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C
ytokines play a prominent role in mediating the
inflammatory response related to injury, infec-
tion, and physiological processes from repro-
duction (1) to suntanning (2). Their impact on

the target tissue can be destructive or protective depend-
ing on local concentrations, the spectrum of cytokine
responses, and accompanying contact-mediated cellular
inflammatory processes (3,4). In this issue of Diabetes,
Ortis et al. (5) examine the transcriptional response of
isolated primary �-cells after 6 and 24 h to mixtures of
interleukin (IL)-1� and interferon (IFN)-� or tumor necro-
sis factor (TNF)-� and IFN-� under conditions culminating
in extensive apoptosis by 72 h. None of these cytokines
individually cause apoptosis, and the objective was to
define a transcriptional inflammatory signature that links
their combination to oxidative stress, endoplasmic reticu-
lum (ER) stress, and cell death.

Upwards of 20% of the �-cell transcriptome is altered by
these cytokines, resulting in deterioration in the function
of the cell and a reversal of the �-cell phenotype toward a
dedifferentiated state. The authors observe downregula-
tion of Krebs cycle enzyme transcripts that could impact
oxidative phosphorylation and stimulus secretion cou-
pling, downregulation of transcription factors involved in
�-cell lineage determination and insulin gene transcrip-
tion, and downregulation of incretin and hormone recep-
tor transcripts that modulate �-cell mass in response to
diet and pregnancy. By contrast, the production of cyto-
kines and chemokines by �-cells through a synergistic
effect of TNF� and interferon signaling on IRF-7 seems to
tell a different story. It fits with the authors hypothesis of
a dialogue among the cellular elements affected by viral
infection or immune attack that may act to amplify or
squelch the local inflammatory response (6). Are we
witnessing the death knell of a cell destined to undergo
apoptosis or an act of self-preservation through energy
conservation and a call for help?

In a parallel experiment the authors evaluated alterna-
tive splicing of pancreatic �-cell transcripts using Af-
fymetrix Rat Exon 1.0 ST microarrays. Some 3,000 genes,
one fifth of the rat �-cell transcriptome, showed alterna-
tive splicing. More remarkably, around 300 of these exhib-
ited changes in the relative expression of splice variants in
response to cytokines. These included inducible nitric

oxide synthase (iNOS) (� exon 8), argininosuccinate syn-
thetase (� exon 1), and NF�B2 (� exon 22), three of the
primary downstream targets of IL-1� and TNF that impact
biochemical pathways leading to nitric oxide (NO) produc-
tion. Previous studies have documented four common
splice variants of human iNOS that show differential
tissue-specific expression and are inducible by cytokines
and lipopolysaccharide (7). Because homodimerization of
iNOS is essential for enzyme activity, heterodimer forma-
tion between the alternatively spliced variants may regu-
late iNOS kinetics. The relative and absolute changes in
the splice variants of the three target genes in �-cells were
extensive, dynamic, and differentially regulated by the
cytokine cocktail (see Fig. 7 in the accompanying article).
By contrast, changes in a panel of 20 gene transcripts
related to the splicing machinery were modest, arguing
against global dysregulation of splicing and suggesting the
existence of yet-to-be-identified regulatory elements.

The ability of cytokines to induce alternate splicing in
purified �-cells has broader ramifications for the develop-
ment of autoimmunity in type 1 diabetes. The islet autoan-
tigen (IA)-2, a transmembrane protein of insulin secretory
granule, is transcribed and translated as a shorter � exon
13 variant (8). This results in a 73aa in-frame deletion
including its transmembrane domain and subsequent se-
cretion of IA-2. In the thymus only the � exon 13 form is
found (9), which correlates with lack of immune tolerance
to T-cell and B-cell epitopes encoded by exon 13 in type 1
diabetes (10). The islet autoantigen islet-specific glu-
cose-6-phosphatase–related protein (IGRP) (11) is an-
other example for which different splice variants are
expressed in islet and the thymus (12). Five of seven
IGRP splice variants disrupt the reading frame and
likely alter the topology of this nine-transmembrane ER
protein. Alternate splicing of IGRP might also give rise
to enhanced self-antigen presentation of MHC class I
epitopes through immunoribosome-based surveillance
(13). A survey of 45 autoantigens associated with other
autoimmune disorders showed that all were subject to
alternative splicing compared with 42% in a reference set
(14) and that 80%, like IGRP (15), show noncanonical
splicing compared with 1% in the nonantigen population.

Alternative splicing, in addition to regulating the
�-cell proteome, may also play a critical role in the
maintenance of peripheral immune tolerance. Periph-
eral tolerance depends upon the expression of tissue-
specific antigens in secondary lymphoid tissues in a
manner that triggers functional deletion of autoreactive
T-cells. The autoimmune regulator (AIRE) protein is the
best known transcriptional regulator of this process
(16); however, a second, independent regulator Deaf1
was recently identified (17). A Deaf1 splice variant acts
as a dominant inhibitor of the wild-type protein and is
upregulated in the pancreatic-draining lymph nodes of
pre-diabetic NOD mice and subjects with type 1 diabe-
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tes. Yet another class of splice variant associated with
autoimmunity is that involved in immune recognition
and regulation of T-cell viability including PD-1 (18),
FAS (19), CD45 (20), and the T-cell receptor � chain
(21).

The specific experimental model used here may be of
greater relevance to the cytokine storm that accompanies
acute rejection of islet transplants (22) than the slow and
specific attrition of �-cells in type 1 diabetes. Nevertheless,
many of the same cytokines are involved including the
primary assailants produced by T-cells, macrophages, and
antigen-presenting cells. The downstream network of
cytokines and chemokines produced by the �-cells is poten-
tially the same, but the islet in autoimmunity is also likely
to encounter protective cytokines arising from regulatory
T-cells in the lesion and other counterregulation from
within the islet and beyond. Cytokine-mediated alternative
splicing now clearly emerges as a potential regulatory
mechanism and one that can operative on different time
scales depending on mRNA and protein stability. It could
certainly amplify the autoimmune response through gen-
eration of neoantigens and epitope spreading in existing
�-cell immune targets. It is worth considering that similar
processes might be at work also in response to inflamma-
tion triggered by infection, gluco-lipotoxicity (23), or a
�-cell toxin like streptozotocin, which when used in low
doses induces an immune-like destruction of �-cells (24).

ACKNOWLEDGMENTS

No potential conflicts of interest relevant to this article
were reported.

REFERENCES
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