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Abstract
Purpose  We aimed to provide clinicians with introductory guidance for interpreting and assessing confidence in on Network 
meta-analysis (NMA) results.
Methods  We reviewed current literature on NMA and summarized key points.
Results  Network meta-analysis (NMA) is a statistical method for comparing the efficacy of three or more interventions 
simultaneously in a single analysis by synthesizing both direct and indirect evidence across a network of randomized clini-
cal trials. It has become increasingly popular in healthcare, since direct evidence (head-to-head randomized clinical trials) 
are not always available. NMA methods are categorized as either Bayesian or frequentist, and while the two mostly provide 
similar results, the two approaches are theoretically different and require different interpretations of the results.
Conclusions  We recommend a careful approach to interpreting NMA results and the validity of an NMA depends on its 
underlying statistical assumptions and the quality of the evidence used in the NMA.

Keywords  Network meta-analysis · Indirect treatment comparisons · Multiple treatment comparisons · Credible intervals · 
Confidence intervals

Introduction

The highest level of evidence for the comparative effective-
ness of different clinical interventions generally comes from 
systematic reviews of randomized controlled trials (RCTs) 
[1–3]. The most conventional and widely used method for 
synthesizing the results of different RCTs is pairwise meta-
analysis [4, 5]. While this statistical approach is useful, it is 
limited as it can only compare two interventions at a time, 
and only head-to-head RCTs that involve the comparison of 
interest [6].

Network meta-analysis (NMA) is a statistical method 
that extends the principles of pairwise meta-analysis 
to the evaluation of multiple interventions in a single 
process, which is achieved by combining both direct 

and indirect evidence [4, 5, 7, 8]. Direct evidence rep-
resents evidence obtained from head-to-head RCTs [4]. 
For example, in an RCT comparing interventions A and 
B, the estimate of relative effectiveness of A versus B 
counts as direct evidence. Indirect evidence represents 
evidence obtained from one or more common compara-
tors; for example, in the absence of RCTs that evaluate 
interventions A and B directly, interventions A and B can 
be indirectly compared if both have been compared to a 
common intervention C in existing trials [4]. The combi-
nation of direct and indirect evidence is at the core of a 
network meta-analysis [5, 7, 8].

Network meta-analysis is a statistical method for syn-
thesizing direct and indirect evidence from a network of 
clinical trials to concurrently compare multiple clinical 
interventions in a single process [4, 5, 7–9]. Synony-
mous names of NMA include multiple treatment meta-
analysis, indirect treatment comparisons, and mixed treat-
ment comparisons [1, 10]. NMA has become attractive 
among clinicians and health-care researchers in recent 
years because of its ability to evaluate the comparative 
clinical effectiveness of different clinical interventions 
based on clinical evidence through a robust quantitative 
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framework [3, 8, 11]. However, due to its complex struc-
ture and methodological requirements, a careful approach 
is required when interpreting NMA results, to avoid draw-
ing biased or incorrect conclusions [3, 12]. This article 
aims to provide clinicians with introductory guidance for 
interpreting and assessing confidence in NMA results.

Interpretation of NMA results

NMA has matured over the recent years and NMA mod-
els are available for different types of individual-level and 
trial-level data and summary effect measures (e.g., odds 
ratio, risk difference) and are being implemented in both 
frequentist and Bayesian frameworks [2, 13, 14]. Typi-
cally, interventions are displayed in the form of a network, 
called a network diagram. Statistical approaches to NMA 
are broadly classified as frequentist and Bayesian frame-
works [1, 2, 15]. The Bayesian framework allows for a 
more logical analysis of indirect and multiple compari-
sons, which are essential for an NMA; therefore, 60–70% 
of NMA studies have adopted a Bayesian approach [16, 
17]. The differences between the two methodological 
frameworks are further outlined below. While these two 
methodological frameworks have different fundamental 
concepts for approaching the NMA model, they produce 
almost identical results if the sample size is large [17, 18]. 
Table 1 explains the common terms used in an NMA with 
plain words as much as possible, to help readers navigate 
through the following paragraphs [1–5, 8, 11, 13, 17–28].

The Bayesian method combines the known infor-
mation obtained in the past (prior information) with 
the present data (likelihood) to calculate the posterior 
(“post” data observation) probability where the research 
hypothesis holds [29]. Therefore, the Bayesian method 
takes a probabilistic approach that allows us to calculate 
the probability that the research hypothesis holds true, 
the probability that the true effect size falls within a 
range—the 95% credible interval (CrI), and the rank-
ing probabilities of interventions [8, 29, 30]. Moreo-
ver, these probabilities can change depending on prior 
information [30]. The frequentist method calculates the 
P value or the 95% confidence interval (CI) for reject-
ing the research hypothesis based solely on present data 
[7, 8, 17]. Table 2 also highlights differences and simi-
larities between frequentist and Bayesian approaches for 
NMA [4, 5, 15, 17, 18, 26, 31].

Illustration of interpretation of NMA results 
through a recent publication in the Journal 
of Anesthesia

The Journal of Anesthesia has recently published several 
NMAs [32–36]. We illustrate the interpretation of NMA 
results through published studies in the journal. One NMA 
examined the comparative effectiveness of interventions 
for managing postoperative catheter-related bladder dis-
comfort (CRBD) [33]. A Bayesian Table 3 NMA includ-
ing 29 trials with 2841 participants was performed for 
this study. A total of 14 interventions including placebo 
were included in the evidence network. The effect sizes 
of interest were the odds ratio (OR) of CRBD at 0 and 
1 h after surgery. The results of a Bayesian NMA are usu-
ally presented as estimates of relative effect sizes accom-
panied by 95% Crl. Relative effect sizes are often ratios 
(e.g., OR, risk ratio, hazard ratio), and in such cases if the 
credible interval contains 1, then the comparators are not 
considered as different in the effect size. If the credible 
interval lies entirely above or below 1, then the compara-
tors are considered as different in the effect size, and the 
direction (positive or negative) depends on the nature of 
the effect size associated with the outcome of interest [5, 
37]. For example, the estimated OR of CRBD at 0 h after 
surgery for ketamine versus placebo is 0.17 with a 95% 
CrI of (0.04, 0.82), which means the odds of CRBD at 0 h 
after surgery of ketamine is significantly lower than that 
of placebo. The 95% CrI also implies the true odds ratio of 
CRBD at 0 h after survey of ketamine versus placebo has a 
95% probability of being between 0.04 and 0.82. The esti-
mated OR of CRBD at 0 h after surgery of tramadol versus 
placebo is 0.26 with a 95% CrI of (0.04, 1.73). Since this 
95% CrI contains 1, OR of CRBD at 0 h after surgery of 
tramadol versus placebo has a 95% probability of not being 
different. A 95% CI under the frequentist approach does 
not have the same intuitive and practical interpretation, but 
can only conclude whether the two interventions are statis-
tically different in the effect size at 5% level of significance 
[37, 38]. A significance level of 5% indicates that there is a 
5% risk of concluding that there is a difference when there 
is actually no difference. That is, if a result is statistically 
significant, it means it is unlikely to have occurred solely 
by chance or random factors.

We illustrate the interpretation of results of a frequentist 
NMA through a study that examined the effects of individu-
alized positive end-expiratory pressure (PEEP) combined 
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Table 1   Network meta-analysis concepts and definitions

Framework Concept/definition

Indirect treatment comparison (ITC) Bayesian and frequentist A comparison of the relative effectiveness across different 
clinical interventions using data from separate non-head-
to-head RCTs

Fixed effects model (FE) Bayesian and frequentist The fixed-effect model assumes that there is a true effect 
size that underlies all the RCTs for each comparison 
in the network, and that all differences in the observed 
effect sizes are due to sampling error

Random effects model (FE) Bayesian and frequentist The random-effects model assumes that the true effect size 
can differ from trial to trial

Likelihood function Frequentist The likelihood function characterizes the joint probability 
of the observed data as a function of the parameters of 
the statistical model

P value Frequentist The P value is the probability of finding a result that 
is more extreme than the observed result if the null 
hypothesis was true. P values are used to help deter-
mine whether to reject the null hypothesis. The smaller 
the P value, the more likely will the null hypothesis be 
rejected. If the P value is smaller than a pre-specified 
significance level (usually 5%), then the null hypothesis 
is rejected at this significance level

Confidence interval Frequentist A confidence interval provides an estimated range of 
values that is likely to include an unknown popula-
tion parameter; it is calculated from the observed data. 
The confidence level of a confidence interval is the prob-
ability that the interval produced by the method used to 
calculate the confidence interval includes the true value 
of the parameter; it is usually 95%

Prior distribution Bayesian A prior distribution, or prior, of an unknown parameter, 
usually the mean effect size, is the probability distribu-
tion that represents one’s beliefs about this parameter 
before considering any evidence or observed data

Posterior distribution Bayesian The posterior distribution encapsulates all information 
about an unknown parameter, usually effect sizes, after 
evidence and observed data are considered. It combines 
information from the prior distribution and the likelihood 
function

Posterior summaries Bayesian Summary statistics of a posterior distribution; often the 
mean, median, maximum, minimum, and standard devia-
tion are reported

Credible intervals Bayesian A credible interval is an interval within which an unknown 
parameter value, usually an effect size, falls with a 
specific probability. It is an interval within a posterior 
distribution

Ranking probabilities; probability of best treatment; 
surface under the cumulative ranking area (SUCRA)

Bayesian and Frequentist Ranking probability is the probability that an intervention 
is at a specific rank (first, second, etc.) when compared 
with the other interventions based on a statistic (e.g., 
mean odds, mean risk, median survival probability). 
The probability of best treatment is the probability that 
an intervention is ranked first. The surface under the 
cumulative ranking curve (SUCRA) is a single number 
that summarizes the overall ranking of each intervention. 
Ranking probabilities and SUCRA range from 0 to 100%

Predictive distributions Bayesian The predictive distribution is the distribution of possible 
unobserved (new/ forecasted) values given the observed 
values

Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC)

Frequentist The AIC and the BIC are model fit assessments that 
attempt to explicitly balance model complexity with fit 
to the observed data. The BIC tends to penalize complex 
models more compared to the AIC
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Table 1   (continued)

Framework Concept/definition

Deviance information criterion (DIC) Bayesian The DIC compares the relative fit of a set of Bayesian 
models. Like the AIC and the BIC, it is a model selec-
tion method which tries to explicitly balance model 
complexity with fit to the data

Network geometry Bayesian and Frequentist The geometry of the network, usually presented as a 
network plot, consists of a number of nodes (i.e., inter-
ventions), a number of edges (i.e., direct comparison 
evidence), and number of included studies (thickness of 
the edges)

Transitivity, similarity or exchangeability Bayesian and Frequentist The selection of RCTs to formulate the NMA should be 
based on rigorous criteria and therefore the included 
RCTs should be similar such that there are no system-
atic differences between them other than the interven-
tions. That is, the trials in comparison do not differ with 
respect to the distribution of effect modifiers

Heterogeneity Bayesian and Frequentist The variation in trial outcomes between RCTs within the 
same comparison

Consistency Bayesian and Frequentist The degree of agreement between estimates of effect sizes 
from direct and indirect evidence

Convergence Bayesian Samples from the fitted posterior distributions tend to 
the theoretical posterior distributions as the number of 
samples becomes adequately large

Effect modifiers Bayesian and Frequentist Characteristics that impact the relative clinical interven-
tion effects

Meta-regression Bayesian and Frequentist A regression model that models trial-level or arm-level 
effect sizes with trial-level covariates. It is often used to 
reduce heterogeneity and inconsistency between RCTs in 
the network

I2 Frequentist The I2 statistic is the percentage of variation across RCTs 
that is due to unexplained heterogeneity rather than 
randomness

T2 Frequentist T2 is the between-studies variance (the variance of the true 
effect size parameters across all RCTs) parametrized in 
the random effects model

τ2 Bayesian τ2 is the precision parameter and also the inverse of the 
between-trial variance parameter in the random effects 
model. The lower the between-trial variance, the higher 
is the precision

Table 2   Differences and similarities between frequentist and Bayesian approaches for network meta-analysis

Frequentist framework Bayesian framework

Prior information Prior information is informally introduced often in the 
form of supplementary text and is underemphasized

Incorporated within user-specified prior distributions

Basic interpretation How likely is it to observe the data given a specific param-
eter value?

How likely is a specific parameter value given the observed 
data?

Presentation of results P values, confidence intervals, ranking probabilities Posterior distributions, credible intervals, ranking prob-
abilities

Caveat P values are often misinterpreted as probability that the 
alternative hypothesis is true. Confidence intervals are 
often misinterpreted as the probability that the true effect 
size lies in a particular interval

Priors may be difficult to choose
Readers often uncritically overemphasize the subjective 

component induced by the prior and therefore undermine 
the quality of the analysis. More complex to conduct

Additional features Model fit and quality assessed with Akaike information 
criteria or other similar criteria

Model fit and quality assessed with deviance information 
criterion
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with  recruitment maneuver (RM) on  intraoperative oxy-
genation during abdominal surgery [32]. A frequentist NMA 
including 15 trials with 3634 participants was performed for 
this study. A total of eight interventions were included in the 
evidence network. The main effect size of interest was the 
mean difference in oxygenation index. The results of a fre-
quentist NMA are usually presented as estimates of absolute 
or relative effect sizes accompanied by 95% Cl. If the Cl does 
not contain the equalization threshold (e.g., 0 for difference-
type effect sizes, 1 for ratio-type effect sizes), the compara-
tors are statistically different in the effect size, and the direc-
tion (positive or negative) depends on the nature of the effect 
size associated with the outcome of interest. For example, 
the estimated mean difference in oxygenation index between 
interventions is 145.0 with 95% Cl (87.0, 202.9), which means 
the oxygenation index of Individualized PEEP + RM is 145.0 
higher than that of High PEEP at a 5% significance level. The 
difference is statistically significantly as the lower edge of 
95% CI (i.e., 87.0) is greater than 0.

It is worthwhile to discuss the interpretation of ranking 
probabilities such as surface under the cumulative ranking 
area (SUCRA), since these often tend to be misinterpreted 
in the literature [27, 28, 39]. Table 1 also provides an expla-
nation of these terms. When interpreting these ranking sta-
tistics, one should also consider (1) the quality of evidence 
used in the NMA; (2) confidence in NMA results (further 
described in the next session); (3) the magnitude of differ-
ences in intervention effects; and (4) random chance that 
may explain any apparent differences between intervention 
rankings [3, 26, 27, 40]. That is, clinicians and decision 
makers should not assume an intervention as being “best” 

simply because it is ranked first, unless the aforementioned 
aspects of the NMA are fully considered.

Confidence in NMA results

NMA inherits all challenges present in a conventional pair-
wise meta-analysis, but with magnified complexity due to 
the large number of comparisons within the evidence net-
work [37]. To cope with these challenges, NMA adopts a set 
of assumptions that should be satisfied. The assumptions are 
(1) similarity or exchangeability, (2) homogeneity and (3) 
transitivity or consistency [8, 22, 23]. Definitions and con-
cepts of these assumptions are described in detail in Table 1. 
Typically, if the trial population, trial design and outcome 
measures are similar for trials that compose the NMA, and 
that the trials are comparable on effect modifiers (Table 1), 
these assumptions are adequately satisfied [22, 23]. If one 
or more assumptions are not satisfied, the NMA becomes 
inherently biased and in turn yields biased and inaccurate 
results [41]. To prevent this, remedial measures and adjust-
ments should be applied if appropriate. Methods for assess-
ing NMA assumptions and remedial measures have been 
developed and widely adopted over the past few years [22, 
23]. In addition to these more statistical assumptions, the 
characteristics of trials in the evidence network that affect 
the certainty of evidence should be evaluated [42]. These 
characteristics include risk of bias and publication bias and 
are often part of the systematic review. These biases usually 
increase the level of uncertainty of individual trial evidence 
and subsequently the synthesized evidence in an NMA [3].

Table 3   Available software and statistical packages for network meta-analysis as of December 13, 2021

Statistical package Framework Pros Cons URL

R Bayesian and frequentist Great flexibility, high-quality 
customizable graphs, free 
access

Limited user friendliness, 
steep learning curve, requir-
ing extensive programming 
knowledge

https://​www.​rproj​ect.​org

WinBUGS/
OPENBUGS/
JAGS

Bayesian Great flexibility, free access, 
accessible through other 
software (e.g., R)

Limited user friendliness, 
steep learning curve, requir-
ing extensive programming 
knowledge, limited graphical 
functionality

https://​www.​mrc-​bsu.​cam.​ac.​uk/​
softw​are/​bugs/​the-​bugs-​proje​
ct-​winbu​gs

https://​www.​mrc-​bsu.​cam.​ac.​uk/​
softw​are/​bugs/​openb​ugs

https://​mcmc-​jags.​sourc​eforge.​
io

SAS Bayesian and Frequentist Great flexibility Limited user friendliness, 
requiring fundamental pro-
gramming knowledge, cost

https://​www.​sas.​com

Stata Bayesian and Frequentist High-quality graphs, variety 
of analyses available

Limited user friendliness, cost https://​www.​stata.​com

ADDIS/GeMTC Bayesian User friendliness, embeds 
well-developed methods and 
techniques that are ready 
to use

Limited modeling capabilities, 
limited graphical options

https://​gemtc.​drugis.​org

https://www.rproject.org
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs
https://mcmc-jags.sourceforge.io
https://mcmc-jags.sourceforge.io
https://www.sas.com
https://www.stata.com
https://gemtc.drugis.org


529Journal of Anesthesia (2022) 36:524–531	

1 3

In summary, violation of the similarity, homogeneity and 
consistency assumptions, as well as the presence of any risk 
of bias and publication bias, affect the overall confidence in 
the results of an NMA. Therefore, when reviewing a pub-
lished NMA, one should examine if these issues were identi-
fied and how they were dealt with and base one’s confidence 
in the NMA on these factors. GRADE (Grading of Recom-
mendations, Assessment, Development and Evaluations) is 
a transparent framework for developing and presenting sum-
maries of evidence [42, 43]. It is the most widely adopted 
tool for grading the quality of evidence with over 100 
organizations worldwide officially endorsing GRADE [42]. 
GRADE provides a tool to assess the aforementioned statis-
tical assumptions and evidence characteristics for any NMA 
[42–44]. We recommend reviewing the GRADE assessment 
of a published NMA if it is available. Other tools to assess 
the quality of an NMA include checklists published by the 
National Institute for Health and Care Excellence (NICE), 
the Professional Society for Health Economics and Out-
comes Research (ISPOR), PRISMA and Medical Decision 
Making (MDM) [3, 26, 40, 45].

Using individual patient data in a network 
meta‑analysis

Nowadays, as data become easier to collect and assess, we 
enter an era of “big data” with big data analysis emerging 
as a new analysis technique in clinical research [46]. We 
can utilize big data to improve precision of an NMA. An 
NMA can turn into a big data analysis through incorporat-
ing individual patient data (IPD) into its evidence synthe-
sis process [47, 48]. There are benefits of conducting an 
NMA using IPD over a usual NMA using aggregated trial-
level data. If there is interest in patient-specific covariates, 
either to explain between-study inconsistency or to explore 
intervention effects in subgroups of patients, using IPD can 
have much more statistical power than using aggregated 
trial-level covariates [48]. Furthermore, several studies 
have shown that the use of IPD in NMA will consider-
ably improve the precision of estimates of intervention 
effects and regression coefficients in most scenarios [49, 
50]. However, IPD may not provide significant improve-
ment to NMAs that have large and dense intervention net-
works, since the amount of data and evidence are already 
large and using IPD on top of these will not much improve 
the precision in the intervention effect estimates [47]. In 
most NMAs, since IPD may not be available from all eli-
gible RCTs, techniques for combining IPD and aggregated 
trial-level data into the NMA have been developed Fcon-
sider[47, 50].

Conclusions

Network meta-analysis has become increasingly popular 
for synthesizing multiple sources of clinical evidence. It 
provides the ability to compare multiple clinical interven-
tions where head-to-head trials are not always available by 
combining direct and indirect evidence from a network of 
clinical trials. By doing so, it produces less biased and more 
precise intervention efficacy estimates. While Bayesian 
and frequentist methods often yield similar results, the two 
approaches are fundamentally different in theoretical prin-
ciples and more importantly require different interpretation 
of the results. The major limitation of NMA is that NMA 
results hinge on the inherent statistical assumptions of the 
NMA and the quality of the evidence used in the NMA. The 
inherent statistical assumptions are strict and often difficult 
to satisfy, and the quality of evidence used in the NMA are 
often difficult to uphold. Multiple requirements need to be 
met for the results to be sound and useful. Therefore, we 
recommend a thorough, careful, and conservative approach 
to interpreting and evaluating the results of an NMA. We 
also recommend using big data analysis techniques to inte-
grate IPD into the NMA to improve the overall quality and 
precision of the NMA.
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