reading

and post-processing times in scientific applications.

For applications involving mesh adaptivity, an inherent limitation of the HDF5 file format

is that the chunk size is set at the dataset creation time and cannot be changed later, which

forces the use of a fixed chunk size. Based on our results for fixed chunk sizes, we hence still

expect an increased I/O efficiency for the new designed chunks compared to the default HDF5

layout in the presence of adaptivity. Such investigations (including the estimation of an opti-

mal chunk size) fall however beyond the scope of our present work. In addition, our bench-

mark experiments were performed using a single (Lustre) parallel I/O environment. Although

our cached results demonstrate almost complete independence to the number of stripe counts

(see Fig 5), which in turn minimizes sensitivity to the choice of this parameter as a common

technique to increase data throughput across multiple HPC filesystems, the evaluation of our

methodology in other parallel environments also constitutes an interesting aspect for future

research.

In conclusion, given the generality of our I/O strategies and file formats used, the improve-

ments presented in this work might enable a more efficient use of HPC resources and acceler-

ated progress in multiple areas of scientific research. This may allow researchers to achieve a

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0202410

wider range of functionalities using standard scientific file formats, and therefore more com-

plete simulation frameworks, within tolerable HPC resource envelopes.

Supporting information

S1 Table. Benchmark results for considered data layouts. I/O times for data writing to disk,

data conversion, and post-processing in default-style chunks, new-style chunks, and new-style

chunks with caching.

(XLSX)

S2 Table. Benchmark results under HDF5 alignment. I/O times for data writing to disk, data

conversion, and post-processing in new-style chunks with caching, with and without HDF5

alignment.

(XLSX)

Acknowledgments

The authors thank the Chaste team and the Archer Help Desk for technical support, and Prof

Kevin Burrage and Dr Ana Mincholé for valuable discussions.

Author Contributions

Conceptualization: Louie Cardone-Noott, Blanca Rodriguez, Alfonso Bueno-Orovio.

Data curation: Louie Cardone-Noott.

Formal analysis: Louie Cardone-Noott.

Funding acquisition: Louie Cardone-Noott, Blanca Rodriguez, Alfonso Bueno-Orovio.

Investigation: Louie Cardone-Noott.

Methodology: Louie Cardone-Noott.

Resources: Blanca Rodriguez, Alfonso Bueno-Orovio.

Software: Louie Cardone-Noott.

Supervision: Blanca Rodriguez, Alfonso Bueno-Orovio.

Validation: Louie Cardone-Noott.

Writing – original draft: Louie Cardone-Noott.

Writing – review & editing: Blanca Rodriguez, Alfonso Bueno-Orovio.

References
1. Behradfar E, Nygren A, Vigmond EJ. The role of Purkinje-myocardial coupling during ventricular

arrhythmia: a modeling study. PLoS One. 2014; 9:e88000. https://doi.org/10.1371/journal.pone.

0088000 PMID: 24516576

2. Dutta S, Mincholé A, Zacur E, Quinn TA, Taggart P, Rodriguez B. Early afterdepolarizations promote

transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol

Biol. 2016; 120:236–248. https://doi.org/10.1016/j.pbiomolbio.2016.01.008 PMID: 26850675

3. Wilhelms M, Rombach C, Scholz EP, Dössel O, Seemann G. Impact of amiodarone and cisapride on

simulated human ventricular electrophysiology and electrocardiograms. Europace. 2012; 14:v90–v96.

https://doi.org/10.1093/europace/eus281 PMID: 23104920

4. Zemzemi N, Rodriguez B. Effects of L-type calcium current and human ether-a-go-go related gene

blockers on the electrical activity of the human heart: a simulation study. Europace. 2015; 17:326–333.

https://doi.org/10.1093/europace/euu122 PMID: 25228500

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202410.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202410.s002
https://doi.org/10.1371/journal.pone.0088000
https://doi.org/10.1371/journal.pone.0088000
http://www.ncbi.nlm.nih.gov/pubmed/24516576
https://doi.org/10.1016/j.pbiomolbio.2016.01.008
http://www.ncbi.nlm.nih.gov/pubmed/26850675
https://doi.org/10.1093/europace/eus281
http://www.ncbi.nlm.nih.gov/pubmed/23104920
https://doi.org/10.1093/europace/euu122
http://www.ncbi.nlm.nih.gov/pubmed/25228500
https://doi.org/10.1371/journal.pone.0202410

5. Rodrı́guez B, Li L, Eason JC, Efimov IR, Trayanova NA. Differences between left and right ventricular

chamber geometry affect cardiac vulnerability to electric shocks. Circ Res. 2005; 97:168–175. https://

doi.org/10.1161/01.RES.0000174429.00987.17 PMID: 15976315

6. Fenton FH, Luther S, Cherry EM, Otani NF, Krinsky V, Pumir A, et al. Termination of atrial fibrillation

using pulsed low-energy far-field stimulation. Circulation. 2009; 120:467–476. https://doi.org/10.1161/

CIRCULATIONAHA.108.825091 PMID: 19635972

7. Liberos A, Bueno-Orovio A, Rodrigo M, Ravens U, Hernandez-Romero I, Fernandez-Aviles F, et al. Bal-

ance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico

intersubject variability study. Heart Rhythm. 2016; 13:2358–2365. https://doi.org/10.1016/j.hrthm.2016.

08.028 PMID: 27569443

8. Crozier A, Blazevic B, Lamata P, Plank G, Ginks M, Duckett S, et al. The relative role of patient physiol-

ogy and device optimisation in cardiac resynchronisation therapy: A computational modelling study. J

Mol Cell Cardiol. 2016; 96:93–100. https://doi.org/10.1016/j.yjmcc.2015.10.026 PMID: 26546827

9. Rutherford SL, Trew ML, Sands GB, LeGrice IJ, Smaill BH. High-resolution 3-dimensional reconstruc-

tion of the infarct border zone: impact of structural remodeling on electrical activation. Circ Res. 2012;

111:301–311. https://doi.org/10.1161/CIRCRESAHA.111.260943 PMID: 22715470

10. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ, et al. Patient-derived models link

re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. 2016;

110:443–454. https://doi.org/10.1093/cvr/cvw073 PMID: 27056895

11. Mincholé A, Pueyo E, Rodrı́guez JF, Zacur E, Doblaré M, Laguna P. Quantification of restitution disper-

sion from the dynamic changes of the T-wave peak to end, measured at the surface ECG. IEEE Trans

Biomed Eng. 2011; 58:1172–1182. https://doi.org/10.1109/TBME.2010.2097597 PMID: 21193372

12. Loewe A, Schulze WH, Jiang Y, Wilhelms M, Luik A, Dössel O, et al. ECG-based detection of early myo-

cardial ischemia in a computational model: Impact of additional electrodes, optimal placement, and a

new feature for ST deviation. Biomed Res Int. 2015; 2015:530352. https://doi.org/10.1155/2015/

530352 PMID: 26587538

13. Arevalo HJ, Vadakklumpadan F, Guallar E, Jebb A, Malamas P, Wu KC, et al. Arrhythmia risk stratifica-

tion of patients after myocardial infarction using personalized heart models. Nat Commun. 2016;

7:11437. https://doi.org/10.1038/ncomms11437 PMID: 27164184

14. Vázquez M, Arı́s R, Houzeaux G, Aubry R, Villar P, Garcia-Barnés J, et al. A massively parallel compu-

tational electrophysiology model of the heart. Int J Numer Meth Biomed Engng. 2011; 27:1911–1929.

https://doi.org/10.1002/cnm.1443

15. Augustin CM, Neic A, Liebmann M, Prassi AJ, Niederer SA, Haase G, et al. Anatomically accurate high

resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid

solver method for nonlinear deformation. J Comput Phys. 2016; 305:622–646. https://doi.org/10.1016/j.

jcp.2015.10.045 PMID: 26819483

16. Plank G, Liebmann M, dos Santos RW, Vigmond EJ, Haase G. Algebraic multigrid preconditioner for

the cardiac bidomain model. IEEE Trans Biomed Eng. 2007; 54:585–596. https://doi.org/10.1109/

TBME.2006.889181 PMID: 17405366

17. Bernabeu MO, Kay D. Scalable parallel preconditioners for an open source cardiac electrophysiology

simulation package. Procedia Comput Sci. 2011; 4:821–830. https://doi.org/10.1016/j.procs.2011.04.

087

18. Cherry EM, Greenside HS, Henriquez CS. Efficient simulation of three-dimensional anisotropic cardiac

tissue using an adaptive mesh refinement method. Chaos. 2003; 13:853–865. https://doi.org/10.1063/

1.1594685 PMID: 12946177

19. Franzone PC, Deuflhard P, Erdmann B, Lang L, Pavarino LF. Adaptivity in space and time for reaction-

diffusion systems in electrocardiology. SIAM J Sci Computing. 2006; 28:942–962. https://doi.org/10.

1137/050634785

20. Bueno-Orovio A, Pérez-Garcı́a VM, Fenton FH. Spectral methods for partial differential equations in

irregular domains: the spectral smoothed boundary method. SIAM J Sci Comput. 2006; 28:886–900.

https://doi.org/10.1137/040607575

21. Arthurs CJ, Bishop MJ, Kay D. Efficient simulation of cardiac electrical propagation using high order

finite elements. J Comput Phys. 2012; 231:3946–3962. https://doi.org/10.1016/j.jcp.2012.01.037

PMID: 24976644

22. Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in tis-

sue. J Theor Biol. 2008; 253:544–560. https://doi.org/10.1016/j.jtbi.2008.03.029 PMID: 18495166

23. Wallman M, Smith NP, Rodriguez B. A comparative study of graph-based, eikonal, and monodomain

simulations for the estimation of cardiac activation times. IEEE Trans Biomed Eng. 2012; 69:1739–

1748. https://doi.org/10.1109/TBME.2012.2193398

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 15 / 16

https://doi.org/10.1161/01.RES.0000174429.00987.17
https://doi.org/10.1161/01.RES.0000174429.00987.17
http://www.ncbi.nlm.nih.gov/pubmed/15976315
https://doi.org/10.1161/CIRCULATIONAHA.108.825091
https://doi.org/10.1161/CIRCULATIONAHA.108.825091
http://www.ncbi.nlm.nih.gov/pubmed/19635972
https://doi.org/10.1016/j.hrthm.2016.08.028
https://doi.org/10.1016/j.hrthm.2016.08.028
http://www.ncbi.nlm.nih.gov/pubmed/27569443
https://doi.org/10.1016/j.yjmcc.2015.10.026
http://www.ncbi.nlm.nih.gov/pubmed/26546827
https://doi.org/10.1161/CIRCRESAHA.111.260943
http://www.ncbi.nlm.nih.gov/pubmed/22715470
https://doi.org/10.1093/cvr/cvw073
http://www.ncbi.nlm.nih.gov/pubmed/27056895
https://doi.org/10.1109/TBME.2010.2097597
http://www.ncbi.nlm.nih.gov/pubmed/21193372
https://doi.org/10.1155/2015/530352
https://doi.org/10.1155/2015/530352
http://www.ncbi.nlm.nih.gov/pubmed/26587538
https://doi.org/10.1038/ncomms11437
http://www.ncbi.nlm.nih.gov/pubmed/27164184
https://doi.org/10.1002/cnm.1443
https://doi.org/10.1016/j.jcp.2015.10.045
https://doi.org/10.1016/j.jcp.2015.10.045
http://www.ncbi.nlm.nih.gov/pubmed/26819483
https://doi.org/10.1109/TBME.2006.889181
https://doi.org/10.1109/TBME.2006.889181
http://www.ncbi.nlm.nih.gov/pubmed/17405366
https://doi.org/10.1016/j.procs.2011.04.087
https://doi.org/10.1016/j.procs.2011.04.087
https://doi.org/10.1063/1.1594685
https://doi.org/10.1063/1.1594685
http://www.ncbi.nlm.nih.gov/pubmed/12946177
https://doi.org/10.1137/050634785
https://doi.org/10.1137/050634785
https://doi.org/10.1137/040607575
https://doi.org/10.1016/j.jcp.2012.01.037
http://www.ncbi.nlm.nih.gov/pubmed/24976644
https://doi.org/10.1016/j.jtbi.2008.03.029
http://www.ncbi.nlm.nih.gov/pubmed/18495166
https://doi.org/10.1109/TBME.2012.2193398
https://doi.org/10.1371/journal.pone.0202410

24. Luu HVT. Optimizing I/O performance for high performance computing applications: from auto-tuning to

a feedback-driven approach. Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2015.

25. The HDF Group. Hierarchichal Data Format version 5, 2000-2010. [Online]. Available: http://www.

hdfgroup.org/

26. Zaki O, Lusk E, Gropp W, Swider D. Toward scalable performance visualization with jumpshot. Int J

High Perform Comput App. 1999; 13:277–288. https://doi.org/10.1177/109434209901300310

27. Mohr B, Wolf F. Kojak—a tool set for automatic performance analysis of parallel programs. Euro-Par

2003 Parallel Processing: 9th International Euro-Par Conference. 2003;1301–1304.

28. Shende S, Malony AD. The tau parallel performance system. Int J High Perform Comput Appl. 2006;

20:287–311. https://doi.org/10.1177/1094342006064482

29. Zaki O, Lusk E, Gropp W, Swider D. Automatic performance analysis with periscope. Concurr Comput

Pract E. 2010; 22:736–748.

30. Seelam S, Chung IH, Hong DY, Wen HF, Yu H. Early experiences in application level I/O tracing on

blue gene systems. IEEE International Symposium on Parallel and Distributed Processing. 2008;1–8.

31. Carns P, Latham R, Ross R, Iskra K, Lang S, Riley K. 24/7 characterization of petascale I/O workloads.

2009 IEEE International Conference on Cluster Computing and Workshops. 2009;1–10.

32. Yin Y, Byna S, Song H, Sun XH, Thakur R. Boosting application-specific parallel I/O optimization using

IOSIG. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 2012;196–

203.

33. Polte M, Lofstead J, Bent J, Gibson G, Klasky SA, Liu Q, et al. . . . and eat it too: High read performance

in write-optimized HPC I/O middleware file formats. Proceedings of the 4th Annual Workshop on Petas-

cale Data Storage. 2009;21–25.

34. Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, et al. Chaste: a test-

driven approach to software development for biological modelling. Comput Phys Commun. 2009;

180:2452–2471. https://doi.org/10.1016/j.cpc.2009.07.019

35. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al. Chaste: an open source

C++ library for computational physiology and biology. PLoS Comput Biol. 2013; 9:e1002970.

36. Cardone-Noott L, Bueno-Orovio A, Mincholé A, Zemzemi N, Rodriguez B. Human ventricular activation

sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and

intraventricular block conditions. Europace. 2016; 18:iv4–iv15. https://doi.org/10.1093/europace/

euw346 PMID: 28011826

37. ten Tusscher KHWJ, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model.

Am J Physiol Heart Circ Physiol. 2006; 291:H1088–H1100. https://doi.org/10.1152/ajpheart.00109.

2006 PMID: 16565318

38. Lustre Software Release 2.x Operations Manual. Oracle/Intel Corporation, 2013. [Online]. Available:

http://lustre.org/documentation/

39. Lofstead J, Klasky S, Schwan K, Podhorszki N, Jin C. Flexible IO and integration for scientific codes

through the Adaptable IO System (ADIOS). Proceedings of the 6th International Workshop on Chal-

lenges of Large Applications in Distributed Environments. 2008;15–24.

40. Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P, Nunez J, et al. PLFS: A checkpoint filesys-

tem for parallel applications. Proceedings of the Conference on High Performance Computing Network-

ing, Storage and Analysis. 2009;21:1–12.

41. Lofstead J, Zheng F, Klasky S, Schwan K. Adaptable, metadata rich IO methods for portable high per-

formance IO. IEEE International Symposium on Parallel & Distributed Processing. 2009;1–10.

42. Howison M, Koziol Q, Knaak D, Mainzer J, Shalf J. Tuning HDF5 for Lustre file systems. Workshop on

Interfaces and Abstractions for Scientific Data Storage (IASDS10). 2012;1–10.

Input-output optimization in high performance scientific computing

PLOS ONE | https://doi.org/10.1371/journal.pone.0202410 August 23, 2018 16 / 16

http://www.hdfgroup.org/
http://www.hdfgroup.org/
https://doi.org/10.1177/109434209901300310
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1016/j.cpc.2009.07.019
https://doi.org/10.1093/europace/euw346
https://doi.org/10.1093/europace/euw346
http://www.ncbi.nlm.nih.gov/pubmed/28011826
https://doi.org/10.1152/ajpheart.00109.2006
https://doi.org/10.1152/ajpheart.00109.2006
http://www.ncbi.nlm.nih.gov/pubmed/16565318
http://lustre.org/documentation/
https://doi.org/10.1371/journal.pone.0202410

