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ABSTRACT Halomonas hydrothermalis strain Slthf2 is a Gram-negative bacterium
isolated from low-temperature hydrothermal fluids in South Pacific Ocean vent fields
located at 2,580-m depth. Here, we report the complete genome sequence of this
strain, which has a genome size of 4.12 Mb, with a GC content of 53.2%.

Halomonas hydrothermalis strain Slthf2 (ATCC BAA-800, CECT 5814, DSM 15725) is a
Gram-negative, psychrotolerant, and moderately halophilic bacterium classified in

the phylum Proteobacteria, order Oceanospirillales, and family Halomonadaceae. It was
first isolated by Kaye et al. from low-temperature hydrothermal fluid at 2,580-m depth
in the South Pacific Ocean near Easter Island (1). Some Halomonas strains produce
polyhydroxybutyrate (PHB), which can be used as a substitute for petroleum plastics
(2–4). In addition, a wide variety of carbon sources can be used for growth, including
waste glycerol from the biodiesel manufacturing process, as well as PHB production (5).
Therefore, here, we report the complete genome sequence of H. hydrothermalis strain
Slthf2 to better understand the potential for industrial use of Halomonas species as PHB
producers.

We picked one colony of H. hydrothermalis strain Slthf2 (obtained from J. Z. Kaye)
and cultured it overnight at 37°C in SW10 culture solution, which had the following
composition (% [wt/vol]): NaCl (8.1), MgCl2 (0.7), MgSO4 (0.96), CaCl2 (0.036), KCl (0.2),
NaHCO3 (0.006), NaBr (0.0026), proteose peptone (Difco; 0.5), yeast extract (Difco; 1.0),
glucose (0.1), and agar (1.5). The genomic DNA was extracted using Genomic-tip 20/G
(Qiagen) according to the manufacturer’s protocol. The long-read sequence libraries
were prepared using a rapid barcoding kit (SQK-RBK004; Oxford Nanopore Technolo-
gies) and were sequenced using the GridION device with a FLO-MIN106 flow cell
(Oxford Nanopore Technologies). Illumina sequencing was performed for error correc-
tion by using a KAPA HyperPlus kit (Kapa Biosystems) for library preparation and a
NextSeq 500 sequencer for sequencing using high-output mode and a run of 75 cycles
(Illumina). Reads with at least 40,000 bp were used for the de novo assembly (71-fold
coverage; 5,165 out of 266,015 sequenced reads) using Canu v1.8 (6), and the assem-
bled single contig was manually circularized by eliminating an overlapping end.
Contigs obtained from the assembly were further polished using Pilon v1.23 (7) with
the short reads. The assembly completeness was assessed by BUSCO v1 (8) on the
gVolante server (9), and the resulting genome sequence was functionally annotated
using the DDBJ Fast Annotation and Submission Tool (DFAST) pipeline (10). The
assembled genome consists of one circular chromosome of 4,120,823 bp having 53.2%
GC content, including 3,761 coding sequences (CDSs), 60 tRNAs, and 18 rRNAs. All
software programs were used with the default settings.
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According to the annotation results, the genome of H. hydrothermalis strain Slthf2
encodes genes related to PHB production (LOCUS_04570), which is in agreement with
previous reports (5). This information will be useful for revealing the production of
PHB mediated by H. hydrothermalis and for contributing to the field of metabolic
engineering.

Data availability. The chromosome sequence reported here was deposited in DDBJ

under accession number AP022843, and the raw reads were deposited in the Sequence
Read Archive (SRA) under BioProject accession number PRJNA606145.
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