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Abstract

Backgroud: The XPG (xeroderma pigmentosum type G) Asp1104His and XPF (xeroderma pigmentosum type F) Arg415Gln
polymorphisms had been implicated in cancer susceptibility. The previous published data on the association between XPG
Asp1104His and XPF Arg415Gln polymorphisms and cancer risk remained controversial.

Methodology/Principal Findings: To derive a more precise estimation of the association between the XPG Asp1104His and
XPF Arg415Gln polymorphisms and overall cancer risk, we performed a meta-analysis to investigate the association
between cancer susceptibility and XPG Asp1104His (32,162 cases and 39,858 controls from 66 studies) and XPF Arg415Gln
polymorphisms (17,864 cases and 20,578 controls from 32 studies) in different inheritance models. We used odds ratios with
95% confidence intervals to assess the strength of the association. Overall, significantly elevated cancer risk was found when
all studies were pooled into the meta-analysis of XPG Asp1104His (dominant model: OR = 1.05, 95% CI = 1.00–1.10; Asp/His
vs. Asp/Asp: OR = 1.06, 95% CI = 1.01–1.11). In the further stratified and sensitivity analyses, significantly decreased lung
cancer risk was found for XPF Arg415Gln (dominant model: OR = 0.82, 95% CI = 0.71–0.96; Arg/Gln versus Arg/Arg: OR = 0.83,
95% CI = 0.71–0.97; additive model: OR = 0.83, 95% CI = 0.72–0.95) and significantly increased other cancer risk was found
among hospital-based studies for XPG Asp1104His (dominant model: OR = 1.23, 95% CI = 1.02–1.49).

Conclusions/Significance: In summary, this meta-analysis suggests that XPF Arg415Gln polymorphism may be associated
with decreased lung cancer risk and XPG Asp1104His may be a low-penetrant risk factor in some cancers development. And
larger scale primary studies are required to further evaluate the interaction of XPG Asp1104His and XPF Arg415Gln
polymorphisms and cancer risk in specific populations.
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Introduction

DNA repair systems play critical roles in protecting cells against

mutations and are essential for maintaining the genome integrity.

Certain common genetic polymorphisms within the genes involved

in DNA damage responses may contribute to the development of

cancer and be associated with an increased risk of the disease.

Because reduced DNA repair capacity may cause genetic

instability and carcinogenesis, genes involved in DNA repair have

been proposed as candidate cancer susceptibility genes [1].

Nucleotide excision repair (NER) is a crucial DNA repair

mechanism, which counteracts the consequences of mutagenic

exposure of cells [2].

The NER pathway consists of .30 proteins involved in DNA

damage recognition, incision, DNA ligation and resynthesis. Seven

XP(xeroderma pigmentosum) complementation groups have been

identified, from XPA to XPG, representing the malfunctioning

proteins in the NER mechanism [3]. The XPG (xeroderma

pigmentosum type G), one important component of the NER

pathway, encodes a structure-specific endonuclease catalyzing 39

incision and involves the subsequent 59 incision by ERCC1-XPF

heterodimer [4,5]. It has been observed that there is a relationship

between the SNP in exon 15 (G3507C, Asp1104His) and cancer

susceptibility. ERCC4/XPF (Arg-to-Gln substitution in codon 415

of exon 8, rs1800067) forms a tight complex with ERCC1 to incise

59 to the damage site recognized and repaired by NER [6]. The

XPF gene encodes a protein which, together with ERCC1, creates

the 59 endonuclease [7].

To date, a number of molecular epidemiological studies have

been done to evaluate the association between XPG Asp1104His

and XPF Arg415Gln polymorphisms and different types of cancer

risk in diverse populations [8–83]. However, the results were
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inconsistent or even contradictory, partially because of the possible

small effect of the polymorphism on cancer risk and the relatively

small sample size in each of published study. In addition, two

recent meta-analyses have studied the association between XPG

Asp1104His and XPF Arg415Gln and risk of cancer. However,

many published studies were not included in the two recent meta-

analyses [84,85]. Therefore, we performed a comprehensive meta-

analysis by including the most recent and relevant articles to

identify statistical evidence of the association between XPG

Asp1104His and XPF Arg415Gln polymorphisms and risk of all

cancers that have been investigated. Meta-analysis is an outstand-

ing tool for summarizing the different studies. It can not only

overcome the problem of small size and inadequate statistical

power of genetic studies of complex traits, but also can provide

more reliable results than a single case–control study.

Materials and Methods

Identification and eligibility of relevant studies
A comprehensive literature search was performed using the

PubMed and Medline database for relevant articles published (the

last search update was Sep 5, 2013) with the following key words

‘‘XPG’’, ‘‘ERCC5’’, ‘‘XPF’’, ‘‘ERCC4’’, ‘‘polymorphism’’, ‘‘Var-

iant’’ or ‘‘Mutation’’, and ‘‘Cancer’’ or ‘‘Carcinoma.’’ In addition,

studies were identified by a manual search of the reference lists of

reviews and retrieved studies. We included all the case–control

studies and cohort studies that investigated the association between

XPG Asp1104His and XPF Arg415Gln polymorphisms and

cancer risk with genotype data. All eligible studies were retrieved,

and their bibliographies were checked for other relevant publica-

tions. When the same sample was used in several publications,

only the most complete study was considered for further analysis.

Inclusion criteria
The included studies needed to have met the following criteria::

(1) only the case–control studies or cohort studies were considered,

(2) evaluated the XPG Asp1104His and XPF Arg415Gln

polymorphisms and the risk of cancer, and (3) the genotype

distribution of the polymorphisms in cases and controls were

described in details and the results were expressed as odds ratio

(OR) and corresponding 95% confidence interval (95% CI). Major

reasons for exclusion of studies were as follows: (1) not for cancer

research, (2) only case population, and (3) duplicate of previous

publication.

Data extraction
Information was carefully extracted from all eligible studies

independently by two investigators according to the inclusion

criteria listed above. The following data were collected from each

study: first author’s name, year of publication, country of origin,

ethnicity, source of controls, sample size, and numbers of cases and

controls in the XPG Asp1104His and XPF Arg415Gln genotypes

whenever possible. Ethnicity was categorized as ‘‘Caucasian,’’

‘‘African,’’ (including African Americans) and ‘‘Asian.’’ Two

studies were carried out with Hispanic ethnic groups. When one

study did not state which ethnic groups was included or if it was

impossible to separate participants according to phenotype, the

sample was termed as ‘‘mixed population.’’ Meanwhile, studies

investigating more than one kind of cancer were counted as

individual data set only in subgroup analyses by cancer type. We

did not define any minimum number of patients to include in this

meta-analysis. In case of articles reported different ethnic groups

and different countries or locations, we considered them different

study samples for each category cited above.

Statistical analysis
Crude odds ratios (ORs) together with their corresponding 95%

CIs were used to assess the strength of association between the

XPG Asp1104His and XPF Arg415Gln polymorphisms and the

risk of cancer. The pooled ORs were performed for co-dominant

model (XPG Asp1104His: His/His versus Asp/Asp and Asp/His

versus Asp/Asp, XPF Arg415Gln: Gln/Gln versus Arg/Arg and

Arg/Gln versus Arg/Arg); dominant model (XPG Asp1104His:

Asp/His+His/His versus Asp/Asp, XPF Arg415Gln: Arg/Gln+
Gln/Gln versus Arg/Arg); recessive model (XPG Asp1104His:

Figure 1. Study flow chart explaining the selection of the 72 eligible articles included in the meta-analysis.
doi:10.1371/journal.pone.0088490.g001
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His/His versus Asp/His+Asp/Asp, XPF Arg415Gln: Gln/Gln

versus Arg/Gln+Arg/Arg); and additive model (XPG As-

p1104His: His versus Asp, XPF Arg415Gln: Gln versus Arg),

respectively. Between-study heterogeneity was assessed by calcu-

lating Q-statistic (Heterogeneity was considered statistically signif-

icant if P,0.10) [86] and quantified using the I2 value, a value that

describes the percentage of variation across studies that are due to

heterogeneity rather than chance, where I2 = 0% indicates no

observed heterogeneity, with 25% regarded as low, 50% as

moderate, and 75% as high [87]. If results were not heteroge-

neous, the pooled ORs were calculated by the fixed-effect model

(we used the Q-statistic, which represents the magnitude of

heterogeneity between-studies) [88]. Otherwise, a random-effect

model was used (when the heterogeneity between-studies were

significant) [89]. In addition to the comparison among all subjects,

we also performed stratification analyses by cancer type (if one

cancer type contained less than three individual studies, it was

combined into the ‘‘other cancers’’ group), Moreover, the extent to

which the combined risk estimate might be affected by individual

studies was assessed by consecutively omitting every study from the

meta-analysis (leave-one-out sensitivity analysis). This approach

would also capture the effect of the oldest or first positive study

(first study effect). In addition, we also ranked studies according to

sample size, and then repeated this meta-analysis. Sample size was

classified according to a minimum of 200 participants and those

with fewer than 200 participants. The cite criteria were previously

described [90]. Last, sensitivity analysis was also performed,

excluding studies whose allele frequencies in controls exhibited

significant deviation from the Hardy–Weinberg equilibrium

(HWE), given that the deviation may denote bias. HWE was

calculated by using the goodness-of-fit test, and deviation was

considered when P,0.05. Begg’s funnel plots [91] and Egger’s

linear regression test [92] were used to assess publication bias. If

publication bias existed, the Duval and Tweedie nonparametric

‘‘trim and fill’’ method was used to adjust for it [93]. A meta-

regression analysis was carried out to identify the major sources of

between-studies variation in the results, using the log of the ORs

from each study as dependent variables, and cancer type,

ethnicity, sample size, HWE, and source of controls as the

possible sources of heterogeneity. All of the calculations were

performed using STATA version 10.0 (STATA Corporation,

College Station, TX).

Results

Eligible studies and meta-analysis databases
Fig. 1 graphically illustrates the trial flow chart. A total of 236

articles regarding XPG Asp1104His and XPF Arg415Gln

Figure 2. Begg’s funnel plot for publication bias test between XPG Asp1104His polymorphism and cancer risk (additive model and
dominant model).
doi:10.1371/journal.pone.0088490.g002
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polymorphisms with respect to cancer were identified. After

screening the titles and abstracts, 160 articles were excluded

because they were review articles, case reports, other polymor-

phisms of CYP1A1, or irrelevant to the current study. In addition,

of these published articles, 4 publications [76–79] were excluded

because of their populations overlapped with another 3 included

studies [40,44,68]. Five publications [17,20,40,41,57] including

different case–control groups should be considered as two separate

studies each. As summarized in Table 1, 72 publications with 98

case–control studies were selected among the meta-analysis,

including 32,162 cases and 39,858 controls for XPG Asp1104His

(66 studies from 62 publications) and 17,864 cases and 20,578

controls for XPF Arg415Gln (32 studies from 29 publications).

Among these studies, for XPG Asp1104His, there were 7 bladder

cancer studies, 11 breast cancer studies, 7 colorectal cancer

studies, 5 head and neck cancer studies, 7 lung cancer studies, 4

non-Hodgkin lymphoma studies, 3 glioma studies, 8 melanoma

studies, and 14 studies with the ‘‘other cancers’’. There were 10

breast cancer studies, 3 lung cancer studies, 4 head and neck

cancer studies, 4 colorectal cancer, 3 glioma studies, and 8 studies

with the ‘‘other cancers’’ for XPF Arg415Gln. All of the cases were

pathologically confirmed.

XPG Asp1104His
The evaluations of the association of XPG Asp1104His

polymorphism with cancer risk are shown in Table 2. Overall,

significantly increased risk of cancer was observed in dominant

model (OR = 1.05, 95% confidence interval [CI] = 1.00–1.10, P

value of heterogeneity test [Ph] = 0.001, I2 = 40.4) and in Asp/His

versus Asp/Asp (OR = 1.06, 95% CI = 1.01–1.11, Ph,0.001,

I2 = 43.3) when all the eligible studies were pooled into the

meta-analysis. Then we performed subgroup analysis by cancer

type. No significant association was found in any cancer type, such

as breast cancer (dominant model: OR = 1.01, 95% CI = 0.94–

1.09, Ph = 0.128, I2 = 33.8, recessive model: OR = 0.95, 95%

CI = 0.83–1.09, Ph = 0.173, I2 = 28.6; additive model: OR = 1.00,

95% CI = 0.93–1.09, Ph = 0.098, I2 = 37.8; His/His versus Asp/

Asp: OR = 0.99, 95% CI = 0.86–1.14, Ph = 0.185, I2 = 27.2; Asp/

His versus Asp/Asp: OR = 1.02, 95% CI = 0.94–1.10, Ph = 0.136,

I2 = 32.8), lung cancer (dominant model: OR = 1.13, 95%

CI = 0.98–1.31, Ph = 0.045, I2 = 53.4, recessive model:

OR = 1.04, 95% CI = 0.93–1.17, Ph = 0.212, I2 = 28.4; additive

model: OR = 1.08, 95% CI = 0.98–1.19, Ph = 0.073, I2 = 48.0;

His/His versus Asp/Asp: OR = 1.15, 95% CI = 0.94–1.42,

Ph = 0.071, I2 = 48.3; Asp/His versus Asp/Asp: OR = 1.13, 95%

CI = 0.98–1.31, Ph = 0.077, I2 = 47.3), and so on.

We further examined the association of the XPG Asp1104His

polymorphism and cancer risk according to cancer type and

ethnicity (Table 3). For samples of Caucasians, significant

association was only be found in head and neck cancer (His/His

vs. Asp/His+Asp/Asp: OR = 0.71, 95% CI = 0.51–0.97,

Ph = 0.271, I2 = 23.5%) but not bladder cancer (dominant model:

OR = 0.99, 95% CI = 0.88–1.12, Ph = 0.673, I2 = 0.0, recessive

model: OR = 0.84, 95% CI = 0.50–1.41, Ph = 0.078, I2 = 56.0;

additive model: OR = 0.98, 95% CI = 0.89–1.08, Ph = 0.433,

I2 = 0.0; His/His versus Asp/Asp: OR = 0.85, 95% CI = 0.51–

1.42, Ph = 0.090, I2 = 53.8; Asp/His versus Asp/Asp: OR = 1.01,

95% CI = 0.89–1.15, Ph = 0.688, I2 = 0.0), breast cancer (domi-

nant model: OR = 1.07, 95% CI = 0.92–1.24, Ph = 0.065,

I2 = 51.8, recessive model: OR = 1.07, 95% CI = 0.86–1.32,

Ph = 0.221, I2 = 28.6; additive model: OR = 1.03, 95%

CI = 0.95–1.12, Ph = 0.113, I2 = 43.8; His/His versus Asp/Asp:

OR = 1.08, 95% CI = 0.87–1.34, Ph = 0.215, I2 = 29.3; Asp/His

versus Asp/Asp: OR = 1.07, 95% CI = 0.91–1.26, Ph = 0.048,
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I2 = 55.2), and so on. For samples of Asians, significant association

was found in lung cancer (dominant model: OR = 1.27, 95%

CI = 1.06–1.51, Ph = 0.133, I2 = 50.5%; His/His versus Asp/Asp:

OR = 1.28, 95% CI = 1.02–1.60, Ph = 0.516, I2 = 0.0%; additive

model: OR = 1.13, 95% CI = 1.02–1.26, Ph = 0.130, I2 = 50.9%).

We also examined the association of the XPG Asp1104His

polymorphism and cancer risk according to cancer type and

source of controls (Table 4). For the population-based studies, no

significant association was found between XPG Asp1104His

polymorphism and cancer risk according to cancer type and

source of controls. For the hospital-based studies, significant

association was observed among breast cancer (recessive model:

OR = 0.71, 95% CI = 0.55–0.92, Ph = 0.262, I2 = 24.9%; His/His

versus Asp/Asp: OR = 0.74, 95% CI = 0.55–0.98, Ph = 0.213,

I2 = 33.3%), colorectal cancer (dominant model: OR = 1.33, 95%

CI = 1.15–1.55, Ph = 0.188, I2 = 0.0%; additive model: OR = 1.13,

95% CI = 1.02–1.25, Ph = 0.971, I2 = 0.0%), and other cancer

(His/His versus Asp/Asp: OR = 1.22, 95% CI = 1.01–1.47,

Ph = 0.322, I2 = 13.5%) but not lung cancer (dominant model:

OR = 1.22, 95% CI = 0.91–1.63, Ph = 0.030, I2 = 66.4, recessive

model: OR = 1.15, 95% CI = 0.96–1.37, Ph = 0.105, I2 = 51.1;

additive model: OR = 1.13, 95% CI = 0.95–1.35, Ph = 0.057,

I2 = 60.1; His/His versus Asp/Asp: OR = 1.32, 95% CI = 0.95–

1.85, Ph = 0.095, I2 = 53.5; Asp/His versus Asp/Asp: OR = 1.21,

95% CI = 0.89–1.63, Ph = 0.035, I2 = 65.2) and head and neck

cancer (dominant model: OR = 1.04, 95% CI = 0.89–1.22,

Ph = 0.548, I2 = 0.0, recessive model: OR = 0.88, 95% CI = 0.66–

1.16, Ph = 0.135, I2 = 50.1; additive model: OR = 1.00, 95%

CI = 0.88–1.13, Ph = 0.441, I2 = 0.0; His/His versus Asp/Asp:

OR = 0.90, 95% CI = 0.66–1.22, Ph = 0.115, I2 = 53.2; Asp/His

versus Asp/Asp: OR = 1.08, 95% CI = 0.91–1.27, Ph = 0.591,

I2 = 0.0), and so on.

There was significant heterogeneity among these studies for

dominant model comparison (Ph = 0.001), recessive model com-

parison (Ph = 0.073), additive model comparison (Ph = 0.008),

homozygote model comparison (Ph = 0.012), and heterozygote

model comparison (Ph,0.001). Then, we assessed the source of

heterogeneity by ethnicity, cancer type, source of controls, HWE,

and sample size. The results indicated that sample size (recessive

model: P = 0.038) but not cancer type (dominant model: P = 0.782;

recessive model: P = 0.208; His/His versus Asp/Asp: P = 0.336;

Asp/His versus Asp/Asp: P = 0.825; additive model: P = 0.556),

ethnicity (dominant model: P = 0.298; recessive model: P = 0.119;

His/His versus Asp/Asp: P = 0.066; Asp/His versus Asp/Asp:

P = 0.449; additive model: P = 0.241), source of controls (dominant

model: P = 0.433; recessive model: P = 0.821; His/His versus Asp/

Asp: P = 0.634; Asp/His versus Asp/Asp: P = 0.358; additive

model: P = 0.429), and HWE (dominant model: P = 0.126;

recessive model: P = 0.660; His/His versus Asp/Asp: P = 0.272;

Asp/His versus Asp/Asp: P = 0.123; additive model: P = 0.217)

contributed to substantial heterogeneity among the meta-analysis.

Examining genotype frequencies in the controls, significant

deviation from HWE was detected in the eight studies

[10,26,43,44,45,53,80,81]. When these studies were excluded,

the results were changed among overall cancer (dominant model:

OR = 1.03, 95% CI = 0.99–1.08), Asians of lung cancer (dominant

model: OR = 1.15, 95% CI = 0.95–1.41; His/His versus Asp/Asp:

OR = 1.20, 95% CI = 0.92–1.55; additive model: OR = 1.10, 95%

CI = 0.96–1.25), and hospital-based studies of other cancer

(recessive model: OR = 1.23, 95% CI = 1.02–1.49; His/His versus

Asp/Asp: OR = 1.20, 95% CI = 0.97–1.48), as shown in Table 5.

In addition, when the meta-analysis was performed excluding

studies with small sample sizes, the results did not change among

overall cancer studies and any subgroup analysis, as shown in

Table 6. Last, a single study involved in the meta–analysis was

deleted each time to reflect the influence of individual data set to

the pooled ORs, the results were changed among Caucasians of

head and neck cancer (recessive model: OR = 0.75, 95%

CI = 0.53–1.06), hospital-based studies of breast cancer (recessive

model: OR = 1.22, 95% CI = 0.98–1.52; Gln/Gln versus Arg/

Arg: OR = 0.79, 95% CI = 0.51–1.24), hospital-based studies of

colorectal cancer (dominant model: OR = 1.15, 95% CI = 0.92–

1.45; additive model: OR = 1.12, 95% CI = 0.92–1.35).

Both Begg’s funnel plot and Egger’s test were performed to

assess the publication bias of literatures. The Egger’s test results

(dominant model: P = 0.245; recessive model: P = 0.482; additive

model: P = 0.581; Homozygote model: P = 0.443; Heterozygote

model: P = 0.148) and Begg’s funnel plot (Fig. 2) suggested no

evidence of publication bias in the meta-analysis.

Figure 3. Begg’s funnel plot for publication bias test between XPF Arg415Gln polymorphism and cancer risk (additive model and
dominant model).
doi:10.1371/journal.pone.0088490.g003
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XPF Arg415Gln
The evaluations of the association of XPF Arg415Gln

polymorphism with cancer risk are shown in Table 2. No

significant association was observed between XPF Arg415Gln

polymorphism and cancer risk when all the eligible studies were

pooled into the meta-analysis (dominant model: OR = 1.04, 95%

CI = 0.93–1.15, Ph,0.001, I2 = 62.6; recessive model: OR = 1.11,

95% CI = 0.81–1.52, Ph = 0.068, I2 = 30.5; additive model:

OR = 1.05, 95% CI = 0.94–1.16, Ph,0.001, I2 = 66.7; Gln/Gln

versus Arg/Arg: OR = 1.10, 95% CI = 0.79–1.54, Ph = 0.035,

I2 = 35.7; Arg/Gln versus Arg/Arg: OR = 1.02, 95% CI = 0.91–

1.14, Ph,0.001, I2 = 62.5). Then we performed subgroup analysis

by cancer type. Significant association was found among lung

cancer (dominant model: OR = 0.82, 95% CI = 0.71–0.96,

Ph = 0.104, I2 = 55.7%; Arg/Gln versus Arg/Arg: OR = 0.83,

95% CI = 0.71–0.97, Ph = 0.132, I2 = 50.7%; additive model:

OR = 0.83, 95% CI = 0.72–0.95, Ph = 0.091, I2 = 58.4%) but not

breast cancer (dominant model: OR = 1.03, 95% CI = 0.92–1.15,

Ph = 0.167, I2 = 30.2; recessive model: OR = 1.22, 95% CI = 0.82–

1.83, Ph = 0.017, I2 = 58.9; additive model: OR = 1.01, 95%

CI = 0.83–1.22, Ph = 0.034, I2 = 52.0; Gln/Gln versus Arg/Arg:

OR = 1.18, 95% CI = 0.76–1.83, Ph = 0.007, I2 = 63.8; Arg/Gln

versus Arg/Arg: OR = 0.99, 95% CI = 0.87–1.12, Ph = 0.277,

I2 = 18.6), head and neck cancer (dominant model: OR = 1.04,

95% CI = 0.88–1.23, Ph = 0.359, I2 = 6.9; recessive model:

OR = 1.47, 95% CI = 0.72–2.98, Ph = 0.364, I2 = 5.8; additive

model: OR = 1.05, 95% CI = 0.90–1.23, Ph = 0.302, I2 = 17.7;

Gln/Gln versus Arg/Arg: OR = 1.48, 95% CI = 0.73–3.00,

Ph = 0.370, I2 = 4.5; Arg/Gln versus Arg/Arg: OR = 1.02, 95%

CI = 0.86–1.21, Ph = 0.323, I2 = 13.9), and so on.

We further examined the association of the XPF Arg415Gln

polymorphism and cancer risk according to cancer type and

ethnicity (Table 3). For the samples of Caucasians, no significant

association was found among breast cancer (dominant model:

OR = 1.10, 95% CI = 0.96–1.25, Ph = 0.396, I2 = 3.9; recessive

model: OR = 2.17, 95% CI = 0.68–6.88, Ph = 0.022, I2 = 61.9;

additive model: OR = 1.10, 95% CI = 0.89–1.35, Ph = 0.094,

I2 = 46.8; Gln/Gln versus Arg/Arg: OR = 2.07, 95% CI = 0.56–

7.62, Ph = 0.008, I2 = 68.2; Arg/Gln versus Arg/Arg: OR = 1.05,

95% CI = 0.89–1.23, Ph = 0.522, I2 = 0.0), head and neck cancer

(dominant model: OR = 1.04, 95% CI = 0.88–1.23, Ph = 0.359,

I2 = 6.9; recessive model: OR = 1.47, 95% CI = 0.72–2.98,

Ph = 0.364, I2 = 5.8; additive model: OR = 1.05, 95% CI = 0.90–

1.23, Ph = 0.302, I2 = 17.7; Gln/Gln versus Arg/Arg: OR = 1.48,

95% CI = 0.73–3.00, Ph = 0.370, I2 = 4.5; Arg/Gln versus Arg/

Arg: OR = 1.02, 95% CI = 0.86–1.21, Ph = 0.323, I2 = 13.9), and

so on.

We also examined the association of the XPF Arg415Gln

polymorphism and cancer risk according to cancer type and

source of controls (Table 4). For the population-based studies, no

significant association was found among breast cancer (dominant

model: OR = 1.02, 95% CI = 0.90–1.16, Ph = 0.158, I2 = 37.3;

recessive model: OR = 1.05, 95% CI = 0.29–3.77, Ph = 0.098,

I2 = 49.0; additive model: OR = 0.96, 95% CI = 0.77–1.20,

Ph = 0.069, I2 = 54.0; Gln/Gln versus Arg/Arg: OR = 1.05, 95%

CI = 0.29–3.81, Ph = 0.093, I2 = 49.7; Arg/Gln versus Arg/Arg:

OR = 1.00, 95% CI = 0.87–1.15, Ph = 0.133, I2 = 43.2) and other

cancer (dominant model: OR = 1.03, 95% CI = 0.91–1.17,

Ph = 0.477, I2 = 0.0; recessive model: OR = 1.48, 95% CI = 0.84–

2.60, Ph = 0.354, I2 = 7.9; additive model: OR = 1.05, 95%

CI = 0.93–1.17, Ph = 0.731, I2 = 0.0; Gln/Gln versus Arg/Arg:

OR = 1.48, 95% CI = 0.84–2.60, Ph = 0.386, I2 = 1.2; Arg/Gln

versus Arg/Arg: OR = 1.02, 95% CI = 0.90–1.15, Ph = 0.286,

I2 = 20.2). For the hospital-based studies, no significant association

was also observed among breast cancer (dominant model:

OR = 1.04, 95% CI = 0.78–1.39, Ph = 0.178, I2 = 38.9; recessive

model: OR = 3.66, 95% CI = 0.38–34.9, Ph = 0.009, I2 = 78.7;

additive model: OR = 1.13, 95% CI = 0.73–1.73, Ph = 0.054,

I2 = 60.7; Gln/Gln versus Arg/Arg: OR = 3.39, 95% CI = 0.26–

43.9, Ph = 0.003, I2 = 82.8; Arg/Gln versus Arg/Arg: OR = 0.92,

95% CI = 0.68–1.25, Ph = 0.463, I2 = 0.0) and other cancer

(dominant model: OR = 0.79, 95% CI = 0.59–1.07, Ph = 0.035,

I2 = 70.1; recessive model: OR = 0.70, 95% CI = 0.39–1.25,

Ph = 0.341, I2 = 6.9; additive model: OR = 0.80, 95% CI = 0.61–

1.05, Ph = 0.045, I2 = 67.7; Gln/Gln versus Arg/Arg: OR = 0.69,

95% CI = 0.38–1.24, Ph = 0.347, I2 = 5.6; Arg/Gln versus Arg/

Arg: OR = 0.81, 95% CI = 0.59–1.10, Ph = 0.033, I2 = 70.8).

There was significant heterogeneity among these studies for

dominant model comparison (Ph,0.001), recessive model com-

parison (Ph = 0.068), additive model comparison (Ph,0.001),

homozygote model comparison (Ph = 0.035), and heterozygote

model comparison (Ph,0.001). Then, we assessed the source of

heterogeneity by ethnicity, cancer type, source of controls, HWE,

and sample size. Meta-regression analysis indicated that HWE

(Arg/Gln versus Arg/Arg: P,0.001; additive model: P = 0.001;

dominant model: P,0.001) and ethnicity (Gln/Gln versus Arg/

Arg: P = 0.001; recessive model: P = 0.001) but not cancer type

(dominant model: P = 0.446; recessive model: P = 0.344; Gln/Gln

versus Arg/Arg: P = 0.314; Arg/Gln versus Arg/Arg: P = 0.694;

additive model: P = 0.456), source of controls (dominant model:

P = 0.710; recessive model: P = 0.218; Gln/Gln versus Arg/Arg:

P = 0.221; Arg/Gln versus Arg/Arg: P = 0.558; additive model:

P = 0.962), and sample size (dominant model: P = 0.125; recessive

model: P = 0.255; Gln/Gln versus Arg/Arg: P = 0.076; Arg/Gln

versus Arg/Arg: P = 0.252; additive model: P = 0.153) contributed

to substantial heterogeneity among the meta-analysis. Examining

genotype frequencies in the controls, significant deviation from

HWE was detected in the two studies [81,82]. When these two

studies were excluded, the results were not changed among overall

cancer and any subgroup analysis, as shown in Table 5. In

addition, when the meta-analysis was performed excluding studies

with small sample sizes, the results did not also change among

overall cancer and any subgroup analysis, as shown in Table 6.

Last, a single study involved in the meta–analysis was deleted each

time to reflect the influence of individual data set to the pooled

ORs, the results did not also change among this meta-analysis,

indicating that our results did not influenced statistically robust.

Both Begg’s funnel plot and Egger’s test were performed to

assess the publication bias of literatures. The Egger’s test results

(P = 0.171; recessive model: P = 0.437; additive model: P = 0.114;

Homozygote model: P = 0.425; Heterozygote model: P = 0.229)

and Begg’s funnel plot (Fig. 3) suggested no evidence of

publication bias in the meta-analysis.

Discussion

NER is a crucial DNA repair mechanism, which counteracts the

consequences of mutagenic exposure of cell. XPF and XPG are

both central players in the NER pathway, and involved in incision

59 and 39-ends, respectively, of the DNA lesion. A number of

epidemiological studies have evaluated the association between

XPG Asp1104His and XPF Arg415Gln polymorphisms and

cancer risk, but the results remain inconclusive.

For instance, McWilliams et al. [38] reported a significantly

decreased pancreatic cancer risk with XPF Arg415Gln polymor-

phism (P = 0.003). But Liu et al. [64] reported a significantly

increased colorectal cancer risk associated with the variant allele of

XPG Asp1104His. Goncalves et al. [66] found that significantly

XPG Asp1104His and XPF Arg415Gln and Cancer Risk
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decreased melanoma cancer risk with the XPG 1104 His/His

genotype (OR = 0.32; 95% CI = 0.13–0.75). However, Berhane et

al. [74] found that statistically significant increased risk of prostate

cancer was observed on individuals that posses His/His genotype

of XPG (OR = 2.53, 95% CI = 0.99–6.56, P = 0.031). Ming-

Shiean et al. [59] reported a significantly increased breast cancer

risk with the variant allele of XPG Asp1104His (OR = 1.42; 95%

CI = 1.08–1.97). He et al. [45] found that Women carrying

homozygous Asp1104Asp genotypes had a significantly decreased

risk of cervical or cervical squamous cell carcinoma compared to

His1104Asp or His1104His genotypes. Smith et al. [8] reported a

statistically significant difference in the XPF Arg415Gln genotype

distributions between breast cancer cases and controls (P = 0.02).

Furthermore, Kumar et al. [9] reported a marginally significant

increase in breast cancer risk associated with the variant allele of

XPG Asp1104His. What’s more, more studies did not find obvious

association among them. In order to resolve this conflict, a meta-

analysis of 98 eligible studies including 32,162 cases and 39,858

controls for XPG Asp1104His and 17,864 cases and 20,578

controls for XPF Arg415Gln was performed to derive a more

precise estimation of the association.

Overall, significantly elevated cancer risk was found when all

studies were pooled into the meta-analysis of XPG Asp1104His

(dominant model: OR = 1.05, 95% CI = 1.00–1.10; Asp/His

versus Asp/His: OR = 1.06, 95% CI = 1.01–1.11). Based on

biochemical properties described for XPG Asp1104His and XPF

Arg415Gln polymorphisms, we would expect that the His or Gln

alleles would be associated for all types of cancer. However, our

results showed that such association was observed just among lung

cancer (dominant model: OR = 0.82, 95% CI = 0.71–0.96; Asp/

His versus Asp/Asp: OR = 0.83, 95% CI = 0.71–0.97; additive

model: OR = 0.83, 95% CI = 0.72–0.95) for XPF Arg415Gln and

hospital-based studies of other cancer (dominant model:

OR = 1.23, 95% CI = 1.02–1.49) for XPG Asp1104His, suggesting

that other factors may be modulating the XPG Asp1104His and

XPF Arg415Gln polymorphisms functionality. However, the exact

mechanism for association between different tumor sites and XPG

Asp1104His and XPF Arg415Gln polymorphisms was not clear,

carcinogenetic mechanism may differ by different tumor sites and

the XPG Asp1104His and XPF Arg415Gln genetic variants may

exert varying effects in different cancers. Hung et al. [44] reported

a marginally significantly decreased lung cancer risk with the

variant allele of XPF Arg415Gln (dominant model: OR = 0.78,

95% CI = 0.67–0.91). Our results seem to confirm and establish

the trend in the meta-analysis of XPF Arg415Gln polymorphism

and lung cancer risk that the data by Hung et al. [40] had

indicated. However, at any case, the association between XPF

Arg415Gln and lung cancer risk remain an open field, as the

number of studies (n = 3 for Arg415Gln) is considerably smaller

than that needed for the achievement of robust conclusions [94].

In the subgroup analysis by source of control and cancer type,

significantly increased other cancer association was found among

the hospital-based studies for the XPG Asp1104His polymor-

phism, but not the population-based studies. However, the

hospital-based studies may have certain biases for such controls

and may only represent a sample of an ill-defined reference

population, and may not be representative of the general

population or it may be that numerous subjects in the

population-based controls were susceptible individuals. The results

only indicate that participation of XPG Asp1104His may be a

genetic susceptibility for other cancer. Therefore, the use of proper

and representative population-based controls control subjects is

important to reduce biases and in such genetic studies.

We noticed with great interest that 2 previous meta-analysis had

been reported on the cancer risk with XPG Asp1104His and XPF

Arg415Gln polymorphisms [84,85]. Zhu et al. [84] had 49 case–

control studies, in which a total of 23,490 cases and 27,168

controls were included. Their meta-analysis suggested that it was

unlikely that the XPG Asp1104His polymorphism may contribute

to individual susceptibility to cancer risk. Shi et al. [85] had 23

case-control studies, in which a total of 14,632 cancer cases and

15,545 controls. Their meta-analysis suggested that it was unlikely

that the XPF Arg415Gln polymorphism may contribute to

individual susceptibility to cancer risk. However, several published

studies were not included in that meta-analysis [84,85]. By

analyzing a larger number of studies than the previous meta-

analysis [84,85], our meta-analysis included 32,162 cases and

39,858 controls (from 66 studies) for XPG Asp1104His and 17,864

cases and 20,578 controls (from 32 studies) for XPF Arg415Gln to

perform the two gene polymorphisms and cancer risk. Our meta-

analysis suggests that XPF Arg415Gln polymorphism may be

associated with decreased lung cancer risk and XPG Asp1104His

may be a low-penetrant risk factor in some cancer development.

Our results seem to confirm and establish the trend in the meta-

analysis of the XPG Asp1104His and XPF Arg415Gln polymor-

phisms according to the previous meta-analysis [84,85].

In the present meta-analysis, between-studies heterogeneity was

observed between XPG Asp1104His and XPF Arg415Gln

polymorphisms and cancer of risk. Meta-regression analysis

indicated that HWE contributed to substantial heterogeneity

among the meta-analysis for XPF Arg415Gln polymorphism and

sample size contributed to substantial heterogeneity among the

meta-analysis for XPG Asp1104His. Deviation of HWE may

reflect methodological problems such as genotyping errors,

population stratification or selection bias. When these studies

were excluded, the results were changed among overall cancer and

some subgroup analyses for XPG Asp1104His, indicating that our

meta-analysis was not statistically robust. Hence, significant

association may be not existed in some cancer types when the

results were changed. When the meta-analysis was performed

excluding studies with small sample sizes, the results did not

change among overall cancer studies and any subgroup analysis,

indicating that small sample sizes did not influenced statistically

robust.

Our meta-analysis has several strengths. First, a systematic

review of the association of XPG Asp1104His and XPF

Arg415Gln polymorphisms with cancer risk is statistically more

powerful than any single study. Second, the quality of eligible

studies included in current meta-analysis was satisfactory and met

our inclusion criterion. Third, we did not detect any publication

bias indicating that the whole pooled results should be unbiased.

However, although we have put considerable efforts and resources

into testing possible association between XPG Asp1104His and

XPF Arg415Gln polymorphisms and cancer risk, there are still

some limitations inherited from the published studies. First, our

results were based on single-factor estimations without adjustment

for other risk factors including alcohol usage, environmental

factors and other lifestyles. At lower levels of alcohol consumption,

the difference in cancer risk between the various gene carriers was

less striking. And higher levels of alcohol consumption result in

production of more acetaldehyde which then can exert its

carcinogenic effect [95]. Second, in the subgroup analysis may

have had insufficient statistical power to check an association.

Third, the controls were not uniformly defined. Some studies used

a healthy population as the reference group, whereas others

selected hospital patients without organic cancer as the reference

group. Therefore, non-differential misclassification bias is possible
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because these studies may have included the control groups who

have different risks of developing cancer of various organs.

In conclusion, this meta-analysis suggests that XPF Arg415Gln

polymorphism may be associated with decreased lung cancer risk

and XPG Asp1104His may be a low-penetrant risk factor in some

cancer development. However, it is necessary to conduct large

sample studies using standardized unbiased genotyping methods,

homogeneous cancer patients and well-matched controls. More-

over, further studies estimating the effect of gene–gene and gene–

environment interactions may eventually lead to our better,

comprehensive understanding of the association between the XPF

Arg415Gln and XPG Asp1104His polymorphisms and cancer

risk.
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