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1. Summary
Striated muscle tissues undergo adaptive remodelling in response to mechanical

load. This process involves the myofilament titin and, specifically, its kinase

domain (TK; titin kinase) that translates mechanical signals into regulatory path-

ways of gene expression in the myofibril. TK mechanosensing appears mediated

by a C-terminal regulatory tail (CRD) that sterically inhibits its active site. Alleg-

edly, stretch-induced unfolding of this tail during muscle function releases TK

inhibition and leads to its catalytic activation. However, the cellular pathway of

TK is poorly understood and substrates proposed to date remain controversial.

TK’s best-established substrate is Tcap, a small structural protein of the Z-disc

believed to link TK to myofibrillogenesis. Here, we show that TK is a pseudoki-

nase with undetectable levels of catalysis and, therefore, that Tcap is not its

substrate. Inactivity is the result of two atypical residues in TK’s active site,

M34 and E147, that do not appear compatible with canonical kinase patterns.

While not mediating stretch-dependent phospho-transfers, TK binds the E3

ubiquitin ligase MuRF1 that promotes sarcomeric ubiquitination in a stress-

induced manner. Given previous evidence of MuRF2 interaction, we propose

that the cellular role of TK is to act as a conformationally regulated scaffold that

functionally couples the ubiquitin ligases MuRF1 and MuRF2, thereby coordinat-

ing muscle-specific ubiquitination pathways and myofibril trophicity. Finally, we

suggest that an evolutionary dichotomy of kinases/pseudokinases has occurred

in TK-like kinases, where invertebrate members are active enzymes but vertebrate

counterparts perform their signalling function as pseudokinase scaffolds.
2. Introduction
The giant protein titin (3–4.2 MDa depending on spliceoform) is believed to

orchestrate the response of muscle to mechanical and metabolic stress. Single

titin molecules span entire half-sarcomeres (from Z-disc to M-lines, more than

1 mm in length) and contain strain-compliant elements, forming an elastic lattice

within the cytoskeleton of acto-myosin motors [1]. Titin binds an extensive range

of myofibrillar proteins, including Tcap/telethonin (which has cardio-protective

roles) [2], transcriptional regulators [3,4], and remodelling factors such as calpain
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proteases [5,6] and E3 ubiquitin ligases [7,8]. These proteins

link titin to the regulation of the membrane potential [9], and

to protein turnover and gene expression processes in the sarco-

mere [10]. Taken together, the elastic character of the titin chain

and its multiple scaffolding interactions make it an optimal

platform to integrate cellular responses to force sensing in

muscle [1].

The kinase domain near the C-terminus of titin (TK) in

the sarcomeric M-line plays an important role in mechano-

transduction. TK binds a protein complex formed by the

autophagosomal receptors nbr1 and p62, and the E3 ubiqui-

tin ligase MuRF2 [10]. A force-dependent regulation of this

complex was inferred by inducing the beating arrest of cardi-

omyocytes under hyperkalemic depolarization [10]. The

arrest induced the disassembly of the TK signalosome and

the subsequent translocation of MuRF2 to the cell nucleus.

There, MuRF2 appeared to block the anabolic action of the

serum response transcription factor. Intriguingly, a docking

site for the E3 ubiquitin ligase MuRF1 (a close homologue

of MuRF2) has been mapped to a tandem of Ig domains in

titin preceding TK [7,8]. MuRF1 is strongly upregulated by

atrophic stimuli such as immobilization, denervation, nutri-

tional deprivation, aging and disease (e.g. cancer, sepsis

and renal failure), being an important mediator of muscle

waste [11,12]. However, a functional interrelation between

TK/MuRF2 and the vicinal MuRF1 has not been found,

leaving unclear how this M-line node in titin is coordinated

as a whole.

The importance of TK for muscle physiology is demon-

strated by the fact that its genetic defect results in life-

threatening myopathies in patients [10]. However, the signal-

ling pathway of TK in the cell remains elusive, and efforts to

identify its sarcomeric substrates have yielded few candidates.

Three sarcomeric proteins have been proposed as phosphoryl-

ation substrates of TK: Tcap [13], nbr1 and p62 [10]. Nbr1 and

p62 elicit weak catalysis in vitro and their phosphorylation is

seemingly unrelated to their function in the TK-signalosome

[10]. By contrast, Tcap is subject to notable levels of phos-

phorylation, being TK’s best-established substrate. Tcap

anchors titin in the Z-disk, cross-linking the N-termini of two

neighbouring titin molecules [14], and further connects titin

to MLP- and minK-associated stretch signalling [2,9]. Tcap

was initially identified as a TK substrate in differentiating

myotubes and its modification was regarded as pointing to

TK roles in the regulation of myofibrillogenesis [13].

Despite the scarcity of candidate substrates, all proposed

roles of TK in cell signalling assume a kinase activity, where

phospho-transfer occurs in a stretch-regulated fashion. The

crystal structure of TK [13] appeared to suggest that the

kinase was inhibited by a CRD that folds against the catalytic

core, binding deeply into the ATP-binding pocket (electronic

supplementary material, figure S1). In addition, the pre-

sumed catalytic aspartate at the active site was blocked by

an interaction with a tyrosine residue, Y170, from the Pþ1

loop. For TK activation, the steric blockage imposed by

both Y170 and CRD would need to be removed. Early studies

[13] indicated that Y170 inhibition is released by phosphoryl-

ation by a developmentally regulated kinase, but the latter

has remained unidentified. More uncertain is the mechanism

of CRD displacement as biochemical activators that bind this

tail are yet to be identified. However, based on atomic force

microscopy data and molecular dynamics simulations, a

mechanoactivation hypothesis has been recently proposed
[15–17]. This hypothesis postulates that cytoskeletal stretch

during myofibril function pulls the CRD from the active

site, freeing the kinase to adopt a catalytically active confor-

mation. This mechanosensory mechanism agrees with the

proposed involvement of TK in stretch-activated pathways

in muscle [10].

For future progress in understanding TK function, the

interplay between its scaffolding, catalytic and mechanosen-

sory processes must be resolved. In this study, we focused

on elucidating the regulation of TK phospho-transfer, apply-

ing structural and catalytic approaches. Our data reveal that

TK is a pseudokinase with non-detectable catalytic output.

Instead, it is a high-affinity binding locus for MuRF1, consti-

tuting a cross-talk node for the MuRF1 and MuRF2 ubiquitin

ligases. This result points to a new direction in understanding

the role of TK in muscle signalling, where scaffolding and not

kinase activity is to take centre stage.
3. Results
3.1. Preparations from insect cells contain a

contaminant Tcap phosphorylating activity
In an attempt to characterize the catalytic profile of TK, we

first set out to study its phosho-transfer activity on the Tcap

substrate. For this, we assayed three TK variants (comprising

catalytic kinase domain and CRD) expressed in Sf21 insect

cells: wild-type TK, the activated phosphomimic TKY170E

and the constitutively inactive TKK36L (mutated residues

illustrated in the electronic supplementary material, figure S1).

In TKY170E, the inhibition of the catalytic aspartate by

the tyrosine residue in the Pþ1 loop is removed and the

sample was proposed to be constitutively active [10,13,18].

In TKK36L, the highly conserved lysine residue involved in

the coordination and catalysis of ATP is mutated into an

unreactive leucine group that abolishes phospho-transfer.

Mutation of this lysine residue into, for example, alanine, his-

tidine, methionine or isoleucine, is an established method to

eliminate catalytic activity (e.g. [19,20]). Although mutation

to alanine is most common, in TK this exchange resulted in

certain structural instability. Using FoldX [21] and differential

scanning fluorimetry to measure sample melting curves, we

identified leucine to be well tolerated by the TK fold (elec-

tronic supplementary material, §S2). Thus, TKK36L was used

as inactive variant throughout this work.

In activity assays that used ATP[g-33P], all three TK

variants—including the inactive TKK36L—showed similar

phospho-transfer activities on Tcap and were modestly stimu-

lated by Ca2þ/calmodulin (figure 1a). As an independent

validation, we studied the activity of immuno-complexed

wild-type TK where its active site had been blocked by a

specific antibody directed against the Pþ1 loop (the efficient

complexation of TK by this antibody is shown in the electronic

supplementary material, figure S3). Immuno-complexed

TK, non-complexed TK samples and non-treated TK controls

showed similar levels of activity (figure 1b). Hence, activity

data from either mutated or immuno-complexed samples

together suggested that insect cell preparations catalysed

Tcap phosphorylation in a TK-independent way, with kinase

activity arising from other component(s) in the cell milieu.

Further evidence that the observed catalysis resulted from

a contaminant kinase was derived from TK purification.
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Figure 1. Tcap phosphorylation assays using TK preparations from insect cells. (a) Preparations of wild-type TK, the activated TKY170E phosphomimic and the
constitutively inactive TKK36L phosphorylate Tcap comparably and stimulated by Ca2þ/calmodulin. (i) SDS-PAGE and (ii) autoradiogram of catalysis by samples
after Ni2þ-NTA are shown. (b) Phosphorylation assay of TK sterically inhibited by immuno-complexation with an antibody raised against the Pþ1 loop vicinal
to the active site. An antibody (anti-MuRF1) that does not complex TK is included for comparison. (c) Untransfected Sf21 cell extracts supplemented with
Tcap (but not Ca2þ/calmodulin) display phosphorylating activity (the stimulation of catalysis upon addition of calmodulin was approx. 25%, this modest activation
is likely due to the presence of endogenous calmodulin in the extract). (i) SDS-PAGE and (ii) autoradiogram revealing Tcap phosphorylation. (d ) (i) Chromatogram
and (ii) corresponding SDS-PAGE of Sf21 cell crude extract containing recombinant TKK36L eluted from a Ni2þ-NTA column. Segregation of phosphorylating activity
(cyan) and TK (red) during purification is observed. Bound proteins were eluted with a linear gradient of imidazole (100% buffer B ¼ 0.3 M imidazole; green line)
and monitored by A280; the resultant chromatogram is in blue. The content of TKK36L in eluted fractions was determined by spot-blot immunoassay using anti-TK
Pþ1 loop antibody. The amount of coloured product quantified densitometrically was proportional to the amount of TKK36L in each fraction (red). Phosphorylation
of a Tcap-derived peptide substrate in the presence of calmodulin was quantified in each fraction densitometrically by our standard phosphorylation assay that used
[g-33P]ATP and spotting on P81 paper (cyan). The data show that Tcap phosphorylation segregated from TKK36L.
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Table 1. Data collection and refinement statistics.

TK

data collection

space group P212121
a

cell dimensions

a, b, c (Å) 78.86, 89.73, 113.88a

resolution (Å) 28.9 – 2.06 (2.1 – 2.06)

no. reflections 49 667 (2681)

Rsym(I ) (%) 9.1 (56.2)

I/sI 13.9 (3.6)

completeness (%) 97.9 (95.4)

redundancy 5.7 (5.3)
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Recombinant TK segregated from the Tcap phosphorylating

activity during fractionation (figure 1d) and phospho-transfer

activity on Tcap decreased progressively as TK purity

increased. The highly pure TK samples showed approxima-

tely 80-fold less activity than initial preparations (electronic

supplementary material, figure S4). The existence of such

contaminating kinase activity was finally confirmed by assay-

ing untransfected Sf21 cell extracts, which displayed notable

phosphorylation of Tcap (figure 1c). Efforts to identify the con-

taminant kinase during this work were unsuccessful. A protein

that co-purified with TK was speculatively considered as a

candidate (electronic supplementary material, figure S4). How-

ever, Sf21 cells originate from Spodoptera frugiperda, whose

genome is not sequenced, and this impeded the identification

of the co-purifying protein through proteomic methods.

Regardless, these data show that Tcap is a substrate of one or

more endogenous kinases in Sf21 cells.

refinement

resolution (Å) 28.98 – 2.06

Rwork/Rfree (%)b 16.63/20.37

no. atoms

protein 5235

ligand/ion 28

water 469

B-factors (A2)

protein 22.8

ligand/ion 48.4

water 30.7

RMS deviations

bond lengths (Å) 0.007

bond angles (8) 1.000
aFor comparison, crystals of eukaryotically expressed TK belonged to space
group P212121 with cell dimensions 78.61, 89.77, 113.32 (a,b,c; Å) and
diffracted to 2.0 Å resolution [13,22]. That lattice and the one of bacterially
expressed TK in this study are identical.
bRfree set consisted of 1488 reflections, equivalent to 3% of the total
number.

1

3.2. TK produced in Escherichia coli is catalytically
inactive

As kinases present in insect cells’ preparations masked the

potential catalysis of TK on Tcap, we established the over-pro-

duction of TK in E. coli. To validate that the bacterial form of

this sample was viable, we performed a mass spectrometry

analysis of TK samples from E. coli and Sf21 cells. The data con-

firmed that neither of the proteins was truncated or otherwise

chemically compromised (e.g. mass differences from full mass

theoretical values of TKY170E from Sf21 and E. coli cells were

þ0.7 and þ1.8 Da, respectively). The bacterially expressed

TK had no phospho-transfer activity on Tcap, nor on the uni-

versal kinase substrates myelin basic protein and casein. This

agrees with previous observations of inactivity of bacterial

TK [16]. To test whether the lack of catalysis resulted from

fold defects in the bacterial sample, we elucidated its crystal

structure to 2.06 Å resolution (table 1). Crystallization used

previous protocols for Sf9-expressed TK [22] and crystals

reproduced the lattice parameters of the latter [13]. Following

bias removal by simulated annealing, the resulting model of

bacterially produced TK was in complete agreement with

that of Sf9-expressed samples (RMSD ¼ 0.29 Å for all Ca

atoms, calculated with MUSTANG [23]; figure 2a). These

data confirmed that there are no notable molecular differences

between bacterial and eukaryotic forms of TK, and that

the absence of catalysis on Tcap signifies that Tcap is not a

substrate of TK.

We then examined whether muscle cell extracts contained

substrates for the highly purified, bacterially expressed TK prep-

arations by performing phosphorylation assays using wt-TK

and TKY170E on extracts from differentiating murine C2C12

myocytes (day 2), as well as gastrocnemius muscle from adult

mice (the extracts were depleted of endogenous kinase activities

using FSBA). This work did not reveal candidate TK substrates

(figure 2c). To test whether this result reflected TK auto-

inhibition (not expected for TKY170E), we designed the variant

TKDR2/Y170E, where helix R2 was substituted by a flexible loop

so that the inhibition of the ATP-binding pocket had been

removed (figure 2b; nomenclature as in the electronic sup-

plementary material, figure S1). As before, assaying this

dually activated variant did not reveal any candidate substrates

in cell extracts (figure 2c). These results suggest that inactivity is

a genuine characteristic of TK.
3.3. TK contains atypical residues in its catalytic motifs
To explore the molecular basis of the apparent inactivity of TK,

we examined the sequence composition of its active site. A

multiple sequence alignment of TK sequences (electronic sup-

plementary material, figure S5) revealed consistent deviations

from canonical active motifs: namely, the bulky hydrophobic

residue methionine in position 2 of the VAIK motif and a

glutamate in the DFG motif. The canonical VAIK motif

(reviewed in [24]) is located in strand-b3 and contains the

catalytic lysine that ion-pairs the non-transferable a- and

b-phosphates of ATP. There is a strong selection for small

hydrophobic residues, such as alanine or valine, in position 2

of the VAIK sequence. This residue forms the bottom of the

cavity that accommodates the purine heterocycle moiety of

ATP. A bulky residue at this position, as methionine in TK,

might sterically hinder ATP binding or lead to a non-catalytic

binding mode. As TK has been reported to bind ATP/Mg2þ

[16], we explored whether the complex might be unproductive

by modelling the catalytic domain of TK (in the absence of the

CRD) in its predicted active conformation. In the latter, the
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N-terminal lobe has closed onto the bound ATP/Mg2þ sub-

strate as typically observed in catalytic kinases (electronic

supplementary material, §S6). To validate the modelling proto-

col, the invertebrate homologue twitchin kinase (TwcK), which

has well-established catalysis [25–27] and conventional active

site features, was used here as reference. In modelling,

we used as template the active conformation of the ATP/

Mg2þ-bound death-associated protein kinase, which is closely

related to titin-like kinases [28]. The model of active TwcK so

produced suggests that it follows canonical patterns, where

lobe closure leads to the formation of a regular ATP-binding

cavity. By contrast, the closed model of TK shows an unusual

ATP cavity, where shape fits poorly the ATP ligand and M34

occludes the adenine-binding pocket (electronic supplemen-

tary material, figure S6). We conclude that in TK, M34

hinders the adoption of a canonical ATP-bound, closed-lobe

conformation as characteristic of active kinases.

In the DFG motif, aspartate chelates the magnesium ion that

commonly coordinates the b-phosphate of ATP. This residue is

conserved across most members of the protein kinase-like

superfamily [29]. Although glutamate and aspartate are

chemically similar, this substitution is sufficient to inactivate

phospho-transfer in kinases [30,31]. In the human kinome

[32], the deviant residues found in TK are extremely rare

among active kinases (figure 3). TK is the only known human

kinase that contains glutamate instead of aspartate in the DFG

motif, while ATR kinase is the only other human kinase contain-

ing a methionine in position 2 of the VAIK motif (but its level of

activity is unclear). By contrast, among pseudokinases there is

no marked selection for given residues in position 2 of

the VAIK motif or aspartate in the DFG signature. Thus, the

YMAK/EFG signatures clearly point to irregular catalysis in TK.
Interestingly, an exploration of sequences of TK-like

kinases from invertebrates that included twitchin and TTN-

1 kinases from nematodes and molluscs, and projectin from

insects, showed that these homologues contain canonical

catalytic motifs characteristic of active kinases (electronic sup-

plementary material, figure S5). As mentioned, the TwcKs

from Aplysia and Caenorhabditis elegans exhibit high levels of

catalysis [25–27]. This suggests an evolutionary dichotomy

where invertebrate members of the TK family are functional

enzymes, but the vertebrate counterparts are catalytically

compromised pseudokinases.
3.4. Transfer of MAK/EFG TK signature motifs to
twitchin kinase abolishes catalysis

To study the role of the atypical, conserved methionine and

glutamate residues in the active site of TK, we substituted

these for their canonical equivalents in the variants TKE147D,

TKE147D/M34A/R129K and TKE147D/M34A/R129K/Y170E (R129 is

normally a conserved lysine residue in the catalytic loop of

active kinases of the titin-like family; we speculated that in

TK, the exchange to arginine might be coupled to other diver-

gences in the catalytic motifs of this kinase). Of these variants,

only TKE147D could be produced soluble in E. coli. However, it

was not active when assayed on Tcap or the generic kinase

substrates myelin basic protein and casein. Therefore, we per-

formed the reverse experiment, mutating the TK residues

into ceTwcK. The latter is a close homologue of human TK that

is well characterized structurally and biochemically [25–27].

ceTwcK (bacterially expressed) exhibits high levels of catalysis

when assayed on a model peptide substrate derived from
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myosin light chain (MLC) protein. The catalytic domains of

ceTwcK and TK share 40% sequence identity and 65% conserva-

tion (figure 4c), and, accordingly, high structural similarity

(RMSD for Ca atoms¼ 1.29 Å when comparing the structure

of TK in this work and PDB entry 3UTO using MUSTANG

[23]; figure 4a). The active sites of these two kinases are in

close structural agreement, particularly their ATP-binding pock-

ets, their b3 strands and the D/EFG motifs (figure 4b). Thus, we

concluded that ceTwcK is a suitable template to investigate the

effect of the unusual motifs of TK on catalysis.

The mutations A34M and/or D147E were introduced

in ceTwcK (variants ceTwcKA34M, ceTwcKD147E and

ceTwcKA34M/D147E) and phosphorylation assays carried out

on the MLC-derived peptide substrate. The double mutant

ceTwcKA34M/D147E was generated to account for the possible

compensatory coevolution of these substitutions in TK. In

contrast to wild-type ceTwcK, which showed its characteristi-

cally high activity, all generated mutants lacked measurable

phospho-transfer (figure 4d ). To confirm that this result

was not due to unsuspected distortions of the active site of

ceTwcK caused by the mutations, we generated the variant

ceTwcKA34V as positive control. In this construct, the alanine

in the VAIK motif is replaced by a valine residue, which is

found in the catalytically active TwcKs from molluscs (elec-

tronic supplementary material, figure S5) as well as 5% of

the active members of the human kinome [32]. As expected,

ceTwcKA34V retained notable levels of catalysis (figure 4e).

The inactivation induced by M34 agrees with studies on

B-Raf where substitution of the corresponding residue with
a bulky phenylalanine group abolished ATP binding [33].

These results indicate that the two atypical active site residues

M34 and E147 in TK are sufficient to inactivate it.
3.5. TK supports the interaction of M-line titin with the
E3 ubiquitin ligase MuRF1

Based on these findings, we reassessed how TK might contrib-

ute to muscle signalling in non-catalytic ways. The binding of

the muscle-specific E3 ubiquitin ligase MuRF1 in the vicinity

of TK is well documented [7,8]. MuRF1 binds a tandem of Ig-

Ig-Fn domains, A168–A170, preceding the TK domain. The

binding is mediated by the C-terminal helical domain of

MuRF1 and determined by the presence of a loop with sequence

KTLE in the titin domain A169 [8]. Here, we generated titin con-

structs comprising variations of the established MuRF1 docking

site as well as TK (figure 5). A168–A170 and its C-terminally

truncated variant A168A–A169 interacted with MuRF1, while

the loop mutant A168–A170DKTLE (where the KTLE motif had

been mutated to AAAA), N-terminally truncated A169–A170

and the single A169 domain did not display detectable inter-

action. Interestingly, when the fragment A169–A170 (which

does not bind MuRF1 detectably) was extended to include

TK, MuRF1 binding was restored and stronger than observed

for the established A168–A170 locus (figure 5a). It is worth

noting that the concentration of A169-TK was 10 times lower

than that of the other constructs in the assay, indicating that

TK markedly boost the MuRF1 interaction.
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We further confirmed these findings via pull-down assays

on skeletal muscle extracts (figure 5b). Here, A168–A170 and

A168-TK were able to pull down the endogenous MuRF1

but, as before, the sample containing TK showed a stronger

binding. TK alone (either as wild-type or Y170E phosphomi-

mic) did not interact with MuRF1 detectably. Taken together,

the data indicate that the MuRF1 docking site in M-line titin

spans the region A168-TK, which constitutes an extended

multi-domain scaffold of approximately 18–20 nm length.

Our data suggest that this scaffold contains two binding

loci: a high-affinity site spanning A169-TK and the estab-

lished A168–A169 site that has lower apparent affinity. It is

likely that both sites are involved simultaneously in the

recruitment of a same MuRF1 molecule, as the length of the

A168-TK region agrees well with the rod-like dimensions of

MuRF1 revealed by EM (approx. 17+3 nm length) [34].

Taken together, the data suggest that TK might play a domi-

nant role in the recruitment and retention of MuRF1 in the

sarcomeric M-line.
4. Discussion
The signalling context of TK in the sarcomere has remained

elusive since its discovery over two decades ago [35]. Efforts

to identify activators and substrates of this kinase have only

yielded candidates of doubtful physiological relevance.

Tcap [13], nbr1 and p62 [10] have been proposed to be

phosphorylation substrates of TK. Of these, only Tcap is

phosphorylated to a significant degree. However, in the sar-

comere Tcap is commonly found as part of a larger protein

complex in the periphery of the Z-disk, approximately

1 mm away from TK in the M-line. The non-diffusible

nature of both enzyme and substrate has cast doubt on the

in vivo significance of the interaction. Here, we provide

evidence that TK is an inactive pseudokinase. Our data

derive from the testing of wild-type TK, active phosphomi-

mics (TKY170E and TKDR2/Y170E) and inactivated variants

(TKK36L) expressed in Sf21 eukaryotic cells and in the E. coli
bacterial system. These TK forms were assayed for activity
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on Tcap as well as on inactivated extracts from developing

myocytes and mature muscles. This did not reveal catalysis

that could be attributed to TK. Structurally, two atypical resi-

dues (M34 and E147) that are conserved in vertebrate TKs

proved to be individually capable of disabling the highly

active TK homologue, TwcK. These data, together with our

identification of a contaminant kinase activity in the insect

cell preparations commonly employed for the production of

TK, lead us to deduce that the previous assignments of cata-

lysis and substrates to TK is questionable. Notably, the

contaminant kinase is activated by calmodulin (figure 1), a

characteristic previously attributed to TK [10,13]. Interest-

ingly, a recent report shows that Tcap is a substrate of

protein kinase D and CAMK-II in vitro [36]. That work ident-

ifies Ser157 as one of the phosphorylation sites of those

kinases in Tcap. The phosphorylation of Ser157 has also

been attributed to TK [18]. This brings strong support to

our view that previous experimentation on TK has been

troubled by the presence of contaminant kinase(s) in the

sample preparations.

The obstruction of functional studies by contaminant

kinases in recombinant preparations from insect cells is not

rare. For example, Hamel et al. [37] found that a contaminant

kinase in preparations of a substrate masked the activity of

MAPK, invalidating phosphorylation assays of the latter.

A further case is that of G-protein preparations, which are

commonly contaminated with a lipid kinase [38]. Scientifi-

cally misinterpreted, the contaminant activity was initially

attributed to integrin-linked kinase (ILK), which later was

shown to be an inactive pseudokinase [39]. The study of

potential catalysis in pseudokinases through loss of function

variants can also yield misleading results. For example, con-

ventional KtoA active site mutants of BUBR1 affected the

mitotic checkpoint [40,41], which was later shown to result
from impaired conformational stability and not catalytic

inactivation [42]. In ILK, the KtoA mutation led to renal agen-

esis during kidney development [43], even though ILK has

no catalytic activity. It was then shown that pathogenic

mutations in ILK act by impairing the structural integrity of

this kinase [39]. Similarly, transfection of wild-type TK in

BHK-Bi cells stimulated transcription of myomesin, BNP

and c-fos reporter genes, but this effect was abolished in

the variant TKD127A missing the putative catalytic aspartate

[10]. Our data suggest that these cellular effects might be

caused by the alteration of TK’s scaffolding function and

not its catalysis. Less clear is the source of the apparent loss

of catalysis in in vitro preparations of TKK36A previously

reported [13]. We tentatively speculate that possible changes

in fold stability (electronic supplementary material, §S2) or

expression yields in that variant with respect to TKK36L

used in this study might have influenced the retention of

the co-purifying contaminant kinase during chromatography.

Our findings prompt a reassessment of how TK as an

inactive pseudokinase contributes to muscle stress signalling

as its hypothesized mechanoactivation mechanism is unlikely

to relate to catalytic activity. Pseudokinases are known to par-

ticipate in cellular pathways as regulated scaffolds for the

assembly of signalling complexes [44]. In TK, mechanical

deformations might regulate its interaction with associated

proteins. This appears potentially applicable to its binding of

MuRF1, where multi-domain contact points make the inter-

action sensitive to the stretch-induced conformation of the

titin chain. Our data suggest that TK and MuRF1 are part of

a shared stress-signalling pathway. Integrating previous

knowledge of MuRF2 recruitment to the TK signallosome

[10], it now appears likely that both MuRF1 and MuRF2 can

occupy the TK scaffold. This might result in TK serving as a

switch to gate MuRF1/MuRF2 signalling, where speculatively
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mechanical arrest may release MuRF2 and recruit MuRF1.

MuRF1 is transcriptionally upregulated by multiple myopathic

stimuli in addition to mechanical inactivity. By serving as

a cross-talk node, TK might align the general myopathic

response of MuRF1 with the mechanical response of MuRF2,

possibly initiating similar cellular processes in response to

otherwise divergent stimuli.

Finally, the inactivity of vertebrate TK contrasts markedly

with the high levels of in vitro catalysis of its invertebrate

homologues, TwcK, TTN-1 and projectin. Interestingly, this

difference correlates with a similar contrast in obscurin kinases,

also members of the TK kinase family. Obscurin (and the

invertebrate homologue UNC-89) contains two kinases, PK1

and PK2. In vertebrates, PK1 and PK2 have canonical active

sites and are catalytically active [45,46]. In invertebrates, PK1

is inactive as it lacks catalytic residues and PK2 has a degener-

ated active site indicating that its activity might be modest [46].

This inverse correlation in titin-like and obscurin-like kinases in

vertebrate and invertebrate organisms (figure 6) suggests that

stretch-activated phospho-transfer might reside in different

filament systems in muscles across animal phyla. Future

studies are required to understand the patterns of activity

and scaffolding in these kinases in terms of muscle responses

to stress stimuli.
5. Material and methods
5.1. Cloning
TK (residues 32 172–32 492; UniProtKB Q8WZ42) and its

variants were cloned into the pET-Trx1a vector (EMBL collec-

tion) using NcoI and Acc65I restriction sites. This vector

fuses a His6-tagged thioredoxin and a tobacco etch virus

(TEV) protease cleavage site N-terminally to the target con-

struct. For expression in Sf21 cells, the full-length protein

encoded by the pET-Trx1a vector, including the N-terminal

fusion, was cloned into pFastBac ET vector (EMBL). The
NcoI compatible PscI site was introduced at the 50-end of the

construct and cloned into a linearized vector digested with

NcoI/Acc65I restriction enzymes. The variant TKDR2/Y170E

was constructed by replacing residues 291–309 forming the

regulatory a-helix R2 with the sequence GGSGGSA using

TKY170E as a template. To ease structural annotation, residue

32 172 is taken here as residue 1.

TwcK (residues 6251–6537; UniProtKB Q23551) and its

variants as well as full-length human Tcap (UniProtKB

O15273) were cloned into the pETM-11 vector that adds a

His6-tag and a TEV protease cleavage site prior to the

inserted protein. For compatibility with TK, residue 6251

in TwcK is considered here as 1 (based on the structural

alignment in figure 4c). GST-tagged titin A168–170 (residues

31 854–32 155), A168-TK (residues 31 854–32 492), TK and

TKY170E were cloned into pETM-20 vector (EMBL collection).

All constructs were verified by sequencing.

5.2. Recombinant protein production
Kinase samples were expressed in E. coli SoluBL21 (Genlantis)

in TB medium supplemented with 50 mg ml21 kanamycin.

Cultures were grown at 378C to an OD600 ¼ 1. Upon cooling

to 168C, expression was induced with 0.2 mM IPTG and

growth continued for a further 18 h. Cells were harvested by

centrifugation. The pellet was resuspended in lysis buffer

(20 mM HEPES pH 8, 250 mM NaCl, 5 mM imidazole, 0.2%

NP40, 2 mM b-ME, 2 mM PMSF), supplemented with

DNAse I, lysozyme and 1 mM PMSF, and lysed by sonification.

The supernatant was applied to a Ni2þ-NTA column (Qiagen)

pre-equilibrated in lysis buffer and proteins eluted with

300 mM imidazole in lysis buffer without detergent. Tag

removal was by incubation with TEV protease in 25 mM Tris

pH 8, 50 mM NaCl, 5 mM DTT, overnight at RT. Proteins

were further purified using ion exchange chromatography

(HiTrap SP for TK; HiTrap Q for TwcK) and gel filtration on

a Sephadex S75 16/60 column (GE Healthcare). Samples

were stored at 48C until further use.
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Tcap was produced as TwcK but without tag removal or

gel filtration. GST-tagged proteins were purified using Gluta-

thione-Sepharose (GE Lifesciences) resin.

For eukaryotic TK expression (Protein Expression and

Purification Facility of EMBL), Sf21 cells were transfected

with the bacmid DNA construct of TK or its variants accord-

ing to manufacturer instructions (Invitrogen Bac-to-Bac

system). Transfected cells were incubated for 3 days at 278C
and the supernatant, containing recombinant virus, was col-

lected. Amplified virus (10 ml) was added to 1 � 106 Sf21

cells and incubated at 278C for 3 days. Sf21 cells were har-

vested 72 h post-infection and stored at 220oC until protein

purification, which followed the procedure above.

5.3. Crystal structure determination
As before [13,22], crystals were grown at 218C by the hanging

drop method in 24-well VDX plates (Hampton Research).

Drops contained 1 ml protein solution (12 mg ml21) and

1 ml reservoir consisting of 1.6 M Na/K tartrate, 25 mM

sodium acetate pH 4.9, 25 mM imidazole pH 7.5, 2.5% PEG

400. Crystal optimization used seeding into solutions with

1.2 M Na/K tartrate but of otherwise identical composition.

For data collection, crystals were flash frozen in liquid nitro-

gen using mother liquor supplemented with 30% (v/v)

glycerol. X-ray diffraction data were collected at 100 K on

beamline I04, DIAMOND (Didcot), at l ¼ 0.9763 Å on

an ADSC Quantum detector. The data were processed with

XDS/XSCALE [47] (table 1). As before, crystals contained two

molecular copies in the asymmetric unit (RMSD ¼ 0.14 Å, in

MUSTANG [23]). Phasing was by molecular replacement in

Phaser [48] using one copy of eukaryotic TK (PDB entry 1TKI)

as search model. Model refinement and solvent building was

in PHENIX [49], applying simulated annealing with a starting

temperature of 50008C. Manual building was in COOT [50].

5.4. In vitro phosphorylation assays
Phosphorylation assays were performed in 20 ml assay buffer

(20 mM Tris–HCl pH 7.4, 10 mM magnesium acetate, 0.05%

NP40, 0.1 mM DTT, 0.2 mg ml21 acetylated BSA) containing

0.4 mM ATP (0.2 mCi/reaction of [g-33P]ATP) at 308C. Tcap,

MLC-derived peptide (KKRARAATSNVFS), Tcap-derived

peptide (RRSLSRSMSQEAQRG), casein and myelin basic

protein were tested at 4 mg/reaction. Where indicated, the

reaction mixture was supplemented with 0.5 mM CaCl2 and

0.4 mg/reaction calmodulin from bovine testis (Sigma-Aldrich).

For reaction mixtures that assayed peptide substrates, an aliquot

was withdrawn at indicated time points and spotted on EDTA

impregnated P81 phosphocellulose paper (Whatman). The

latter was washed extensively with 75 mM orthophosphoric

acid and once with ethanol, dried and exposed to a phos-

phoscreen. Reaction mixtures with protein substrates were

first separated on SDS-PAGE, the gel briefly stained, dried

and exposed to the phosphoimager screen. Screens were

imaged with a Fujifilm BAS 2500 phosphoimager and images

processed using AIDA (Raytest).

5.5. Preparation of inactivated C2C12 extracts
C2C12 cells were grown on gelatin-coated plastic flasks in

DMEM, 10% fetal calf serum, 1� ITS, penicillin and
streptomycin. For differentiation, the medium was changed

to DMEM, 2% horse serum, penicillin, streptomycin once

the cells reached 70–90% confluence. For FSBA extract inacti-

vation, cells were lysed in 50 mM Tris pH 7.4, 150 mM NaCl

and 1% NP-40. Clarified lysate was depleted of endogenous

ATP on a desalting column (GE Lifesciences) and treated

with 20 mM FSBA at 308C for 1 h. FSBA was removed by

buffer exchange into phosphorylation assay buffer (above)

supplemented with 5 mM DTT.
5.6. Pull-downs using recombinant titin fragments on
muscle extracts

Quadriceps tissue from adult mice was pulverized under

liquid nitrogen and the powder homogenized in 20 mM Tris

pH7.5, 100 mM NaCl, 2 mM b-ME and complete protease

inhibitor (Roche). Extraction proceeded for 90 min on ice. The

resulting extracts were clarified at 3000g for 30 min, aliquoted,

frozen in liquid nitrogen and stored at 2808C.

For GST pull-downs, 50 mg each of GST, GST-A168–170,

GST-A168-TK, GST-TK and GST-TKY170E were immobilized

on 30 ml of Glutathione-Separose beads and washed with

PBS, 0.1% NP40. Extracts were thawed on ice and spun for

1 min at 21 000g. The supernatant was diluted by adding

three volumes of PBS, 0.1% NP40. Next, 1 ml of diluted

extract was mixed with 30 ml of beads loaded with a given

titin fragment and incubated for 16 h at 48C under light stir-

ring. Mixtures were spun for 1 min at 1000g, supernatants

were removed and the beads washed 3� with 1 ml PBS,

0.1% NP40. After a final wash with PBS, supernatants were

removed and the beads resuspended in SDS sample buffer.

Bound material was examined by SDS-PAGE and Western

blotting using a MuRF1-specific antibody.
5.7. Filter-binding assay
Purified His6-MuRF1-coiled-coil (aa169–263, Q969Q1;

reported in [8]) was biotinylated with NHS-PEG4-Biotin

(Thermo Scientific). To remove unreacted biotin, the sample

was filtered twice through a PD-10 column (GE Healthcare)

in PBS. One millimolar DTT and 50% glycerol were added

and the sample frozen until further use.

Purified titin constructs were spotted (approx. 1 mg) on

nitrocellulose membranes pre-wetted with TBS. The filter

was blocked by TBST/5% milk, washed with TBST and incu-

bated for 3 h with biotinylated MuRF1-coiled-coil at a

concentration of 0.5 mg ml21 in TBST/1% milk. The mem-

brane was washed in TBST and incubated for 1 h in TBST

containing 2 mg ml21 streptavidin conjugated to alkaline

phosphatase (Thermo Scientific). After washes in TBST and

a final wash in TBS, the detection with NBT/BCIP was

done as described by the supplier (Roche).
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