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Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calid-
oustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis
for further genome mining.
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Aspergillus is the most studied filamentous genus in the asco-
mycetes division. It contains well-known human pathogens

(e.g., A. fumigatus, A. terreus), fermentation agents of Asian food
(e.g., A. oryzae), and different industrial producers (e.g., A. niger
and A. flavus) (1). Additionally, the genus is well studied because
of its immense source of natural products (2). The worldwide
distributed Aspergillus calidoustus was recently separated from the
mesophilic species A. ustus (3). A. calidoustus was predominantly
isolated from indoor environments and immunocompromised
patients (3, 4).

Strain SF006504 was identified as A. calidoustus based on the
�-tubulin sequence (100% similarity with the ex-type strain CBS
121601). Genomic DNA was obtained from a sample cultured in
Aspergillus minimal medium (AMM) (5). For Illumina MiSeq V2
DNA sequencing, four different libraries were prepared (paired-
end [PE], 2kbp-MP, 5kbp-MP, 8kbp-MP). The genome assembly
was generated using Allpaths-LG (6). RNA-seq data was obtained
for three replicates for standard growth, hypoxic, and iron deple-
tion conditions. Sequencing was performed with Illumina HiSeq
2000 (LGC Genomics, Berlin).

For gene prediction, we customized and augmented the pipe-
line of Haas et al. (7) as previously described (8), applying ab initio
prediction tools, tools incorporating transcriptome data, and pro-
tein alignments. If applicable, the parameter sets for each tool were
trained using the transcriptome assembly. All gene predictions
were combined using EVidenceModeller and PASA (9).

For ab initio gene prediction, we applied GeneMark-ES (10),
Augustus (11), and SNAP (12). Transcriptome data was incorpo-
rated into Augustus (11), FGENESH (13), and PASA (14), which
utilized genome-guided and genome-independent transcriptome
assemblies produced by Trinity (15) and Cufflinks (16).

Protein alignments were obtained by mapping protein se-
quences from A. fumigatus, A. nidulans, A. oryzae, A. terreus, and
A. niger (downloaded from the Aspergillus Genome Database
[17]), using Exonerate (18) and Scipio (19).

Functional annotation was performed using Blast2GO (20)
and InterproScan (21). Gene descriptions were obtained by blast-
ing the predicted protein sequences against fungal UniProt
KnowledgeBase. Matches with e-values below 10�5, 70% se-
quence identity, and a subject hit length of 70% were considered as
highly similar. Secondary metabolite gene clusters were predicted
using SMURF (22).

DNA-sequencing resulted in 59,066,664 raw reads, where
50,376,036 reads passed our quality-filter (estimated genome cov-
erage, 300-fold) and have been used for genome assembly. The
resulting assembly consists of 78 scaffolds and 41.1 Mbp (N50

3.2Mbp; N90 493 kbp). The total G�C content was 51%. RNA-
sequencing resulted in a total of 393,543,839 raw reads and
352,698,587 preprocessed reads (estimated genome coverage,
850-fold). The final structural gene prediction resulted in 15,139
gene models and 15,537 transcripts. 484 eukaryotic core proteins
were identified using CEGMA (23). The coding density of the
genome was 60%. We assigned functional names to 5,572 tran-
scripts, gene ontology (GO) categories to 8,352 transcripts, and
protein domains to 13,610 transcripts. 3,771 transcripts were pre-
dicted to contain transmembrane domains, and 749 transcripts
have been assigned to 53 secondary metabolite gene clusters. GO
annotations have been made available for downstream analysis at
FungiFun2 (24).

Nucleotide sequence accession numbers. This genome proj-
ect was uploaded to DDBJ/ENA/GenBank and is available under
accession numbers CDMC01000001 to CDMC01000078. This
paper describes the first version of the genome. Genome data and
additional information are also available at the HKI Genome Re-
source (http://www.genome-resource.de/).
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