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Abstract: Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or 
systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic 
diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect 
genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an 
important role in regulating gene expression in various biological processes, including differentiation, development, stress response, 
and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological 
conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and 
parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function. 
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Introduction
Epigenetic regulation plays a vital role in gene regulation through chemical modifications of DNA and post-translational 
modifications of histones. Many studies in recent years have found epigenetic involvement in the pathogenesis of 
rheumatic immune diseases, and histone acetylation is one of the crucial mechanisms in epigenetics.1 So far, the family 
of mammalian zinc-dependent histone deacetylases (HDACs) can be divided into three classes:2 Class I (HDACs 1–3, 8), 
Class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and Class IV (HDAC 11); and Class III, a family of sirtuin proteins, 
including SIRT 1–7, where the deacetylation of histones and non-histones by HDACs alters the chromatin conformation 
and changes the activity of transcription factors, leading to changes in gene expression.1,3,4 HDACs have different 
expression sites, distribution and regulation of target genes, Immune diseases are closely related to acetylation levels, and 
histone deacetylase inhibitors could prevent the onset and progression of disease and be a new approach to treating 
rheumatic disorders. This review focused on the progress of HDACs research about immune regulation involved in 
rheumatic diseases to provide a basis for clinical treatment (Table 1).

Histone Deacetylase and Rheumatoid Arthritis
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis with severe pain and swelling, joint 
damage and disability, ultimately leading to destruction and loss of function.39 The current worldwide prevalence of RA is 
0.5%.40 Recently, it was suggested that epigenetic factors linking genetics and gene expression to disease risk could be 
a promising area.41
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Zn2+-Dependent HDACs
Histone deacetylase 1 (HDAC1) is closely associated with the development of RA. HDAC1 interferes with the differentiation, 
maturation, and apoptosis of osteoclasts and promotes the development of bone destruction in RA.42 Hawtree et al found that 
HDAC1 expression was significantly higher in RA synovial fibroblasts (RASFs) than in osteoarthritic (OA) synovial fibroblasts 
(OASFs). It was demonstrated in vitro experiments that HDAC1 knockdown inhibited the proliferation, migration, and invasion 
of RASFs, and inhibition of HDAC1 significantly reduced joint swelling and attenuated cartilage and joint damage in RA animal 
models.5 Moreover, many T cells could be detected in the synovium of RA patients. T cells were viewed to play a central role in 
the pathogenesis of RA due to their ability to drive the activation of B cells, monocytes, macrophages, and fibroblast-like 
synoviocytes.6 Göschl et al found a significant reduction in inflammatory cytokines interleukin (IL)-17 and IL-6 in the serum 
from mice with T cell-specific deletion of HDAC1, demonstrating that mice with T cell-specific deletion of HDAC1 were 
resistant to the development of collagen-induced arthritis (CIA).43 In addition, cytokines regulated gene expression and 
participated in cell activation, differentiation, and survival by activating intracellular Janus kinase/signal transduction and 
activator of transcription (JAK/STAT) signaling pathways. In a CIA mouse model, HDAC1 expression was significantly 
elevated in synovial tissue, whereas miR-124 and myristoylated alanine-rich C kinase substrate (MARCKS) were expressed 
inversely. HDAC1 deletion promoted H3 and H4 acetylation in the promoter regions of miR-124 and MARCKS. miR-124 
alleviated synovial proliferation and synovitis by inhibiting the CIA’s JAK/STAT signaling pathway, cell proliferation and 
synovial inflammation.7

Many studies have revealed the anti-inflammatory and anti-osteoclastic activities of HDACs and HDACs inhibitors 
(HDACi). Algate et al found that HDAC 1 and 2 inhibitors suppressed osteoclast formation by inhibiting key intercellular 
signaling factors tumor necrosis receptor-related factors 6 (TRAF-6) and nuclear factor of activated T-cells 1 (NFATc1), and 
inhibited osteoclast formation by tumor necrosis factor (TNF)-stimulated osteoclasts to inhibit pathological bone resorption. 
A similar trend was also observed when HDAC1 and HDAC2 were respectively inhibited. However, it was found that their 
combination have the most extraordinary anti-inflammatory and anti-osteoclastic effects.8

Table 1 Effects of HDACs in Rheumatic Diseases

Class of HDACs Diseases HDACs Targets or Pathway References

Class I HDACs RA HDAC1 RASF, IL-17, IL-6, miR-124, JAK/STAT [5–7]
HDAC1, HDAC2 TRAF-6, NFATc1 [8]

HDAC3 miR-19a-3p, IL-17RA [9]

HDAC2, HDAC8 Inflammatory cytokines [10]
SLE HDAC1 miR-124, IRF1 [11]

AS HDAC1 Wnt-Smad [12]

HDAC3 miR-130a, TNF-1α [13,14]
OA HDAC2 miR-503-5p/SGK1, Caspase-3, Bax, Bcl-2 [15–18]

Class IIa/IIb HDACs RA HDAC4 miR-138, PGRN, miR-216a-3p [19,20]
HDAC6 MyD88, NF-κB [21]

SLE HDAC6 B cell [22]

HDAC9 IL-17A, IL-6, IFN-γ [23]
Gout HDAC6 NLRP3 inflammasome [24]

OA HDAC4 Runx2, IL-1β, COX-2, iNOS [25]

HDAC6, HDAC7 MMP-13, ECM [26]
Class III HDACs (or Sirtuins) RA SIRT1 NF-κB, AP-1, IL-2, COX-2 [27–29]

SIRT1, SIRT2 miR-140-3p [30]

SIRT6 NF-κB, TNF-α [31]
SLE SIRT1 B cells, NF-κB, TNF-α, IL-17A, IL-22 [32,33]

SSc SIRT1 mTOR [34]

SIRT7 a-SMA, collagen I [35]
Gout SIRT1 PI3K/AKT/STAT6 [36]

OA SIRT1, SIRT6 NF-κB [37,38]
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Nearly 50% of RA patients had extra-articular lesions with frequent pulmonary involvement, and almost 10% of RA 
patients presented with clinically significant interstitial lung disease (ILD), which was one of the mainly causes of death 
in RA patients.44,45 It has been shown that HDAC3 negatively regulated the expression of miR-17-92 through promoter 
region deacetylation.46 Importantly, IL-17 receptor A (IL-17RA) was reported to play a direct role in pulmonary fibrosis 
and may be particularly relevant to RA-ILD.47 Downregulation of HDAC3 could result in increased miR-19a-3p 
expression to suppress IL-17RA expression and reduced the presence of the fibrosis marker genes collagen type 
I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1) and fibronectin (FN), thereby reducing the occurrence of RA- 
ILD fibrosis.9 In contrast, Li et al found that reduced activity and expression of Class I HDACs (HDAC1-3,8) in RA 
peripheral blood mononuclear cells (PBMCs) accompanied by enhanced histone acetyltransferase (HAT) activity could 
have the potential to act as biomarkers of disease activity. It suggested that, in addition to HDAC inhibitors, HAT 
inhibitors may be potential targets for RA treatment.48

Kim et al found that sodium butyrate, one of the metabolites of intestinal flora, administered to CIA mice significantly 
reduced the expression of inflammatory cytokines in various cell types and almost fully reversed bone and cartilage damage by 
inhibiting HDAC2 in osteoblasts and HDAC8 in T cells. Sodium butyrate was promising for the treatment of RA.10

Progranulin (PGRN) as an autocrine growth factor, which may play a key role and drug target in autoimmune 
diseases.49 Shao et al found that miR-138 was significantly upregulated in serum and synovial tissues of RA patients 
compared with normal subjects to promote inflammatory cytokine expression in FLS cells, and that HDAC4, a direct 
target of miR-138, could be negatively regulated by miR-138 to block PGRN expression and thus attenuate RA 
development.19 In addition, Chang et al demonstrated that reduced circFBXW7 and HDAC4, which derived from 
mesenchymal stem cells (MSC) in clinical RA samples, upregulated miR-216a-3p to inhibit the proliferation, migration 
and inflammatory response of RA-FLS.20 Subsequently, Hao et al also found circ_0008360 expressed in RA synovial 
tissue and RA fibroblast-like synovial cells (RA-FLS), and circ_0008360 inhibited proliferation, migration and inflam-
mation of RA-FLS and promoted apoptosis by sponging miR-135b-5p and upregulating HDAC4, providing potential 
targets for the prevention and treatment of RA50.

The epigenetic enzyme HDAC6 not only deacetylated histones but also non-histones, including α-microtubulin and 
myeloid differentiation factor 88 (MyD88).51,52 In addition, Li et al found that HDAC6 protein levels were elevated in the 
synovial tissue of adjuvant arthritic rats. Furthermore, It was revealed in vitro studies that mercapto specific protein 1 (Sp1) 
could regulate HDAC6 expression, and overexpression of HDAC6 improved RA by deacetylating MyD88 to activate the 
nuclear factor kappa-B (NF-κB) signaling pathway.21

NAD+-Dependent HDACs
SIRT1 inhibited the inflammatory response in RA with reduced SIRT1 activity and reduced SIRT1 expression in RA 
patients compared to healthy population.53,54 In a rat CIA model, SIRT1 inhibited the transcriptional activity of NF-κB 
by deacetylating p65 and p300, thereby downregulating NF-κB-dependent pro-inflammatory genes.27,28 SIRT1 can also 
reduce the inflammatory response by interacting with c-Fos and c-Jun to suppress the transcriptional activity of activator 
protein-1 (AP-1) in macrophages and inhibit the expression of IL-2 and cyclooxygenase-2 (COX-2).29 In addition, Sirt1 
not only inhibited FLS proliferation, invasion, and migration but also reduced the secretion of proinflammatory mediators 
in RA synovial tissue by regulating NF-κB transcription.55

SIRT3 was a crucial regulator of mitochondrial protein acetylation.56 Kara et al showed that increased SIRT3 mRNA 
expression caused by mitochondrial stress/disruption could result in metabolic complications of RA, such as insulin 
resistance and dyslipidemia,57 However, SIRT2 mRNA expression was not increased in RA due to the different cellular 
localization of SIRT3 and SIRT2; In addition, it was shown that SIRT1 and SIRT3 acted as target genes for miR-140-3p, 
which binded more strongly to SIRT3, inhibited cell viability and promoted synovial fibroblasts (SFs) apoptosis.30

The anti-inflammatory effect of SIRT6 was associated with the transcriptional activity of NF-κB, which inhibited NF- 
κB-mediated inflammatory response by interacting with the RelA subunit of NF-κB58 and SIRT6 overexpression 
downregulated proinflammatory cytokines levels to reduce bone destruction in CIA mice.59 In addition, overexpression 
of SIRT6 in FLS could reduce the production of inflammatory mediators by inhibiting TNF-α through deacetylation of 
histone 3 lysine 9 (H3K9) at the promoter of NF-κB target genes.31
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Histone Deacetylase and Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a chronic diffuse connective tissue disease with unknown etiology that could be involved 
in joints, kidneys, blood cells and blood vessel walls. It mainly affects women of childbearing age (9:1 ratio of women to men).60 

The activation of the immune system in SLE is characterized by the over-reaction of B and T cells and loss of immune tolerance 
to autoantigens.61 Although the direct etiology of SLE is unknown, many factors are thought to contribute to the autoimmunity of 
SLE, including genetic predisposition and epigenetic, hormonal, and environmental factors.62

It was well known that CD4+T cells had a critical immunosuppressive role in SLE. It was documented that CD4 + T cells were 
activated in peripheral blood in SLE patients and that the levels of surface activating molecules, such as CD69, CD137, CD40L 
and ICOS, were elevated in CD4 + T cells. More importantly, miR-124 negatively regulated Interferon regulatory factor (IRF1) 
expression.11 A previous study documented the upregulated levels of HDAC1 in SLE. Thus, it suggested that HDAC1 promoted 
SLE by inhibiting miR-124 to upregulate IRF1 expression and triggering the immune activity of CD4 + T cells.

It found that HDAC2 transcript levels were opposite to the results of HDAC1.Decreased HDAC2 mRNA expression was 
found in peripheral blood of lupus patients.63 Besides, it was described by Ito et al that HDAC2 expression deficiency leads to 
glucocorticoid insensitivity Thus, These increases the likelihood of inflammatory gene activation in lupus patients.64

Aberrant B-cell activation played an essential role in the NZB/W mouse model of lupus. It was found by Ren et al 
that HDAC6 inhibition in a lupus mouse model reduced B-cell activation signaling pathway, decreased plasma cell 
differentiation, and significantly reduced germinal center (GC) formation in SLE, suggesting that selective inhibition of 
HDAC6 may be a potential therapy for lupus nephropathy.22 In addition, it was noted that, in a mouse model of SLE, the 
novel HDAC6-specific inhibitor CKD-506 could obviously improve the survival rate and reduce the incidence of severe 
proteinuria, blood urea nitrogen, renal inflammation, glomerular IgG, and C3 infiltration. It also reduced the levels of 
various pro-inflammatory cytokines and chemokines in the serum and kidney, thereby inhibiting cell migration and lupus 
nephritis without adverse effects.65 Therefore, CKD-506 may also be a novel and effective therapeutic agent for SLE.

Further studies have identified HDAC9 as one of potential target genes for miR-101-3p, and it also showed that miR- 
101-3p expression was reduced in peripheral blood mononuclear cells of SLE patients compared with healthy indivi-
duals. Furthermore, miR-101-3p could inhibit Th17 cell differentiation by directly targeting HDAC9 and reduce the 
levels of IL-17A, IL-6, and interferon (IFN)-γ.23

Yang et al demonstrated that plasma SIRT1 levels were significantly higher in SLE patients and were positively 
correlated with disease activity.66 Overexpression of SIRT1 promoted the proliferation of B lymphocytes, and inhibited 
apoptosis by activating the NF-κB.32 In contrast, knockdown of SIRT1 in mouse macrophages activated c-Jun N-terminal 
kinase (an inhibitor of NF-κB kinase pathway) and increased TNF-α secretion, and resveratrol as the activator of SIRT1 
reversed AhR-induced Th17/Treg imbalance, which upregulated IL-17A and IL-22 expressions in CD4+ T cells.33

Histone Deacetylase and Systemic Sclerosis
Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterized by severe progressive fibrosis of skin and 
other visceral organs, obvious alterations in the microvascular system, and numerous cellular and humoral immune 
abnormalities.67 Although the exact etiology and pathogenesis are not elucidated, many studies have shown that activation 
of the immune system is a crucial factor in vascular abnormalities and fibrosis. Emerging evidence indicated that B cells 
played a pivotal role in animal models of SSc and SSc patients as well.68

Resveratrol is now widely shown to play an essential role in inhibiting the development of SSc.69 Resveratrol plays 
a protective role against SSc. Yao et al identified the mTOR signaling pathway as a monumental KEGG pathway associated 
with resveratrol targeting genes, confirmed the elevated mTOR levels in the skin of SSc patients and also verified that 
resveratrol ameliorated bleomycin (BLM)-induced fibrosis and inflammation through activation of SIRT1-mediated mTOR 
degradation in vitro. In addition, the progressive fibrosis and inflammation were attenuated.34 The study also showed that 
SIRT1 was not only used in the treatment of fibrosis, but also in SSc patients. And several studies indicated that not only SIRT1 
but also SIRT3 and SIRT5 were directly targeted by resveratrol.70–72 However, whether these SIRTs played key roles in the 
improvement of SSc by resveratrol needs to be further investigated.
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Although SIRT7 was less studied compared to SIRT1, there were still several studies indicating that SIRT7 also 
significantly reduced mRNA and protein levels in lung fibroblasts from SSc patients.35,73 Wyman et al also demonstrated 
that SIRT7 knockdown enhanced the expression of α-smooth muscle actin (a-SMA) and typed I collagen, while 
transfection with SIRT7 overexpression plasmids reduced the same markers by more than 30% in TGF-β -treated lung 
fibroblasts.35 In addition, both sodium valproate and another HDACi butyrate attenuated bleomycin-induced pulmonary 
fibrosis when they were combined,63 and the combined drugs had a synergistic effect of reducing NF-κB, TNF-α, IL-6, 
and TGF-β, which improved oxidative stress and reduced inflammatory cells.74

Histone Deacetylase and Gout
Gout is the most common form of inflammatory arthritis and usually presents as an acute, self-limiting inflammatory 
monoarthritis affecting the joints of the lower extremities. Elevated serum uric acid levels (hyperuricemia) constitute 
a significant risk factor for MSU crystal deposition and gout development.75 It has a worldwide prevalence of 
approximately 2–4% and occurs predominantly in men over 40 years of age, especially those with underlying comorbid-
ities such as obesity, hypertension, coronary artery disease, diabetes mellitus or metabolic disease.76

Aberrant activation of NLRP3 inflammasome may be associated with diverse inflammatory or metabolic diseases, such as 
sepsis, colitis, and gout.75,77–79 Inhwa et al showed that HDAC6 negatively regulated NLRP3 inflammasome activation by 
interacting with ubiquitinated NLRP3.24 The NLRP3 inflammasome pathway also played an essential role in acute gout.

SIRT1 exerted an anti-acute gouty arthritis effect via reducing the polarization of macrophages to the M1 phenotype 
by activating the PI3K/Akt/STAT6 pathway. Elevated SIRT1 was observed in gouty model mice and peripheral blood 
mononuclear cells (PBMCs) from patients with acute gout as well. STAT1-dependent activation of signal transduction 
pathways that could inhibit inflammatory response.36 In an in vitro experiment from our previous work, SIRT1 protein 
levels were downregulated in PBMCs from patients at interval after MSU crystals challenge, and resveratrol restored 
SIRT1 protein levels in a dose-dependent manner and had a regulatory effect on IL-1β release. In addition, the mRNA 
and protein levels of autophagic genes (Beclin-1, LC3) were also regulated by resveratrol. It indicated that resveratrol 
could improve gouty inflammation by upregulating SIRT1 to promote autophagy in gout patients.80

Histone Deacetylase and Ankylosing Spondylitis
Ankylosing spondylitis (AS) is an immune-mediated, insidious progressive seronegative spondylitis characterized by 
adhesive inflammation. AS gradually leads to inflammation, bone erosion, new bone formation, and ankylosis of the 
sacroiliac, vertebral and peripheral joints.81 The patient’s quality of life is seriously affected at the advanced stage.

It was found by Hu et al that serum levels of anti-SIRT1 antibodies were significantly higher in AS patients than RA 
or psoriatic arthritis (PsA) patients. Moreover, anti-SIRT1 antibody levels were significantly higher in those patients with 
first-year hip involvement, suggesting that SIRT1 may regulate the erosive bone destruction in AS.82 A higher prevalence 
in women was in autoimmune diseases such as SLE, SSc, and RA. However, the majority of AS is higher in men than in 
women and the severity of disease as well.83 It has been reported that testosterone may interact with SIRT1 to protect 
endothelial cells.84 However, the exact regulatory process could be further investigated.

Zeng et al found that HDAC1 significantly affected the Wnt-Smad pathway in AS fibroblasts, and Dickkopf-1 (DKK- 
1) or specific inhibitor of Smad3 (SIS3) treatment significantly inhibited the effect of HDAC1 on AS fibroblasts. In 
addition. HDAC1 significantly activated transient receptor potential (TRP) ion channels and promoted AS fibroblast 
proliferation, inflammatory response, and osteogenic differentiation. Thus, HDAC1 promoted AS fibroblast proliferation, 
inflammatory response, and osteogenic differentiation via the Wnt-Smad pathway.12

More than 3-fold increase of HDAC3 mRNA and protein expression were showed in PBMCs from AS patients 
compared to Healthy controls. Conversely, miRNA-130a expression was significantly lower in PBMCs from AS patients 
compared with Healthy controls.85 In addition, dysregulation of miRNAs were frequently observed in immunopathogen-
esis. The miRNA-130a is regulated by HDAC3 and is associated with AS.13,14 From those results, it could indicate that 
HDAC3 has a significant role in the underlying molecular mechanisms of AS by forming a negative feedback loop with 
miR-130a and regulating miR-130a expression via its target TNF-1α.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S447811                                                                                                                                                                                                                       

DovePress                                                                                                                         
951

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Histone Deacetylase and Osteoarthritis
Osteoarthritis (OA) is a common degenerative disease characterized by joint pain and movement disorders.86 OA is 
associated with major risk factors, including gender, age, obesity, and significant mechanical stress87.

An accumulating literature suggested that differential expression patterns and altered activation of HDACs contributed to 
the onset and progression of OA. HDAC1 and HDAC2 were expressed at high levels in OA chondrocytes and inhibited the 
expression of collagen alpha-1(II) chain (COL2A1), collagen alpha-1(XI) chain (COL11A1), aggrecan core protein (ACAN), 
and cartilage oligomeric matrix protein (COMP). Moreover, HDAC2 repressed miR-503-5p expression, and serum- and 
glucocorticoid-inducible kinase-1 (SGK1) was viewed as a target gene of miR-503-5p. Upregulation of miR-503-5p or 
silencing of HDAC2 promoted OA rat chondrocyte proliferation, inflammatory response and inhibited apoptosis (decreased 
Caspase-3 and Bax expression and elevated Bcl2 expression). Therefore, HDAC2 could promote OA through miR-503-5p/ 
SGK1 axis and may be a therapeutic target for OA treatment.15–18

It was demonstrated that HDAC4 was related to the inhibitory mechanism of Runx2. Overexpression of HDAC4 did 
not only decrease the expression of IL-1β, COX2 and iNOS, but also increase the expression of aggrecan which was 
characteristic of chondroprotection.25

It was found that HDAC6 expression was increased in articular surface cells in a destabilisation of the medial meniscus 
(DMM)-induced mouse OA model. In the in vivo experiments, it was demonstrated that inhibition of HDAC6 activity by 
intraperitoneal injection of saline-diluted Tubastatin A in a DMM-induced mouse OA model inhibited cartilage degradation, 
reduced development of synovitis, improved arthralgia and swelling, and delayed progression of OA.86

In addition, Higashiyama et al demonstrated that HDAC7 expression was enhanced in OA cartilage, which was associated 
with increased matrix metalloproteinase (MMP)-13 production and extracellular matrix (ECM) degradation,26 while enhanced 
expression of certain HDACs increased articular cartilage destruction and OA progression. Other deacetylases, particularly 
SIRT1, were shown to inhibit cartilage destruction by increasing SIRT1 activity in mouse OA cartilage.37 In addition to 
SIRT1, SIRT6 was also shown to play a protective role in OA. A recent study reported that SIRT6 protein levels were 
significantly reduced in OA chondrocytes compared to healthy controls and that SIRT6 overexpression in mouse joints 
protected cartilage from degeneration by reducing NF-κB dependent inflammatory gene expression.38 Therefore, HDAC 
inhibitors could be promising as a therapeutic intervention for OA.

Conclusions
Collectively, many studies in rheumatic diseases have shown that through regulation of HDACs or their enzymatic activities, 
to some extent, cartilage destruction could be prevented, joint destruction could be reversed, synovial cell proliferation could 
be delayed, synovial inflammation could be improved, inflammatory cytokines could be inhibited, and anti-fibrosis could be 
achieved. Although HDACs played an important regulatory role in the pathophysiological process of rheumatic diseases, there 
were still many difficulties to overcome. For example, some other members of the HDACs family (HDACs 5, 7, 9, 10) were 
still unclear in terms of their target sites and the regulatory mechanisms in vivo. With the continuous progress of researches on 
HDACs, the mechanisms of HDAC-mediated epigenetic regulation could be improved. It is hoped that new targets and 
insights could be provided to explore HDAC-mediated epigenetic regulation for the prevention and treatment of rheumatic 
diseases.
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