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Abstract: We consider series systems built of components which have independent identically
distributed (iid) lifetimes with an increasing failure rate (IFR). We determine sharp upper bounds for
the expectations of the system lifetimes expressed in terms of the mean, and various scale units based
on absolute central moments of component lifetimes. We further establish analogous bounds under a
more stringent assumption that the component lifetimes have an increasing density (ID) function.
We also indicate the relationship between the IFR property of the components and the generalized
cumulative residual entropy of the series system lifetime.
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1. Introduction

The series system composed o n items has the structure function ϕ : {0, 1}n 7→ {0, 1}
defined as ϕ(x1, . . . , xn) = min{x1, . . . , xn}. If X1, . . . , Xn denote the random lifetimes of
the components, then the system lifetime is X1:n = min{X1, . . . , Xn}, where X1:n, . . . , Xn:n
denote the order statistics of X1, . . . , Xn. The series systems are the most important objects of
the reliability theory. They are composed of the minimal number of components necessary
for system operating. The failure of any component results immediately in the failure of
the whole system. Series structures occur often as submodules of complex systems and
networks. Applications of the series systems go far beyond the reliability of technical
devices. They are useful, e.g., in economy (see, Ge et al. [1]), chemistry (see, Showalter
and Epstein [2]) and industry (see, Xie and Gong [3]). Many survival analyses were based
on reliability models of competing risks such that the first failure from a list of risks (e.g.,
cancer, heart disease, accident, etc.) causes the system failure (see, Kvam and Singh [4]).
Furthermore, series systems are utilized by genetic algorithms and evolutionary theory
(see, e.g., Jäntschi and Bolboacă [5]). In the paper, we consider the series systems whose
components have independent and identically distributed (iid, for short) lifetimes with a
common increasing failure rate (IFR, for short).

An absolutely continuous nonnegative life distribution function F with the density
function f is called the increasing failure rate distribution function if the respective failure
rate function λ(x) = f (x)

1−F(x) , x > 0, is nondecreasing. The name is inherited by random
variables which have IFR distribution functions. The increasing failure rate is the most
classic notion used for describing a natural increasing fatigue tendency of appliances and
their components during operation. The wearing tendency of the components (and the
system, in consequence) is the effect of increasing fatigue of working components in the
operating time, and increased burden caused by possible failures of other components.
Another useful definition of the IFR property is based on the convex transform relation of
the distribution with the standard exponential distribution Z(x) = 1− exp(−x), x > 0.
The order was introduced by van Zwet [6]. We say that F is the IFR distribution if it

Entropy 2021, 23, 385. https://doi.org/10.3390/e23040385 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23040385
https://doi.org/10.3390/e23040385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040385
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23040385?type=check_update&version=3


Entropy 2021, 23, 385 2 of 14

precedes the exponential distribution in the convex transform order, i.e., the composition
F−1 ◦ Z(x) is concave on R+. This definition of IFR distributions generalizes the the
traditional one in two directions. Firstly, by the location-scale invariance of the convex
transform order, the support of F does not need to be restricted to the positive half-axis.
Secondly, the convex transform order definition admits distribution functions which have
atoms at the right-ends of their supports. The IFR properties of the series systems, and
their dual properties of decreasing failure rate (DFR, for short) were studied by many
researchers, e.g., by Barlow and Proschan [7], Lai and Xie [8], and Hazra et al. [9].

A more stringent concept of aging is expressed by the increasing density property
(we use further the acronym ID for brevity). It is obvious that if the density function f (x)
is nondecreasing on the support of F, then so is the product λ(x) = f (x) 1

1−F(x) . The ID
property may be also defined with use of the convex transform relation. A distribution
function F has the ID property if it precedes the standard uniform distribution function
U(x) = x, 0 < x < 1, in the convex transform order, which means that F−1 ◦U(x) = F−1(x)
is concave on (0, 1). This defines the family of distributions with nondecreasing density
functions on some interval, and possible atom at its right end. This definition is also more
restrictive than the IFR property because Z precedes U in the convex transform order, and
the order is transitive.

Recently, various versions of entropy were applied for measuring uncertainty of
random life data, and order statistics and reliability system lifetimes in particular. Recall
that for lifetime random variable X supported on [0, ∞) the classic entropy of Shannon [10]
is defined as

H(X) = −
∫ ∞

0
f (x) ln f (x)dx.

Rao et al. [11] defined and studied the cumulative residual entropy

E(X) = −
∫ ∞

0
(1− F(x)) ln(1− F(x))dx,

and the generalized cumulative residual entropy

En(X) =
∫ ∞

0
(1− F(x))

[− ln(1− F(x))]n

n!
dx

was proposed in Psarrakos and Navarro ([12]. For instance, Baratpour [13] provided
conditions for characterization of the component lifetime distribution by the cumulative
residual entropy of the series system lifetime. Sunoj et al. [14] analyzed the quantile-based
entropy of order statistics. Toomaj and Di Crescenzo [15] presented the relationships
between the generalized cumulative residual entropy and monotone failure rate properties.
They proved, e.g., that if components of the series system are iid and belong to the IFR
family, then the generalized cumulative residual entropy of the conditional residual system
lifetime En(X1:n − t|X1:n > t), t > 0, is decreasing. Other connections between Shannon
entropy (see Wang et al. [16], Jäntschi and Bolboacă [17], Tănăsescu and Popescu [18]) and
order statistics were presented, e.g., by Koné [19], Jäntschi [20], Courtier et al. [21] and
Cofré et al. [22].

We assume here that the common marginal component lifetime distribution function
F belongs either to the IFR or ID family and determine sharp upper bounds on the stan-
dardized expectations EX1:n−µ

σp
of series system lifetime, where µ = EX1 is the expectation

of the parent distribution function F, and σp = (E|X− µ|p)
1
p , p ≥ 1, is the pth root of

the respective pth absolute central moment. Writing σp, we tacitly assume that this is
positive and finite, i.e., F is nondegenerate and it has a finite pth moment. Observe that
our bounds are necessarily nonpositive, because EX1:n < µ for every iid sample with a
nondegenerate baseline distribution function F. In this paper, we show that for every
parent distribution with increasing density and failure rate functions, and every p > 1 the
bounds for standardized expectations of series system lifetimes trivially amount to 0. Far-
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ther, we determine strictly negative bounds expressed the scale units σ1, being the absolute
mean deviation from the population mean. Obviously, the bounds for the IFR family occur
greater than those in the ID case, because the IFR family is substantially greater than the
class of increasing density distributions. We also describe the parent distributions which
attain the bounds. They are elements of the families preceding the exponential and uniform
distributions in the convex transform order that, in some cases, possibly have atoms at the
right end of their supports. However, these extreme distributions can be approximated
by sequences of absolutely continuous members of the IFR and ID classes, having even
strictly increasing failure rate and density functions, respectively. Hence the bounds are
attained in the limit by these sequences.

Obviously, the series systems are the particular cases (with k = n) of the k-out-of-n
systems, k = 1, . . . , n, that work as long as do so at least k of its n components. The mean-
standard deviation bounds on the expectations of k-out-of n systems with k = 1, n− 1, n
(called the parallel, fail-safe, and series systems, respectively) when the component lifetimes
are iid and belong to the ID and IFR families, were determined by Rychlik [23]. However,
in the case of series systems only the trivial zero bounds were established there. Analogous
results for the other k-out-of-n systems were presented by Goroncy and Rychlik in [24]
for the ID case, and in [25] for the IFR family. The evaluations for the dual DD and DFR
families were determined several years earlier. In particular, Danielak [26] presented
positive mean-standard deviations bounds on the expectations of order statistics Xk:n
with ranks k relatively large with respect sample sizes n coming from populations with
decreasing density and failure rate functions. These correspond to the k-out-of-n systems
with k relatively far from n. Rychlik [27,28] established negative sharp bounds on the
differences E(Xk:n − X1) for small rank order statistics from the DD and DFR families,
respectively, expressed in various scale units. As we can conclude from the above short
review, there are known the sharp bounds on the expected lifetimes of all k-our-of-n systems
under various assumptions on monotonicity of the failure rate and density function of
lifetimes of their identical components except for the series systems under the IFR and ID
assumptions. In the paper, we fill this important gap.

The rest of our paper is organized as follows. In Section 2 we show that the obvious
zero upper bounds for the differences between the expectations of series system and its
single component lifetimes cannot be improved in the ID and IFR cases if the differences
are gauged in the scale units based on central absolute moments of orders greater than 1.
In Section 3 we obtain refined nontrivial strictly negative evaluations of the differences
expressed in the mean absolute deviation units. It occurs that the bounds under the
more restrictive assumption that the distributions of component lifetimes have a common
increasing density function are substantially tighter than in the case that we only assume
that the distributions have merely an increasing failure rate. Section 4 contains a brief
summary of the results established in the paper.

2. Zero Bounds

In contrast with the DD and DFR populations, the nonpositive upper bounds on the
differences between the expectations of order statistics and population means in the ID and
IFR cases are possible only for the sample minima which in reliability problems represent
the lifetimes of series systems. Therefore it is of a vital interest to evaluate the expectations
of the system lifetimes, especially under the practically important assumption that the
component lifetime distributions have the IFR property.

Theorem 1 (ID and IFR distributions). Let X1, . . . , Xn be iid random variables with a convex
baseline distribution function and finite pth absolute central moment σ

p
p for some p > 1. Then the

following bound
EX1:n − µ

σp
≤ 0, (1)
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is sharp, and the equality is attained there in the limit by the sequences of mixtures of uniform
distributions with atoms at the right ends of their support, when the contributions of the absolute
continuous parts vanish.

Obviously, the mixtures described in the theorem have convex distribution functions.
Since each convex distribution function has a convex cumulative failure rate, and X1:n ≤ X1
for all parent distributions, then the bound (1) is valid and sharp for the family of IFR
distributions as well. The statement of Theorem 1 was determined in Rychlik [23] in the
special case p = 2.

Proof. Consider first the family of mixtures of uniform distributions on [0, 1], and atoms at
1 with probabilities 0 < α < 1 and 1− α, respectively. They have distribution functions

Fα(x) =


0, x ≤ 0,
αx, 0 ≤ x < 1,
1, x ≥ 1,

which are convex on their common support [0, 1], and concave quantile functions

F−1
α (x) =

{ x
α , 0 < x ≤ α,
1, α ≤ x < 1.

(2)

We easily check that for iid Y1, . . . , Yn with the above parent distributions we have

EαY1 =
∫ ∞

0
[1− Fα(x)]dx =

∫ 1

0
(1− αx)dx = 1− α

2
, (3)

EαY1:n =
∫ ∞

0
[1− Fα(x)]ndx =

∫ 1

0
(1− αx)ndx =

1− (1− α)n+1

(n + 1)α
(4)

so that

EαY1:n −EαY1 =
1− (n + 1)α + n+1

2 α2 − (1− α)n+1

(n + 1)α

= −n− 1
2

α +
n

∑
j=2

n
(

n− 1
j− 1

)
(−1)j αj. (5)

The respective pth absolute central moments are

Np
p (α) = α

∫ 1

0

∣∣∣x− 1 +
α

2

∣∣∣pdx + (1− α)
αp

2p

= α
(2− α)p+1 + αp+1 + 2(p + 1)(1− α)αp−1

2p+1(p + 1)
. (6)

For p > 1 we have

lim
α→0

(
Np

p (α)

α

) 1
p

=
1

2p+1(p + 1)
. (7)

Combining (5) with (7) we obtain

lim
α→0

EαY1:n −EαY1

Np(α)
= lim

α→0
−(n− 1)2p(p + 1)α1−1/p = 0.

Obviously, replacing our Yi by Xi = µ + σp
Y1−1+ α

2
Np(α)

, i = 1, . . . , n, which have arbitrarily

chosen means µ ∈ R, pth absolute central moments σ
p
p > 0, and convex distribution

functions, we attain the zero bound on EX1:n−µ
σp

when α→ 0 as well.
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3. Negative Bounds

The results of the previous section show that we get noninformative zero bounds
on the differences between the expectations of the system and component lifetimes if
we measure the differences in non-sufficiently subtle scale units, including the standard
deviation of the component lifetime in particular. The conclusions essentially change
if we replace the scale units σp, p > 1, by the mean absolute deviation from the mean
σ1 = E|X1 − µ|. We first consider the series systems whose components have IFR lifetimes.

Theorem 2 (IFR distributions). For the minimum of n iid random variables with a common
distribution that has the convex cumulative failure rate and finite mean µ and first absolute central
moment σ1, the following inequality

EX1:n − µ

σ1
≤ −n− 1

n
e
2

, (8)

holds. It becomes equality in the limit for the mixtures of exponential distributions with location
parameter (left-end support point) µ− σ1

1−e−α

N(α)
and intensity α truncated right at µ + σ1

e−α

N(α)
, and

atom at µ + σ1
e−α

N(α)
with probabilities 1− e−α and e−α, respectively, when α→ ∞, where

N(α) =
1
α
[2 exp(−e−α − 1)− e−α − e−2α − αe−α]. (9)

Proof. The idea of proof is based on the norm maximization method proposed by Goroncy
and Rychlik [29] (see also Rychlik [27,28], and Goroncy and Rychlik [25]).

Let f1:n(x) = n(1− x)n−1, 0 < x < 1, denote the density function of the first order
statistic of the standard uniform sample of size n. Let Z(x) = 1− e−x, x > 0, be the
standard exponential distribution function. We first represent

EX1:n − µ

σ1
=

∫ 1

0

F−1(x)− µ

σ1
f1:n(x)dx =

∫ 1

0

F−1(x)− µ

σ1
[ f1:n(x)− 1]dx

=
∫ ∞

0

F−1 ◦ Z(x)− µ

σ1
[ f1:n ◦ Z(x)− 1]e−x dx (10)

as a linear functional
Th(g) =

∫ ∞

0
g(x)h(x)e−x dx

on the elements of the Banach space L1(R+, e−x dx). Here

h(x) = f1:n ◦ Z(x)− 1 = ne−(n−1)x − 1,

and

g(x) =
F−1 ◦ Z(x)− µ

σ1
(11)

is an arbitrary element of the family

S1 = {g ∈ L1(R+, e−x dx) : g− nondecreasing concave,

T1(g) = 0, ||g||1 = 1}, (12)

where
T1(g) =

∫ ∞

0
g(x)e−x dx. (13)

Indeed, each g ∈ S1 is nondecreasing, because this is an increasing linear transformation
of a quantile function composed with the exponential distribution function, and concave,
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by the IFR property of F. Vanishing of (13) for g from (12) follows the representation (11)
and the fact that

µ =
∫ 1

0
F−1(x) dx =

∫ ∞

0
F−1 ◦ Z(x)e−x dx.

Similarly, (11) and

σ1 =
∫ 1

0
|F−1(x)− µ| dx =

∫ ∞

0
|F−1 ◦ Z(x)− µ|e−x dx = ||F−1 ◦ Z− µ||1

imply ||g||1 = 1.
A crucial observation now is that

Th(g) < 0, g ∈ S1,

because EX1:n < EX1 for all nondegenerate iid random variables with a finite first moment
(equivalently, with positive finite σ1). This allows us to use the norm maximization method.
Noting that the problem of maximizing (10) is location and scale invariant, we can replace
the original problem by the dual one of maximizing ||g||1 over the set

S2 = {g ∈ L1(R+, e−x dx) : g− nondecreasing concave,

T1(g) = 0, Th(g) = −1}. (14)

Indeed, replacing g ∈ S1 by g̃ = g
−Th(g) , we get Th(g̃) = −1 and ||g̃||1 = 1

|Th(g)| = −
1

Th(g) .
It means that maximizing the norm over (14) we also maximize Th(g) over the original
set (12).

The next step of our reasoning is based on the observations that (14) is a convex set,
and the norm functional is convex. It follows that for every convex combination of elements
of (14) we have ∥∥∥∥∥ k

∑
i=1

γigi

∥∥∥∥∥
1

≤
k

∑
i=1

γi‖gi‖1 ≤ max
1≤i≤k

‖gi‖1,

and in consequence, as k→ ∞, ∥∥∥∥∥ ∞

∑
i=1

γigi

∥∥∥∥∥
1

≤ sup
i∈N
‖gi‖1.

Now we notice that every g ∈ S2 can be approximated by convex combinations of the
elements of a particular subset of S2 consisting of simple broken lines

gα(x) = b(α)(x− α)1[0,α](x) + a(α), 0 ≤ α < ∞. (15)

The slopes b(α) > 0 and intercepts a(α) are uniquely determined by the equations
T1(gα) = 0 and Th(gα) = −1, but we do not need here their precise forms. The ap-
proximation procedure is standard, we restrict ourselves to outlining the main steps, and
do not perform all the rigorous calculations. We first observe that each piecewise linear
element of (14) is a convex combinations of some broken lines (15). The breaking points
uniquely determine the elements of the combination, and the values of consecutive slopes
allow us to calculate the respective mixture weights. Then we observe that each g ∈ S2
can be linearly interpolated by sequences of piecewise linear, continuous, nondecreasing,
and concave functions gk, k → ∞, with the increasing sets of knots which in the limit
become dense in R+. These approximations gk do not necessarily belong to S2, but they
tend monotonously to g on the whole positive half-axis, which implies that

T1(gk) → T1(g) = 0,

Th(gk) → Th(g) = −1,
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as k→ ∞. However, the following modifications

g̃k =
gk − T1(gk)

|Th(gk)|
, k = 1, 2, . . .

do belong to (14), and they satisfy

||g̃k − g||1 =

∣∣∣∣∣∣∣∣ gk
|Th(gk)|

− gk + gk − g− T1(gk)

|Th(gk)|
1R+

∣∣∣∣∣∣∣∣
1

≥
∣∣∣∣ 1
|Th(gk)|

− 1
∣∣∣∣||gk||1 + ||gk − g||1 +

∣∣∣∣T1(gk)

Th(gk)

∣∣∣∣∣∣∣∣1R+

∣∣∣∣
1 → 0,

because ||gk||1 ≤ ||g||1 < ∞, the last norm amounts to 1, and the remaining three terms
in the last line vanish as k→ ∞. It follows that ||g̃k||1 → ||g||1 by continuity of the norm
functional. Therefore

||g||1 ← ||g̃k||1 =

∣∣∣∣∣
∣∣∣∣∣ k

∑
i=1

γigαi

∣∣∣∣∣
∣∣∣∣∣
1

max
1≤i≤k

||gαi ||1,

and finally
||g||1 ≤ sup

0<α<∞
||gα||1, g ∈ S2,

which implies that in our dual maximization problem (and the original one as well) we can
restrict ourselves to considering first increasing and then constant broken lines (15) with
varying breaking points.

Referring again to location-scale invariance of the problem, we consider the simplest
representatives of the location-scale families. Precisely, we confine our attention to the
parent distribution functions Fα, α > 0, satisfying

F−1
α (1− e−x) =

{ x
α , 0 < x ≤ α,
1, x ≥ α,

(cf. (2)). The explicit forms of the distribution functions are

Fα(x) =


0, x ≤ 0,
1− e−αx, 0 ≤ x < 1,
1, x ≥ 1,

(16)

which means that they have absolutely continuous parts with the density functions fα(x) =
α exp(−αx) on [0, 1], and jumps of heights e−α at 1.

If Y1, . . . , Yn are iid with the distribution function Fα, then

EαY1 =
∫ 1

0
e−αx dx =

1− e−α

α
,

EαY1:n =
∫ 1

0
e−nαx dx =

1− e−nα

nα
,

and
Eα(Y1:n −Y1) =

1
nα

(1− n + ne−α − e−nα).

We also determine

Eα|Y1 −EαY1| = α
∫ 1

0

∣∣∣∣x− 1− e−α

α

∣∣∣∣e−xdx +

(
1− 1− e−α

α

)
e−α = N(α).
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(see (9)). Accordingly,

Eα(Y1:n −Y1)

Eα|Y1 −EαY1|
=

1
n

1− n + ne−α − e−nα

2 exp(−e−α − 1)− e−α − e−2α − αe−α
= Bn(α), (17)

say. Our goal is to maximize each Bn(α), n ≥ 2, with respect to 0 < α < ∞.
Fix first n = 2 and change the variable for x = 1− e−α ∈ (0, 1) in (17). Then we obtain

2B2(− ln(1− x)) =
−x2

2e−x − 2 + 3x− x2 + (1− x) ln(1− x)
=
−x2

D(x)
.

We develop the denominator into the power series

D(x) = 2
∞

∑
i=0

(−1)i

i!
xi − 2 + 3x− x2 − (1− x)

∞

∑
i=1

1
i

xi

=
x2

2
+

∞

∑
i=3

[
2(−1)i

i!
− 1

i
+

1
i− 1

]
xi.

Therefore

g2(x) =
−1

2B2(− ln(1− x))
=

D(x)
x2 =

1
2
+

∞

∑
i=1

1
(i + 1)(i + 2)

[
1 +

2(−1)i

i!

]
xi. (18)

The derivative has the following expansion

g′2(x) =
∞

∑
i=0

i + 1
(i + 2)(i + 3)

[
1− 2(−1)i

(i + 1)!

]
xi =

∞

∑
i=0

aixi, (19)

where a0 = − 1
6 < 0, a1 = 1

3 > 0, and ai > 0, i = 2, 3, . . ., as well, because
∣∣∣ 2(−1)i

(i+1)!

∣∣∣ < 1 for

all i ≥ 2. This means that g′2(0) < 0 and g′2 increases on (0, 1), where it is well defined.
It follows that g2 either always decreases on (0, 1) or it first decreases and then increases
there. Anyway, the global maximum is attained at either of the end-points. Consequently,

B2(α) =
−1

2g2(1− e−α)

attains its global supremum either at 0 or at +∞, because functions (0, ∞) 3 α 7→ x =

1− e−α ∈ (0, 1) and (0, 1) 3 x 7→ −1
2x ∈

(
−∞,− 1

2

)
are increasing. We easily check that

lim
α→∞

B2(α) = −
e
4
> lim

α→0
B2(α) = −1.

Using the transformation x = 1− e−α for n = 3 we get

B3(− ln(1− x)) =
2
3
(3− x)B2(x) = −1

3
3− x
g2(x)

.

We verify variability of g3(x) = g2(x)
3−x analyzing the sign of

g′3(x)(3− x)2 = g′2(x)(3− x) + g2(x).

Applying (18) and (19), by elementary calculations we obtain the Taylor expansion of

g′3(x)(3− x)2 =
∞

∑
i=1

(bi + ci)xi,



Entropy 2021, 23, 385 9 of 14

where

bi =
3(i + 1)

(i + 2)(i + 3)
− i + 2

(i + 3)(i + 4)
+

1
(i + 1)(i + 2)

=
2i3 + 14i2 + 26i + 20

(i+1)(i+2)(i+3)(i+4)

are positive, and

ci =
2(−1)i

(i + 4)!
[(i + 3)(i + 4)− 3(i + 1)(i + 4)− i− 2] =

2(−1)i+1

(i + 4)!
(2i2 + 9i + 2)

change the sign. We easily check that

|ci|
bi

=
2i2 + 9i + 2

i3 + 7i3 + 13i + 10
1
i!
<

7i3 + 13i + 10
i3 + 7i3 + 13i + 10

1
i!
≤ 1,

which implies that bi + ci > 0, i = 1, 2, . . ., and so the derivative of g3 is positive. Accord-
ingly,

B3(α) = −
1
3

1
g3(1− e−α)

is increasing.
We apply the claim for establishing the same conclusion for n ≥ 4. Consider the

functions
Mn(x) = xn − nx + n− 1, 0 < x < 1, n ≥ 3,

with the derivatives
M′n(x) = n(xn−1 − 1),

and analyze variability of Mn+1(x)
Mn(x) , n ≥ 3. We have

M2
n(x)

d
dx

Mn+1(x)
Mn(x)

= M′n+1(x)Mn(x)−Mn+1(x)M′n(x)

= (n + 1)(xn − 1)[xn − nx + n− 1]

− n(xn−1 − 1)[xn+1 − (n + 1)x + n]

= x2n − n2xn+1 + 2(n2 − 1)xn − n2xn−1 + 1

= x2n − 2xn + 1− n2xn−1(x2 − 2x + 1)

= (1− xn)2 − n2xn−1(1− x)2

= (1− x)2

(n−1

∑
i=0

xi

)2

− nxn−1

. (20)

Since (
n−1

∑
i=0

xi

)2

=
n−2

∑
i=0

(i + 1)(xi + x2n−2−i) + nxn−1

and

n2xn−1 =
n−2

∑
i=0

2(i + 1)xn−1 + nxn−1,

we can rewrite the expression in the brackets of (20) as follows(
n−1

∑
i=0

xi

)2

− nxn−1 =
n−2

∑
i=0

(i + 1)(xi − 2xn−1 + x2n−2−i)

=
n−2

∑
i=0

(i + 1)xi(1− xn−1−i)2 > 0.
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This shows that the ratios Mn+1(x)
Mn(x) , 0 < x < 1, are increasing for all n ≥ 3, and Mn+1(e−α)

Mn(e−α)
,

n ≥ 3, are decreasing with respect to α > 0. Moreover,

Mn(e−α) = e−nα − ne−α + n− 1 = −nαEα(Y1:n −Y1) > 0.

We finally observe that

Bn(α) = − 1
n

Mn(e−α)

D(1− e−α)
=

3
n

Mn(e−α)

M3(e−α)
B3(α)

=
3
n

B3(α)
n−1

∏
i=3

Mi+1(e−α)

Mi(e−α)

is negative increasing, because so is B3(α), and each Mi+1(e−α)
Mi(e−α)

, i = 3, . . . , n− 1, is positive
decreasing.

Summing up, for every n ≥ 2 we concluded that

sup
α>0

Bn(α) = lim
α→∞

Bn(α) = lim
x→0

1− n + nx− xn

2ex− 1− x− x2 + x ln x
= −n− 1

2
e.

Distribution functions (16) which attain the bound in the limit represent the mixtures of
the exponential distributions with intensity α truncated right to the interval [0, 1] with
probability 1− e−α, and atom at 1 with probability e−α. Making a standard location-scale
transformation we obtain the distributions with arbitrarily chosen real µ and positive
σ1 which attain the bound in the limit. They are precisely described in the statement of
Theorem 2.

Theorem 2 provides a reliable estimate of the smallest possible time distance between
the lifetimes of the single component and series system under the increasing failure rate
assumption. Below we also determine more stringent bounds on the expectations of series
system lifetimes under the more restrictive aging condition that the component lifetimes
have increasing density functions.

Theorem 3 (ID distributions). Suppose that the assumptions of Theorem 1 hold with p = 1.
If n = 2, then the bound

EX1:2 − µ

σ1
≤ −1

2
, (21)

is sharp , and it is attained in the limit by the mixtures of uniform distributions on the interval[
µ− 2σ1

α(2−α)
, µ + 2σ1

(2−α)2

]
with the atoms at µ + 2σ1

(2−α)2 when the probabilities of the atoms tend to
1.
For n ≥ 3 we have

EX1:n − µ

σ1
≤ −2

n− 1
n + 1

. (22)

If n = 3, then the equality is attained by the mixture distributions described above for any
fixed α ∈ (0, 1]. For n ≥ 4, the equality in (22) is attained by the uniform distribution on
[µ− 2σ1, µ + 2σ1] only.

Bound (21) is identical with sharp bound for the lifetime of two-component system
with arbitrary distributions of component lifetimes (see Goroncy [30], Corollaries 3.1 and
3.2). Surprisingly, bounds (22) coincide with the optimal evaluations for the expectation of
the first order statistic based on an iid sample with symmetric unimodal parent distribution
(see, Rychlik [31]).

Proof. We again refer to the norm maximization method. We can mimic the arguments
of the proof of Theorem 2, with the only difference that instead of considering the ele-
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ments of the space L1(R+, e−xdx) we take into account the functions from L1([0, 1], dx).
Consequently, we conclude that the possible candidates for quantile functions maximizing
EX1:n−µ

σ1
belong to the family of broken lines (2). The respective expectations of the single

component and system lifetimes are presented in (3) and (4). Fixing p = 1 in (6) we obtain
the respective mean absolute deviation from the mean of the form

N1(α) =
1
4

α(2− α)2.

This together with (5) give

EαY1:n −EY1

N1(α)
=

4
n + 1

1− (n + 1)α + n+1
2 α2 − (1− α)n+1

α2(2− α)2 = Cn(α), (23)

say. The upper bound we look for amounts to the maximal value of the RHS of (23) with
respect to 0 < α ≤ 1.

We immediately check that C3(α) = −1, 0 < α ≤ 1. This means that for n = 3, the
upper bound is equal to−1, and it is attained by the arbitrary mixtures of standard uniform
distributions with the atoms at 1. For other n we use the following result.

Define functions

Ln(x) = 2xn+1 − (n + 1)x2 + n− 1, 0 < x < 1, n ≥ 2,

with the derivatives
L′n(x) = 2(n + 1)(xn−1 − 1).

We consider the ratios Ln(x)
Ln−1(x) for n ≥ 3. Their derivatives satisfy

2xL2
n−1(x)

d
dx

Ln(x)
Ln−1(x)

= (n + 1)(xn−1 − 1)[2xn − nx2 + n− 2]

− n(xn−2 − 1)[2xn+1 − (n + 1)x2 + n− 1]

= 2x2n−1 − n(n− 1)xn+1 + (n− 2)(n + 1)xn

+ (n− 2)(n + 1)xn−1 − n(n− 1)xn−2 + 2

= 2xn(xn−1 − 1)− 2(xn−1 − 1)− n(n− 1)(xn − xn−2)(x− 1)

= 2(1− xn−1)(1− xn) + n(n− 1)xn(1− x)2(1 + x)

= (1− x)2

[
2

n−2

∑
i=0

xi

n−1

∑
i=0

xi − n(n− 1)
(

xn−2 + xn−1
)]

.

The expression in the brackets can be rewritten as

2
n−2

∑
i=0

(i + 1)(xi + x2n−3−i)− n(n− 1)(xn−2 + xn−1)

= 2
n−2

∑
i=0

(i + 1)(xi + x2n−3−i − xn−2 − xn−1)

= 2
n−2

∑
i=0

(i + 1)xi(1− xn−1−i)(1− xn−2−i) > 0.

We concluded every fraction Ln(x)
Ln−1(x) , n ≥ 3, is increasing on (0, 1), and, in consequence, all

Ln(1−x)
Ln−1(1−x) , n ≥ 3, are decreasing there.

Note that

Cn(α) = −
4

n + 1
Ln(1− α)

N1(α)
.
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Obviously N1(α) > 0. The same applies to all functions Ln, because

− Ln(1− α)

2(n + 1)α
= EY1:n −EY1,

(comp. the first line of (5)), and the RHS is negative for all nondegenerate iid random
variables. Also L3(1−α)

N1(α)
= 1 for all α. For n = 2 function

C2(α) = −
4
3

L3(1− α)

N1(α)

L2(1− α)

L3(1− α)
= −4

3
L2(1− α)

L3(1− α)

is decreasing, because the latter factor is positive increasing. Therefore

sup
0<α≤1

C2(α) = lim
α→0

C2(α) = −
4
3

lim
α→0

− 3
2 α + α3

α2(2− α)2 = −1
2

(see (23)). This means that the bound for n = 2 is equal to − 1
2 , and it is attained in the

limit by the convex combinations of the uniform distribution on [0, 1] and atom at 1 as the
contribution of the continuous part decreases to 0.

For n ≥ 4 we have

Cn(α) = −
4

n + 1
L3(1− α)

N1(α)

n

∏
i=4

Li(1− α)

Li−1(1− α)
= − 4

n + 1

n

∏
i=4

Li(1− α)

Li−1(1− α)
.

The function is increasing because each factor of the product is positive decreasing, and
attains its maximum −2 n−1

n+1 at 1. This is the bound value and this is attained by the
standard uniform distribution.

The attainability conditions can be easily generalized to the families of distributions
with arbitrary µ ∈ R and σ1 > 0 if we replace (1) by the distribution functions of mixtures
of uniform distributions on

[
µ− 2σ1

α(2−α)
, µ + 2σ1

(2−α)2

]
with the atoms at µ + 2σ1

(2−α)2 .

As we can predict, in the case of ID component lifetimes the negative bounds on the
standardized expectations of series system lifetimes turn out to be more stringent than in
the case of IFR components. Indeed, the absolute value of the right-hand side of (22) is
4
e

n
n+1 ≈ 1.47152 n

n+1 times greater than its counterpart of (8). This shows that constructing
systems of the component with either ID or merely IFR lifetime property significantly
affects the system performance. Note that the bounds (8) and (22) as well as their ratio
slightly depend on the size n of the series system.

4. Conclusions

In this paper we considered series systems whose components have independent and
identically distributed lifetimes with either increasing failure rate and or increasing density
function. The series systems are the simplest and most popular system used in technical
applications, and the increase of failure rate or the density function of component lifetimes
are natural analytic descriptions of the natural presumption that the components are
wearing out during the system operation. It is obvious that the system lifetime is not longer
than the lifetime of its any component. Here we studied the problem how much is the
expectation of the system lifetime shorter than the expected lifetime of a single component
under the assumption that the components have IFR and ID lifetimes. It occurs that the
answer strongly depends on the units in which the difference is measured. In Section 2 we
showed that the scale units based on the central absolute moments of component lifetimes
with orders p > 1 are too rough for detecting the differences, and the respective bounds
expressed in these units provide only the trivial zero bounds. For detecting substantial
differences, in Section 3 we used the mean absolute deviations from the mean units, and we
determined sharp attainable strictly negative bounds on the expected differences between
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the system and component lifetimes under the IFR and ID assumptions. Theorems 2 and 3
show that that bounds under the more restrictive ID assumption are essentially less than
those the the IFR case.

Author Contributions: Conceptualization, T.R. and M.S.; Formal analysis, T.R. and M.S.; Funding
acquisition, T.R. and M.S.; Investigation, T.R. and M.S.; Methodology, T.R. and M.S.; Writing—original
draft, T.R. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: The second author was partially supported by PUT under grant 0211/SBAD/0120.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We wish to thank the anonymous reviewers for their constructive comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

iid independent identically distributed
IFR Increasing Failure Rate
DFR Decreasing Failure Rate
ID Increasing Density Function
DD Decreasing Density Function

References
1. Ge, Q.; Peng, H.; van Houtom, G.J.; Adan, I. Reliability optimization for series systems under uncertain component failure rates

in the design phase. Int. J. Prod. Econ. 2018, 196, 163–175. [CrossRef]
2. Showalter, K.; Epstein, I.R. From chemical systems to systems chemistry: Patterns in space and time. Chaos 2015, 25, 097613.
3. Xie, L.; Gong, Y. Series system failure rate modeling by load-strength interference analysis. In Proceedings of the ICQR2MSE,

Chengdu, China, 15–18 July 2013. [CrossRef]
4. Kvam, P.H.; Singh, H. Estimating reliability of components with increasing failure rate using series system data. Naval Res. Logist.

1998, 45, 115–123.
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