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Abstract

HIV prevention trials have demonstrated the effectiveness of a number of behavioral and biomedical interventions. HIV
prevention packages are combinations of interventions and offer potential to significantly increase the effectiveness of any
single intervention. Estimates of the effectiveness of prevention packages are important for guiding the development of
prevention strategies and for characterizing effect sizes before embarking on large scale trials. Unfortunately, most research
to date has focused on testing single interventions rather than HIV prevention packages. Here we report the results from
agent-based modeling of the effectiveness of HIV prevention packages for men who have sex with men (MSM) in South
Africa. We consider packages consisting of four components: antiretroviral therapy for HIV infected persons with CD4 count
,350; PrEP for high risk uninfected persons; behavioral interventions to reduce rates of unprotected anal intercourse (UAI);
and campaigns to increase HIV testing. We considered 163 HIV prevention packages corresponding to different intensity
levels of the four components. We performed 2252 simulation runs of our agent-based model to evaluate those packages.
We found that a four component package consisting of a 15% reduction in the rate of UAI, 50% PrEP coverage of high risk
uninfected persons, 50% reduction in persons who never test for HIV, and 50% ART coverage over and above persons
already receiving ART at baseline, could prevent 33.9% of infections over 5 years (95% confidence interval, 31.5, 36.3). The
package components with the largest incremental prevention effects were UAI reduction and PrEP coverage. The impact of
increased HIV testing was magnified in the presence of PrEP. We find that HIV prevention packages that include both
behavioral and biomedical components can in combination prevent significant numbers of infections with levels of
coverage, acceptance and adherence that are potentially achievable among MSM in South Africa.
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Introduction

The identification of a single HIV intervention that is capable of

preventing large numbers of infections, such as a highly effective

vaccine, remains elusive. Nevertheless, in recent years there have

been enormous successes in identifying moderately effective HIV

prevention interventions. These interventions include both

behavioral and biomedical strategies. The question is how to

combine these moderately effective interventions into highly

effective prevention packages [1–3]. The idea is that multiple

interventions when used in combination could prevent more

infections than any single intervention used in isolation. Further-

more, the effectiveness of interventions when used in combination

may be synergistic.

Although the efficacies of various interventions applied in

isolation have been evaluated in a number of rigorous randomized

controlled trials, there is little direct evidence about the efficacy or

effectiveness of combinations of these interventions [4–7].

Estimates of the effectiveness of combinations of interventions

are important for guiding the development of prevention

strategies. Characterizing the effect sizes of combination preven-

tion interventions are critically important before embarking on

large scale randomized controlled trial to rigorously evaluate such

combination interventions to insure that the trials are adequately

powered [8–10].

The drivers of the global HIV MSM epidemics have been

previously reviewed highlighting the sustained HIV prevalence
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and often increasing HIV incidence among these men in several

epidemic contexts [11,12]. The majority of randomized trials in

the context of generalized HIV epidemics have focused on

heterosexual or vertical transmission of HIV with limited data

evaluating efficacy of interventions focused specifically on men

who have sex with men (MSM) [13].

Here we report the results from agent-based modeling of the

effectiveness of combination prevention interventions for MSM in

South Africa. The work is part of the Sibanye Health Project to

develop and test HIV prevention interventions among MSM in

South Africa. Agent-based modeling has been used to evaluate the

drivers of the HIV epidemic in several MSM populations [14].

Here our focus is the use of agent-based models to estimate the

overall effectiveness of combination prevention in terms of

percentages of infections prevented among MSM in South Africa.

Recently, there has been important modeling work of HIV

prevention strategies in MSM populations focusing on specific

interventions in various regions of the world such as HIV testing in

New South Wales [15], circumcision in Peru [16], and antiretro-

viral treatments including testing and linkage to care (but not pre-

exposure prophylaxis) in China [17]. While previous modeling

work on combination HIV prevention has been performed in

South Africa [18], those models have not focused on the MSM

population. This paper is focused on the evaluation of combina-

tion HIV prevention in the MSM population in South Africa. We

examine four components of combination prevention: treatment

of HIV infected persons with ART; prophylactic treatment of high

risk HIV uninfected persons to reduce risk of acquisition of HIV

infection (PrEP); counseling and condom promotion to reduce the

frequency of unprotected anal intercourse; and HIV antibody

testing. We perform a detailed statistical analysis of the simulation

results of the agent-based model to assess the stochastic variability

in the results and to borrow strength across all the simulations to

improve estimates of the effects of combination prevention.

Methods

Overview of Agent-based Model
Agent-based models are stochastic simulations of interacting

agents (e.g. individuals) who may alter behaviors in response to

other agents or changes in the environment [19–20]. We

developed an agent-based model to evaluate combination HIV

prevention interventions among MSM in South Africa. Here, we

describe the main features of the model which are also

summarized in Table 1. Further details and specific model

parameter values are given in the Supporting Information S1.

Each person (agent) is assigned values for variables associated

with risks for transmission and acquisition of HIV. The

distributions of these variables were chosen to match available

data from South Africa [21]. To simulate the heterogeneities in

risk across MSM populations, the values of the variables (e.g., level

of sexual activity, numbers of partners) were drawn from

probability distributions. The variables include level of and

predominant type of sexual activity (e.g., receptive or insertive

unprotected anal intercourse [22], numbers of regular partners,

whether or not the person is in a main partnership, frequency of

HIV antibody test screening, HIV infection status at baseline, and

for HIV infected persons, their CD4 levels and whether or not

receiving they were receiving ART at baseline. Persons were

assigned into variable sized networks of regular sexual partners.

One of those regular partners could also be assigned to be the

person’s main sexual partner. Persons were also allowed to have

sexual contact with persons outside their network of regular

partners (i.e., casual partners). The probability of sexual contact on

any day between two persons depended on whether the

partnership was between main partners (most likely), regular

partners (somewhat less likely) or casual partners (least likely).

The agent-based simulation proceeded day by day, starting at

baseline (which is defined as calendar time t = 0). On each day, we

simulated whether an HIV uninfected person had sexual contact

with an infected person for every possible pair of persons. If an

HIV uninfected person had contact with an infected person, we

simulated transmission occurrence. The probability of transmis-

sion was determined by factors that included the type of sexual

contact (e.g., insertive or receptive role in unprotected anal

intercourse (UAI)), antiretroviral treatment for the infected

partner, and oral Truvada-based pre-exposure prophylaxis (PrEP)

for the uninfected partner [5,23–25]. Persons also had an

opportunity to receive an HIV test. At the end of each day, the

infection status and CD4 cell count were updated [26]. Persons

were removed from the simulation when death occurred.

We considered four possible components of combination

prevention interventions and different intensity levels of these

components. One component was treatment of HIV infected

persons with ART [4]. Consistent with current South African

national standards, HIV infected persons with a CD4 ,350 who

had an HIV test within the preceding 6 months were eligible to

receive ART. We considered a range of values for the percentage

(X1) of persons eligible for ART and not already in treatment at

baseline who receive ART. Here X1 is measuring additional ART

coverage among eligible persons over and above those already

receiving ART at baseline. Data from South Africa indicated

approximately 50% of eligible persons are on ART and that value

was taken to be the baseline level of ART coverage [21].

A second component of combination prevention was prophy-

lactic treatment of high risk HIV uninfected persons to reduce risk

of acquisition of HIV infection with tenofovir/emtricitabine

(Truvada) (PrEP) [5]. HIV uninfected persons who had an HIV

test within the preceding 6 months and were at high risk (defined

as either .12 UAI acts in the preceding 6 months or having a

main partner who is HIV infected) were eligible to receive PrEP.

We considered various values for the percentage (X2) of eligible

persons who were offered and accepted PREP. Persons who

received PrEP were classified as either low or high adherers (see

online supplement for details). The model allowed adherence level

to modify the effectiveness of PREP in reducing risk of HIV

acquisition [28].

The third component was counseling and condom promotion to

reduce the frequency of UAI [29]. We considered a range of

values for the proportionate reduction in UAI contacts (X3). For

example, X3 = 15% refers to an intervention that successfully

reduces the rate of UAI by 15%. The fourth component was a

program to increase HIV antibody testing. We considered an

intervention component that decreased by one half the proportion

of persons who never receive an HIV antibody test, from 1/3 to 1/

6. The presence of this component in combination HIV

prevention intervention is indicated by X4 = 1 (otherwise X4 is

set to 0).

We considered combination prevention interventions consisting

of one or more of these four components: ART treatment

coverage; PrEP coverage, UAI reduction, and HIV testing

increase. We considered a range of for the levels of each

component (values for X1, X2, and X3, ranged between 0.0%

and 95%, and X4 took values 0 or 1. For example, a combination

HIV prevention intervention with X1 = 75%, X2 = 25%, X3 = 5%,

and X4 = 1 corresponds to a combination prevention intervention

with four components: ART given to 75% of all eligible persons

who were not already receiving ART at baseline; PrEP given to

Modeling Combination HIV Prevention among MSM in South Africa
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25% of eligible persons; a 5% reduction in the rate of occurrence

of UAI; and a halving of the proportion of persons who never

received an HIV test. We considered various combination

prevention interventions by varying the values of X1, X2, X3 and

X4, and performed multiple replications for each of those

combination prevention interventions. We performed replications

of the simulations to assess stochastic variation [27].

The number of replications was chosen to control the standard

error. Specifically, we calculated the standard error of the mean

proportion infected over 5 years after each replication using all

replications performed up to that point. If the standard error was

above 0.01 we proceeded and performed an additional replication.

We stopped replications when the standard error fell below.01.

The mean number of replications performed for a combination

intervention was 13 with a minimum of at least 5 replications

performed for each combination intervention. In addition, we

performed 60 replications for the control setting of no intervention

(i.e., each Xi = 0). We considered all packages corresponding to 4

levels each of ART coverage, 4 levels of PREP coverage, 4 levels of

UAI reduction and 2 HIV testing levels. In addition we considered

a number of additional packages of interest including when one or

more of the levels were 0 as well as some additional packages when

the UAI reduction was fixed at X3 = 15% which was a value

thought to be potentially achievable. In total we studied 163 HIV

prevention packages and a total of 2252 simulations run of the

agent-based model across all packages. Each simulation run was

carried out for a five year period. The agent-based models were

implemented in the statistical programming language R with the

multithreading package ‘snowfall’ to address the highly intensive

computational demands [30–31].

Statistical Analysis
We performed statistical analyses of the dataset of results from

the 2252 simulation runs of the agent-based model. The

dependent variable (y) was the cumulative proportion of MSM

that became HIV infected over 5 years from each run of the

simulation. We developed a statistical model to relate y (the

dependent variable) to the levels of the components (X1, X2, X3

and X4) in the combination prevention intervention (the explan-

atory variables). We used a generalized linear model with a logistic

link of the form, log(y/(1-y)) which we arrived at after model fitting

and regression diagnostics [32]. We considered both linear and

higher order polynomial terms (e.g. quadratic and cubic terms) for

the levels of the components (the X’s). We also considered

interaction terms between the components.

Because we performed replications of each combination

interventions we were able to evaluate the variance of y and

found that the variance of y was not constant across interventions

but varied with the magnitude of y. We found that a cubic

polynomial adequately described the relationship between the

variance of y and the expected value of y. Accordingly, we used

Table 1. Main characteristics of agent-based model for combination HIV prevention among MSM in peri-urban South Africa
(additional information and specific parameter values are in the Supporting Information S1).

Attributes assigned to each person at start

Frequency of sexual activity

HIV status at start

CD4 count at start if HIV +

Knowledge of HIV status at start (yes, no)

Sexual role preference (insertive, receptive, versatile)

HIV testing frequency (3 levels: moderate, low, never)

Some assigned a main partner

Proportion of sexual contacts that are UAI (2 levels)

Sexual networks of regular partners (allowance for sero-sorting)

Daily updates

Daily sexual contacts depends on type of partnership

Likelihood of contact (in decreasing order): main, regular, casual, have other main partners

HIV testing possible

UAI rate adjusted if learns knowledge of HIV status

CD4 levels updated for HIV positive

Infection status updated

Prevention Interventions

ART for eligible HIV positives

Eligible: HIV test within 6 months and CD4 ,350

Considered varying levels of coverage (X1)

PREP for eligible HIV negatives

Eligible: in last 6 months had both HIV test and .12 UAIs or had infected main partner

Varying levels of PREP acceptance (X2) with two levels of adherence (low and high)

Reduction in UAI frequency (considered varying reduction levels (X3))

Increase in HIV testing: convert 50% of the never testers to low frequency testers

doi:10.1371/journal.pone.0112668.t001
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iteratively reweighted least squares to account for the non-constant

variance and to estimate the regression coefficients in the model

for y [33]. We used the resulting model for y to calculate the

percent of HIV infections prevented for a combination interven-

tion with component levels X1, X2, X3, and X4 compared to no

intervention (i.e., when all the X’s are equal to zero). We

calculated confidence intervals for the percent of HIV infections

prevented that accounted for the covariance between regression

coefficients (see Supporting Information S1 for detail). The model

allows us to predict the percent of HIV infections that could be

prevented among MSM for any levels of the components of

combination prevention intervention. The statistical analyses were

performed with the R programming language [30].

Results

Figure 1 is a graphical display of the 2,252 simulation runs of

the agent-based model prior to any statistical modeling of the

results. Each data point corresponds to one of the 163

combination prevention interventions including the control setting

of no intervention. Each data point plots the average of the

cumulative percent of MSM who become HIV infected over five

years (y) versus the standard deviation of y based on all replications

performed for that intervention. The mean cumulative percent

infected over 5 years ranged as high as 26.4% when there was no

intervention (X1 = X2 = X3 = X4 = 0). As shown in the figure,

interventions that reduced the rate of UAI by at least 25%

succeeded in reducing the cumulative incidence of infection to less

than 15%, and thereby preventing at least 100 x (26.4–15)/

26.4 = 43.2% of HIV infections. The figure also shows that the

standard deviation of y increased with y; there was a decreasing

trend in the coefficient of variation of y (i.e., standard deviation/y)

from approximately 0.20 to 0.16.

The regression model equation for y is given in the online

supplement. Figure 2 is based on that equation and shows the

percentage of HIV infections prevented for a range of combina-

tion interventions that include: UAI reduction of 0 or 15%; PrEP

coverage of 0 or 50%; HIV testing increase that reduced the

proportions of persons who never test by 50%; and a continuous

range for incremental ART coverage (X1) over and above persons

already receiving ART at baseline. The figure shows that an

intervention with only a 15% UAI reduction and no other

component was superior to all other interventions that did not

include a UAI reduction component. The figure illustrates a

positive association between the percentage of infections prevented

and increasing ART coverage (X1), but the positive slope is small

and that finding is explained because X1, as defined here, refers

only to the additional ART coverage of eligible persons (,350

CD4 and an HIV test within the previous 6 months) who were not

already receiving ART at baseline. We consider this point further

in the Discussion Section. Figure 3 is similar to Figure 2 except it

includes interventions with UAI reduction of 25% and PrEP

coverage of 25%. The figure shows that a combination prevention

intervention with a 25% UAI reduction, 25% PrEP coverage, and

HIV testing increase (X2 = 25%, X3 = 25%, X4 = 1) can prevent

more than 35% of infections over five years.

To understand how high-impact prevention packages could be

constructed, we assumed that a basic prevention package would

include ART coverage of 50% of eligible persons. Table 2 shows

the effects of sequentially adding components to ART coverage to

create HIV prevention packages. We find that the addition of a

component that reduces UAI by 15% (X3 = 15%) would prevent

Figure 1. Results from 2252 simulations of agent-based model of HIV spread among MSM in South Africa corresponding to 163
distinct combinations of HIV prevention interventions. Each point represents replicates for a particular combination of HIV prevention
interventions. Plotted are the mean percentages infected over 5 years for each intervention (averaged over replicates) versus the standard deviations
of those percentages. Combination prevention interventions which included a $25% reduction in UAIs are indicated in dark blue, all others are
indicated in light blue. The data point in red corresponds to the 60 simulation runs for the control setting of no intervention.
doi:10.1371/journal.pone.0112668.g001
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an additional 20.3% of infections over and above the base package

(Package 1 in Table 2). That reduction in HIV infections from the

addition of a condom promotion/UAI reduction component to

the base package is considerably greater than that achieved from

the addition of a PrEP component with 50% coverage (which

yields an additional 9.5% of infections prevented) or an increase in

Figure 2. HIV infections prevented over 5 years from combination prevention interventions with four components. ART coverage of
eligible persons who were not already receiving ART at baseline, PREP with 50% acceptance (dotted lines), 15% UAI reduction (blue lines; no UAI
change are in red) and increase in HIV testing (black triangles). See Table 1 for further details about the components of the prevention interventions.
doi:10.1371/journal.pone.0112668.g002

Figure 3. HIV infections prevented over 5 years from combination prevention interventions with four components. ART coverage of
eligible persons who were not already receiving ART at baseline, PREP with 25% acceptance (dotted lines), 25% UAI reduction (blue lines; no UAI
change are in red) and increase in HIV testing (black triangles). See Table 1 for further details about the components of the prevention interventions.
doi:10.1371/journal.pone.0112668.g003
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HIV testing of previously untested men (which yields an additional

2.9% of HIV infection prevented). If we start with a package that

includes both 50% ART coverage and 15% UAI reduction

components (Package 2 in Table 2), we find that HIV infections

could be reduced by 10.1% with the addition of a PrEP

component (with 50% coverage) or, alternatively, reduced by

3.1% with the addition of an HIV testing component to reach men

never tested for HIV. If we start with a package that includes three

components, ART coverage, UAI reduction and PrEP compo-

nents (Package 3 in Table 2), we find that the addition of the HIV

testing component would further reduce infections by 4.9%. We

find that the impact of an HIV testing component is greater in the

presence of a PrEP component than without a PrEP component

(compare 4.9% to 2.9% and 3.1%).

Table 3 provides information about a four component combi-

nation prevention intervention and the contributions of each of the

components. The four component package included 50% ART

coverage of eligible persons, 50% PrEP coverage of eligible

persons, 15% UAI reduction and a 50% reduction in those never

tested for HIV. We estimate that this four component package of

combination interventions could prevent 33.9% of infections over

5 years (95% confidence interval (31.5, 36.3)) compared to no

intervention. We evaluated the incremental impact of each

individual component to that four component prevention package

by calculating the percent difference in infections with the four

component package and comparing that to a three component

package that excluded that individual component. For example,

the addition of a UAI component to a package that included the

other three components (ART, PrEP, and HIV testing) prevented

an additional 21% of infections. The UAI component had the

largest incremental effect. The addition of the PrEP component to

a package consisting of the other three components (ART, UAI

reduction, HIV testing) prevented an additional 11.7% of

infections. The UAI component had the greatest incremental

effect (21%) followed by the PrEP component, while the

incremental effects of ART coverage (over baseline levels) and

HIV testing were considerably smaller.

Discussion

In recent years significant progress has been made in HIV

prevention science. Findings from HIV prevention trials have

demonstrated the effectiveness of behavioral and biomedical

interventions such as earlier initiation of ART, PrEP, condoms

and behavioral change. The effectiveness of these interventions

will depend on their availability in communities as well as levels of

uptake and adherence by persons at risk. Each of these

interventions is only partially effective in preventing HIV

infections, and as such, no single intervention is expected to be

sufficient to eliminate the spread of HIV. HIV prevention

packages offer the potential to significantly increase the effective-

ness of any single intervention. HIV prevention packages offer

multiple approaches for reducing risks and possibilities of synergies

between the interventions. Quantification of the effectiveness of

HIV prevention packages is important for developing combina-

tions of interventions and for designing prevention trials of

combination prevention. Unfortunately most research to date has

focused on testing only a single intervention rather than HIV

prevention packages. In this report we used agent-based models to

evaluate the effectiveness of HIV prevention packages among

MSM in South Africa.

We identified a four component HIV prevention package for

MSM in South Africa which could prevent approximately 34% of

infections over five years. We single out this intervention for

discussion because it is a potentially achievable combination

package that we found to be particularly effective. That four

component package consists of 50% ART coverage for eligible

persons who were not already receiving ART at baseline, 50%

PrEP coverage for high risk eligible persons, 15% UAI reduction

and a 50% reduction in those who never test for HIV. The

component with the largest incremental impact on infections was

the 15% UAI reduction which prevented an additional 21% of

infections when added to a package of the other three components.

PrEP coverage had the second largest incremental impact,

followed by HIV testing and additional ART coverage over

baseline levels. We find that even small reductions in UAIs can

have huge effects.

We believe the target goals for coverage of each intervention

component of the four component package outlined above are

achievable in the MSM population in South Africa with concerted

commitments and prioritization for HIV prevention for MSM.

While the target goals for each component of the prevention

package are modest, those goals are at present not being met.

Currently, there is essentially no uptake of PrEP among MSM in

South Africa; most anal intercourse acts are not protected by

condoms; and significant numbers of men in South Africa have

not been tested for HIV. In order to achieve the scale of

Table 2. Incremental contribution from adding components to three prevention packages.

% infections prevented from adding components

to prevention packages (95% CI)1

Package 1 Package 2 Package 3

ART ART & UAI ART & UAI & PREP

Additional component

UAI (15% reduction) 20.3 (19.4, 21.3) — —

PREP (50% of eligible) 9.5 (8.4, 10.6) 10.1 (9.0, 11.2) —

HIV testing increase 2.9 (0.5, 5.4) 3.1 (0.5, 5.7) 4.9 (1.8, 7.9)

Table presents percent infections prevented from adding a component with 95% confidence intervals (CI). All packages include ART coverage of 50% of eligible persons
(from among those not already receiving ART at baseline). Additional components include PREP (50% acceptance of PREP among eligible persons), UAI reduction (15%
reduction), and HIV testing increase (50% reduction of persons who have never received an HIV test).
1The percent infections prevented refers to the percentage decrease in the 5 year cumulative HIV incidence with the HIV package that includes the additional
component into the base package.
doi:10.1371/journal.pone.0112668.t002
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interventions required for public health impact, the coordinated

efforts of government, clinicians, and community are required.

We found that the impact of HIV testing in prevention packages

depended on which other components were in the package, and

specifically, the impact of the HIV testing was magnified when

PrEP was included in the package. Such synergies make sense

because HIV testing is a gateway to access to PrEP. In this report,

we examined the effect of reducing the numbers of persons who

never receive an HIV test by half. The effect of an HIV testing

component in a prevention package would be greater if the never

testers were reduced by more than half or the HIV testing

frequencies were increased among persons that do test.

We found a modest effect of ART coverage relative to the other

components of the package. This finding was initially surprising

because other modeling work has demonstrated that ART can

have a significant impact on HIV incidence. For example, Eaton

and colleagues [34] performed a systematic review of models to

address the question of the impact of ART in a treatment- naı̈ve

population. They found that HIV incidence would be consider-

ably lower after 8 years if large numbers remain on ART

compared to a counterfactual scenario in which there is no ART.

However, Eaton and colleagues emphasize that their result

assumed a treatment-naı̈ve population at baseline, that is, the

Eaton work assumed ‘‘ART was introduced into the population

beginning in 2012 with no treatment provision prior to this which

is in contrast to the rapid scale up of treatment that has actually

occurred prior to 2012 in South Africa’’ [34]. An important

difference of the Eaton work from our work is that we are

evaluating the impact of extending ART coverage in the context of

significant numbers (50% of eligible persons) already receiving

ART at baseline rather than in a treatment-naı̈ve population.

Because we had significant numbers of persons receiving ART at

baseline, the impact of additional coverage of newly eligible

persons is smaller than if the population was treatment- naı̈ve at

baseline. ART eligibility requires an HIV test in the preceding 6

months and a CD4 count less than 350. Furthermore, the numbers

of persons becoming eligible for ART over the 5 year period (who

were not already eligible at baseline) were staggered over the 5

years and were not becoming eligible all at once in a bolus. For

example, in our simulation of the control (no intervention)

scenario, the number of persons receiving ART at baseline

(t = 0) was 55 persons out of 255 infected persons at baseline. In a

simulation of the four component package (50% ART coverage

for eligible persons who were not already receiving ART at

baseline, 50% PrEP coverage for high risk eligible persons, 15%

UAI reduction and a 50% reduction in those who never test for

HIV), the additional numbers of persons who would go on ART at

some time post-baseline during the subsequent 5 years is only 71

persons in addition to the 55 persons already receiving ART at

baseline. Furthermore, more than half of these additional 71

persons going on ART would in fact not begin ART until after 2.5

years post baseline (t.2.5). These numerical results illustrate that

in our simulation work, the incremental ART coverage over

baseline is relatively modest. In our modeling setting, the benefit of

ART is limited by the number of persons with clinical indication

(,350 CD4) who were not receiving ART at baseline and who

had an HIV test. As pointed out by Eaton and colleagues

‘‘comparing results and conclusions across models is challenging

because models have addressed slightly different questions’’ [34].

The impact of ART is driven by the numbers of treatment at

baseline, the treatment threshold, the sufficiency of HIV testing to

identify those living with HIV, and of course the extent to which

treatment is efficacious in reducing infectiousness. If the guideline

for treatment were to shift to CD4 count below 500 or an even

higher threshold, the impact of ART would be greater.

The impact of a PrEP component in a prevention package

depends on the eligibility requirement. In our work, the PrEP

eligibility requirement was either being in a sero-discordant main

partnership or having a very high rate of UAIs (12 per 6 months).

If that threshold for eligibility is lowered to expand the numbers

who are eligible, then the impact of PrEP would be greater than

reported here.

We performed considerable numbers of replications of our

agent-based modeling to account for stochastic variation. The

confidence intervals we report account for the stochastic variation.

However, as in all agent-based models, our model is based on

numerous assumptions and input parameters. Many aspects of our

model such as the networks of sexual partners, distributions of

numbers of partners and baseline frequencies of UAIs relied on

limited data. Furthermore, the regular and main partners did not

change over the 5 years of the simulation. We did however allow

persons to have contacts outside their network of regular partners

(casual partners). We only forecast five years in an attempt to limit

the sensitivity of the results to these model simplifications. More

reliable information about partner formation and dissolution

among the MSM population on South Africa is important to

further inform models of HIV prevention. We focused on the

MSM population and did not attempt to model the dynamics of

Table 3. Contribution of four components of an HIV prevention package to infections prevented.

Prevention package component percent infections prevented due

to addition of component (95% CI)1

ART (50% coverage of eligible persons) 3.4 (2.2, 4.5)

PREP (50% coverage of eligible persons) 11.7 (8.4, 15.0)

UAI (15% reduction) 21.0 (20.0, 22.0)

HIV testing increase 4.9 (1.8, 7.9)

% prevented with all 4 components2 33.9 (31.5, 36.3)

Components include ART (50% ART coverage of eligible persons from among those not already receiving ART at baseline); PREP (50% acceptance of PREP among
eligible persons); UAI reduction (15% reduction), and HIV testing increase (50% reduction of persons who never have an HIV test).
1The percent infections prevented due to component i refers to the percentage decrease in the 5 year cumulative HIV incidence with the HIV package that includes all
four components compared to the HIV prevention package that includes three of the four components leaving out component i.
2The total percent infections prevented refers to the percentage decrease in the 5 year cumulative incidence with the 4 component HIV package compared to no
prevention interventions (none of the components). The total percent is not the column sum of the individual components.
doi:10.1371/journal.pone.0112668.t003
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transmission within and across other risk groups such as

intravenous drug users. We also did not model variable

infectiousness over time. We did not account for new incoming

MSM to the population although that simplification may have a

small effect over the five years the simulations were run. We

recognize that caution should be exercised when interpreting the

findings from agent-based models that rely on many simplifica-

tions and assumptions. As such, we focused on presenting the

results in terms of relative effects of a prevention package (e.g., the

percent of infections averted with a prevention package compared

to no intervention) because relative effects may be less sensitive to

model assumptions than the absolute cumulative number of

infections. Nevertheless, caution should still be exercised as with all

modeling results. In spite of these limitations, we believe agent-

based modeling offers a useful tool for approximating the

effectiveness of HIV prevention packages when direct empirical

data from comparative studies of combination HIV prevention is

unavailable.

Further research on understanding associations within individ-

uals with regard to uptake and adherence levels across the various

components of a prevention package will help to refine our

models. For example, identification of subgroups that are resistant

to accepting or adhering to any intervention would be important

for modeling and also for helping to design packages to overcome

barriers to acceptance of HIV prevention.

The HIV epidemic among MSM in South Africa continues to

grow. Obtaining sufficiently high levels of coverage, acceptance

and adherence with any single biomedical or behavioral interven-

tion is a major obstacle to controlling epidemic growth.

Combination HIV prevention offers the possibility of preventing

significant numbers of infections with sufficient levels of coverage,

acceptance and adherence; these levels are achievable with the

concerted efforts of multiple stakeholders. In the context of a

vigorous debate about the roles of behavioral and biomedical

interventions, our results are reconciling in that we demonstrate

that traditional HIV prevention activities, such as condom

promotion and HIV testing programs, still play vital roles in the

context of biomedical prevention. HIV prevention packages that

include both behavioral and biomedical components can, in

combination, prevent significant numbers of infections among

MSM in South Africa.

Supporting Information

Supporting Information S1

(DOCX)

Acknowledgments

The authors acknowledge Sharoda Dasgupta, Alex De Voux, and Kathryn

Risher for their work in researching inputs for the model and Ms Zama

Kose and Mr Witness Chirinda who coordinated some of the study

activities.

Author Contributions

Conceived and designed the experiments: RB DB SB LB NPM CB PS.

Performed the experiments: RB DB. Analyzed the data: RB DB SB LB

NPM CB PS. Contributed reagents/materials/analysis tools: SB LB NPM

CB PS. Wrote the paper: RB DB SB CB PS.

References

1. Bekker LG, Beyrer C, Quinn TC (2012) Behavioral and biomedical combination
strategies for HIV prevention. Cold Spring Harbor Perspectives in Medicine

2(8): 1–23, DOI: 10.1101/cshperspect.a007435.

2. Cohen J (2005) HIV/AIDS: Prevention cocktails: Combining tools to stop HIV’s

spread. Science 309: 1002–1005.

3. Coates T, Richter L, Caceres C (2008) Behavioral strategies to reduce HIV

transmission: How to make them work better. Lancet 372: 669–684.

4. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, et al. (2011)

Prevention of HIV-1 infection with early antiretroviral therapy, New England
Journal of Medicine 365:(6), 493–505.

5. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010) Pre-

exposure chemoprophylaxis for HIV prevention in men who have sex with men.

New England Journal of Medicine 363(27): 2587–2599.

6. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, et al. (2007) Male
circumcision for HIV prevention in men in Rakai, Uganda: a randomized trial.

Lancet 369: 657–666.

7. Abdool Karim AQ, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al.

(2010) Effectiveness and Safety of Tenofovir Gel, an antiretroviral microbicide
for the prevention of HIV infection in women. Science 329: 1168–1174.

8. Lagakos SW, Gable AR (2008) Challenges to HIV prevention–seeking effective
measures in the absence of a vaccine. New England Journal of Medicine 358(15):

1543–1545.

9. Institute of Medicine (2008) Methodological challenges in biomedical HIV

prevention trials. The National Academies Press: Washington DC.

10. El-Sadr WM, Serwadda DM, Sisa N, Cohen MS (2013) HIV prevention: More
challenges ahead. Journal of Acquired Immune Deficiency Syndromes 63:

S115–S116.

11. Beyrer C, Baral SD, van Griensven F, Goodreau SM, Chariyalertsak S, et al.

(2012) Global epidemiology of HIV infection in men who have sex with men.
The Lancet 380(9839): 367–377.

12. Baral SD, Grosso A, Holland C, Papworth E (2014) The epidemiology of HIV
among men who have sex with men in countries with generalized HIV

epidemics, Curr Opin HIV AIDS 9(2): 156–67.

13. Sullivan PS, Carballo-Diéguez A, Coates T, Goodreau SM, McGowan I, et al.

(2012) Successes and challenges of HIV prevention in men who have sex with
men, The Lancet 380(9839): 388–399.

14. Goodreau SM, Carnegie NB, Vittinghoff E, Lama JR, Sanchez J, et al. (2012)

What drives the US and Peruvian HIV epidemics in men who have sex with

men (MSM)? PLoS One 7(11): e50522 DOI: 10.1371/journal.pone.0050522.

15. Gray RT, Prestage GP, Down I, Ghaus MH, Hoare A, et al. (2013) Increased
HIV testing will modestly reduce HIV incidence among gay men in NSW an

would be acceptable if HIV testing becomes convenient. PLOS One DOI:

10.1371/journal.pone.0055449.

16. Goodreau SM, Carnegie NB, Vittinghoff E, Lama JR, Fuchs JD, et al. (2014)
Can Male Circumcision Have an Impact on the HIV Epidemic in Men Who

Have Sex with Men? PLoS ONE 9(7): e102960. doi: 10.1371/journal.pone.

0102960.

17. Lou J, Blevins M, Ruan Y, Vermund S, Tang S, et al. (2014) Modeling the

impact of HIV incidence of combination prevention strategies among men who

have sex with men in Beijing, China. PLOS One DOI: 10.1371/journal.pone.

0090985.

18. Abbas U, Glaubius R, Mubayi A, Hood G, Mellors J (2013) Antiretroviral

therapy and pre-exposure prophylaxis: combined impact on HIV-1 transmission

and drug resistance in South Africa. J Infect Dis 208: 224–34.

19. Bonabeau E (2002) Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of Sciences

of the United States of America 99 Suppl 3: 7280–7287.

20. Epstein JM (2006) Agent-based computational models and generative social

science. In: Epstein J. Generative Social Science: Studies in Agent-Based

Computational Modeling. Princeton University Press, pp 4–46.

21. Baral S, Burrell E, Scheibe A, Brown B, Beyrer C, et al. (2011) HIV risk and

associations of HIV infection among men who have sex with men in peri-urban

Cape Town, South Africa. BMC Public health 11: 766, DOI: 10.1186/1471-

2458-11-766.

22. Goodreau SM, Goicochea LP, Sanchez J (2005) Sexual role and transmission of

HIV Type 1 among men who have sex with men, in Peru. Journal of Infectious
Diseases 191(Supplement 1): S147–S158.

23. Baggaley RF, White RG, Boily MC (2010) HIV transmission risk through anal

intercourse: systematic review, meta-analysis and implications for HIV

prevention International Journal of Epidemiology 39: 1048–1063.

24. Boily MC, Baggaley RF, Wang L, Masse B, White RG, et al. (2009)

Heterosexual risk of HIV-1 infection per sexual act: systematic review and

meta-analysis of observational studies. Lancet Infect Dis 9: 118–29.

25. Vittinghoff E, Douglas J, Judson F, McKirnan D, MacQueen K, et al. (1999) Per

contact risk of HIV transmission between male sexual partner. American Journal

of Epidemiology 150: 306–11.

26. DeGruttola V, Lange N, Dafni U (1991). Modeling the progression of HIV

infection. Journal of the American Statistical Association 86: 569–77.

27. Boren D, Sullivan P, Beyrer C, Baral S, Bekker LG, et al. (2014) Stochastic

variation in network epidemic models: implications for the design of community

level HIV prevention trials. Statistics in Medicine DOI:10002/sim6193
(published online ahead of print).

Modeling Combination HIV Prevention among MSM in South Africa

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e112668



28. Anderson PL, Glidden D, Liu A, Buchbinder S, Lama J, et al. (2012)

Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in

men who have sex with men. Sci Transl Med 4(151): 151ra125 DOI: 10.1126/

scitranslmed.3004006.

29. Koblin BA, the Explore Study Team (2004) Effects of a behavioral intervention

to reduce acquisition of HIV infection among men who have sex with men: the

EXPLORE randomized controlled study. The Lancet 3 364(9428): 41–50.

30. R Development Core Team. The R Project for Statistical computing. Available

http://www.r-project.org. Accessed 2014 May 7.

31. Tierney L, Rossini AJ, Na LI (2009) Snow: A Parallel Computing Framework for

the R System International Journal of Parallel Programming 37(1): 78–90.
32. McCullagh P, Nelder J (1989) Generalized Linear Models, second edition,

Chapman and Hall/CRC Monographs on Statistics and Applied Probability.

33. Marx BD (1996) Iteratively reweighted partial least squares estimation for
generalized linear regression. Technometrics 38(4): 374–381.

34. Eaton JW, Johnson LFF, Salomon JA, Barnighausen T, Bendavid E, et al. (2012)
HIV treatment as prevention: systematic comparison of mathematical models of

the potential impact of antiretroviral therapy on HIV incidence in South Africa.

PLoS Med 9(7): e1001245:doi:10.1371/journal.pmed.1001245.

Modeling Combination HIV Prevention among MSM in South Africa

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112668

http://www.r-project.org

