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Abstract

With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing
healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local
optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield
computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE
for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel
small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C.
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Introduction

All protein-ligand docking programs used for high throughput

virtual screening use scoring functions for evaluating the relative

positions of ligands and macromolecules [1,2]. Mathematical

optimization techniques are applied to find the best scoring

position of the ligand in the macromolecule. With the additional

need to allow ligand flexibility, this search for the best ligand

position corresponds to a mathematical optimization problem of

high dimensional space: the 3D position of the rigid small

molecule can be described by 3 real numbers describing one atom

of the small molecule plus 3 real numbers describing the Euler-

angles. Every rotatable bond adds one additional dimension.

Therefore a small molecule with 8 rotatable bonds needs to be

optimized in the 3+3+8 = 14-dimensional real space. Computa-

tionally optimizing complex energy-like scoring functions of small

molecule – macromolecule pairs in 14-dimensional space becomes

a formidable task. In this work we compare our solution, the

FRIGATE docking program, with 8 benchmark docking pro-

grams and demonstrate that FRIGATE yields promising small

molecule ligands for the Mycobacterium tuberculosis (Mtb) enzyme

antigen 85C.

Tuberculosis (TB) is the second highest cause of death from

infectious disease, killing 1.6 million people annually. An estimated

one third of the world population is latently infected with Mtb, the

causative agent of TB [3]. While vaccination is largely ineffective

in preventing adult pulmonary disease, the WHO recommended

multi-drug treatment comprises 2 months of directly observed

therapy with isoniazid, rifampicin, pyrazinamide and ethambutol

followed by a minimum of 4 months of isoniazid and rifampicin.

The complexity and duration of this treatment leads to poor

disease control and the emergence of multi drug-resistant (MDR)

and extensive drug-resistant (XDR) TB. Present second-line

antibiotics for the treatment of resistant TB are inherently

inadequate either due to limited efficacy or associated toxicities,

indicating a high medical need for more field-effective anti-

tuberculars [4].

The discovery of efficacious anti-tuberculars is particularly

demanding due to the mycolic acid shield of the mycobacterial cell

wall, which is essential for both viability and virulence of Mtb and

targeted by the first-line anti-tuberculars isoniazid and ethambutol

[5]. Cell wall mycolic acids are b-branched, c-hydroxy fatty acids

of 70 to 90 carbon atoms occurring as esters of arabinogalactan-

peptidoglycan (mAGP) and trehalose, an a-1,19-glucose disaccha-

ride [6]. The transfer of mycolic acids from trehalose mono-

mycolate (TMM) to trehalose dimycolate (TDM, cord factor) is

catalyzed by the transferases antigen 85A, B and C (Ag85A, B, C)

[7], which possess an almost invariant active site composed of a
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catalytic serine oxyanion positioned between the trehalose binding

site and an extended hydrophobic channel thought to harbor the

mycolic acid chain [8,9].

Genetic knock-out of Ag85C in Mtb suppresses the amount of

cell-wall linked mycolic acids by 40%, and knock-out of the Ag85A

gene results in loss of Mtb replication in human and mouse

macrophages [10]. RNA interference knock-down of Ag85A, B

and C slows down Mtb growth in broth by 2 log units [11].

Covalent small molecule blockage with 6-azido-69-deoxytrehalose

weakly inhibits the growth of Mycobacterium aurum with a minimum

inhibitory concentration (MIC) of 200 mg/mL [7]. Immunological

analysis of TB infected patients shows that Ag85A, B, C and D

belong to the major Mtb antigens, indicating that these proteins are

accessible to immune cells and probably small molecules.

Considering these data and the therapeutic success of other cell

wall biosynthesis inhibitors, we chose Ag85C as a promising

surrogate target for the discovery of new anti-tuberculars by

computational screening.

Here we report the identification of the novel binder N-[3-(1H-

imidazol-1-yl)propyl]-1-benzyl-9-methyl-4-oxo-1,4-dihydropyr-

ido[1,2-a]pyrrolo[2,3-d]pyrimidine-2-carboxamide (1) to the cata-

lytic site of Ag85C by the novel FRIGATE virtual screening

algorithm. The binding site of 1 is experimentally confirmed by

protein-detected NMR spectroscopy. Moreover we demonstrate

that 1 inhibits the growth of Msmeg and MDR-Mtb in liquid broth

at MICs of 50 and 20 mg/mL, respectively.

Results and Discussion

FRIGATE facilitates local optimization of ligand poses
Conceptually virtual screening is one of the fastest and most

resource sparing approaches for identifying drug-like ligands to

protein targets of known 3D structure. The scoring functions of

virtual screening algorithms are frequently related to the molecular

energies or potential functions. The exact description of the force

fields in each geometric point around a target molecule is not

possible, since there are infinitely many points. An approximation

of the force field with a finite number of points, arranged in a

cubic grid, is the usual solution, as embedded in the program

AutoDock [12]. However, this discretization of the force field

exacerbates the local optimization (energy minimization) because

derivation and gradient methods need continuous, differentiable

potential functions.

The new FRIGATE docking software of Uratim Ltd. [13]

applies a novel hybrid approach: it discretizes the energy potentials

around a protein molecule in order to be computationally feasible,

and then uses a continuous local optimization technique, namely

the scaled conjugate gradient (SCG) algorithm [14], for the twice

continuously differentiable B-spline interpolation of the force field,

based on discretized data points. The energy-based algorithm of

FRIGATE computes the total free energy change, DG, from the

sum of intermolecular and intramolecular terms as follows:

DG~DGinterzDGintra

The intermolecular energy terms are given by the equation:

DGinter~CvdWDGvdW zChbDGhbzCelecDGeleczCsolDGsol

where on the right hand side of the equation sums the terms for

van der Waals energy, hydrogen-bonding energy, electrostatic

energy and solvation energy, respectively. Each term is weighted

with a coefficient, determined from experimental binding

constants using linear regression analysis, according to reference

[12]. The intramolecular energy term, DGintra, describes the

intramolecular van der Waals interactions and the torsional energy

terms in the docked ligand.

The FRIGATE program consists of the following parts
(a) Protein preparation. The three-dimensional structures

of the proteins are taken from a PDB formatted file. The

coordinates of the missing H atoms are computed, and partial

charges are assigned to atoms, in order to compute later the

electrostatic potential, the fragmental volume and the solvation

energy terms. Directional parameters for computing hydrogen

bonding energy terms for (i) oxygen atoms in the protein and (ii) H

atoms in the protein are also calculated. The parameters gained

are stored in the Receptor Specification File (RSF) of the protein.

(b) Grid calculation. Similarly to the AUTODOCK

program [12], FRIGATE pre-computes the energy function

around the protein molecule in the points of a three dimensional

rectangular grid. Each possible ligand atom (i.e., polar hydrogen,

aliphatic carbon, aromatic carbon, nitrogen, oxygen, phosphorus,

sulfur, fluorine, chlorine, bromine, iodine, non-polar hydrogen) is

placed in each possible grid point, and the energy affecting that

atom is calculated and stored in a file called gridmap. The closest

grid points are 0.375 Å apart which is roughly a quarter of a

carbon-carbon bond length. Pre-computing and storing of the

gridmap facilitates the fast computation of the energies of millions

of flexible ligand conformations relative to the static protein

molecule.

(c) Spline approximation. The pre-computed energy values

of the discrete grid facilitate the fast computation of energy terms for

ligand atoms that are exactly positioned in the grid points. Energies

affecting ligand atoms between discrete grid points are computed

from an approximation of the energies of the surrounding grid

points. Unlike other programs, FRIGATE applies a twice

continuously differentiable B-spline approximation function for

this goal, therefore the energy function affecting the ligand atoms

can be minimized locally with conjugate gradient methods [14,17].

(d) Local minimization. The Scaled Conjugate Gradient

(SCG) algorithm is applied for local minimization. It is detailed in

the Methods section in Text S1.

(e) Global minimization. The Competitive MultiStart

algorithm is used for global optimization. It is detailed in the

Methods section in Text S1.

Parameterization of FRIGATE
We optimized the SCG algorithm of FRIGATE against the

thorough dataset of 100 high-resolution protein-ligand crystal

structures utilized previously for benchmarking the eight popular

docking programs DOCK, FLEXX, FRED, GLIDE, GOLD,

SLIDE, SURFLEX and QXP [15]. These 100 public crystal

structures comprises 97 diverse drug-like ligands, as evidenced by

ligand molecular weights between 88 and 730 Da, total polar

surface areas between 20 and 210 Å2 [16]. For our FRIGATE

training dataset we generated 100 random ligand conformations

for each of the 100 protein-ligand complexes. We observed that

the SCG algorithm performs much slower when the resulting

local optimum was in the positive region of the function.

Therefore a global search was run to select the 100 starting

ligand conformations that yield the lowest energy function values

for each protein. This resulted in one biased training dataset of

100 * 100 lowest energy ligand starting conformations and a

second unbiased dataset of another 100 * 100 ligand starting

conformations.

Novel MDR-Mtb Inhibitor by FRIGATE Virtual Screen
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First we optimized the parameter s of the SCG algorithm (Text

S1) because there was no clear indication for its optimal value in

the original paper [17]. We measured the average number of

function and gradient evaluations the algorithm used in a local

optimization run over the training sets described above, varying s
between 10213 and 1025 at the two convergence criteria

eg = 10210 and eg = 1025. The results clearly indicate that the

optimal value for s is around 1029 (Fig. S1), which is used for all

subsequent tests. However, when the convergence criterion is not

very strict, the algorithm is quite insensitive to the value of s.

Next the competitive multistart (CMS) algorithm (Text S1) for

global optimization was tested. We used the same training set of

100 ligand-protein complexes as before, but with randomized

ligand conformations. Since the global energy function optimum

of a ligand-protein complex is a priori unknown, we used the

energy of the ligand protein crystal structure as the best available

approximation. Further energy minimization by the local SCG

algorithm with the strict convergence criterion eg = 10215 yielded

our best guess for the reference global energy optimum.

The CMS algorithm was run using the SCG method as the local

optimization subroutine with s= 1029, eg = 1028 and 0.5*106,

1*106, 1.5*106 and 2*106 function evaluations. Some ligand-

protein complexes produced global energy minima below the

reference optimum. In these cases our new estimate for the

reference global optimum became this lower energy record.

Comparing the results of the CMS global optimization to this

reference optimum shows that the energies of the locally optimized

ligand conformations are in about 80% of all test cases within

0.5 kcal/mol of the reference optimum (Fig. 1A). However, for

ligands with 15 or more degrees of freedom the global search

algorithm quickly drops in reliability (Fig. 1B), thereby limiting the

application of FRIGATE to ligands with less than 15 to 18 degrees

of freedom.

Comparing FRIGATE to benchmark docking programs
Two pivotal quality parameters for computational screening

and docking programs are docking accuracy and scoring accuracy.

Utilizing the aforementioned dataset of 100 ligand-protein crystal

structures [15], we firstly energy minimized the crystallographic

ligand conformer in vacuum in order to mimic virtual screening

applications where the bound ligand conformer is unknown.

Secondly we ran FRIGATE with 0.5*106, 1*106, 1.5*106 and

2*106 energy function evaluations for each ligand-protein complex

and retained the 30 top scoring ligand poses for each complex.

Next we counted all retained ligand poses that are found within a

certain rmsd distance from the experimental X-ray pose [16].

Plotting this number of poses as a percentage of all complexes

against a meaningful rmsd distance scale of 0 to 2 Å gives a

graphical representation of the docking accuracy (Fig. 2A). When

2*106 energy function evaluations are calculated FRIGATE poses

68% of the top 30 scoring ligands within 2 Å of the crystallized

ligand, which is approximately as good as the mean docking

accuracy of the eight benchmark programs assessed in a previous

study [15].

The scoring accuracy plot (Fig. 2B) shows the percentage of all

100 ligand-protein complexes where the top scoring pose lies

within a certain rsmd distance from the experimental pose. Again

with 2*106 energy function evaluations FRIGATE puts the top

scoring pose in 52% of all complexes within 2 Å rsmd distance of

the crystallized ligand. This scoring accuracy compares very well

with the better half of the eight benchmark programs [15]. Taking

into account that FRIGATE utilizes the unbiased energy

minimized ligand conformer, suggests that the FRIGATE docks

and scores ligands, whose bound conformation is unknown,

comparatively accurately.

We hypothesize that the superior performance of FRIGATE

stems from its two-step approach: firstly, FRIGATE mimics the

random move of a ligand through the stochastic approach of CMS

global optimization. Secondly, FRIGATE fine-tunes the global

minimum by following the robust SCG energy optimization path

of molecular dynamics. On average FRIGATE docks one ligand

in 10–20 sec on a 64 bit Celeron Intel processor, providing

sufficient speed for virtual screens of .1 Mio. ligands.

FRIGATE identifies novel ligands to Ag85c
In this study we test FRIGATE on the potential anti-TB target

protein Ag85C of Mtb, which appears well suited due to its deep

TMM binding trough and the availability of two co-crystal

structures with the substrate mimetics OTG and trehalose in the

catalytic site. In addition FRIGATE covers potential allosteric

ligand binding sites, thereby enabling the discovery of allosteric

modulators which frequently go undetected in experimental or

active site pharmacophore-based computational screens. As the

ligand database for FRIGATE we used the 2,066,536 drug-like

and Rule-of-5 compliant compounds of the ZINC library, which

exclusively contains commercially available compounds for

Figure 1. Performance and limitations of the global optimization algorithm CMS. (A) The number of test cases that were successfully
optimized within a certain energy threshold from the reference value. On the left figure the reference value was the current estimate for the global
optimum, and on the right it was the energy of the local optimized X-ray conformation of the ligand. (B) For all training set ligands with 6–14 degrees
of freedom, the CMS algorithm finds an energy minimum within +0.5 kcal/mol of the crystallographic complex (DEXray). For ligands with 15 or more
degrees of freedom, the CMS minimization performance becomes worse than DEXray+0.5 kcal/mol for an increasing number of complexes.
doi:10.1371/journal.pone.0028428.g001
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experimental follow-up [18]. The 3D ligand conformers were

generated with the program Omega (OpenEye), and the partial

charges were calculated with the semi-empirical quantum

mechanical program AMSOL [19].

A second solubility-filtered ligand database was generated by

removing molecules from the abovementioned ZINC set that are

unlikely to be soluble in water. We kept only molecules with ClogP

values of less than 3 or polar desolvation energies of less than

230 kJ/mol, resulting in a database of 1,035,013 molecules.

The FRIGATE screen of the 2,066,536-molecule unfiltered

library was completed within less than 320 hours on a cluster of 48

processors, using the coordinates of the apo Ag85C crystal

structure [20]. Hit compounds were rank ordered according to

their computed docking energies by the FRIGATE program. Of

the 100 top scoring VS hits, 96 compounds were docked into the

deep catalytic site of Ag85C and merely 4 into a second shallow

surface site between residues D44 and Y172. The clear preference

for the catalytic site demonstrates that FRIGATE places hits into

the most druggable site. However the docking scores of the

4 second site hits do not rank them to the bottom of top 100 list as

estimated from the lower druggability of this site, but rather

throughout the list at positions 11, 43, 51 and 86. Consequently

FRIGATE does identify surface binders, which is useful for

discovery programs on non-catalytic targets and allosteric sites, but

its docking energies do not unambiguously direct one to the most

druggable site.

Experimental hit validation by NMR
The 60 top ranking FRIGATE hits from the solubility filtered

library were manually checked for chemical attractiveness and

commercial availability at reasonable cost, resulting in the

acquisition of 23 compounds. Since less polar compounds may

favorably interact with the sizable hydrophobic trough in the

catalytic site of Ag85C and solubility filtering often suffers from

false-positives, we additionally assessed the 60 top ranking VS hits

from the unfiltered library. This led to another 8 compounds that

were commercially available and chemically attractive (Table S1).

The total of 31 compounds were tested for direct binding to

Ag85C by NMR and for mycobacterial growth inhibition against

Mycobacterium smegmatis (Msmeg). In the 15N-HSQC-NMR binding

assay, compounds 1 and 2 (Fig. 3A+B) show strong chemical shift

perturbations (CSPs) of the 1H-15N backbone amide signals of

Ag85C (Fig. 4A), compound 3 (Fig. 3C) and two further

compounds show weak CSPs, one compound shows protein

Figure 2. Docking (top) and scoring (bottom) accuracy of FRIGATE compared with benchmark programs [15]. (A) FRIGATE docks ,68%
(horizontal line) of the 30 top scoring ligand poses within 2 Å of the crystallographic pose, which matches the average performance of the
benchmark programs. (B) FRIGATE scores ,52% of the top scoring ligand poses within 2 Å of the crystallographic pose, which exceeds the
performance of FRED1.1 (arrow) by ,23%.
doi:10.1371/journal.pone.0028428.g002
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precipitation, and the remaining 25 compounds are inactive

(Table S1). CSPs are local, residue-based sensors for ligand –

protein interactions or ligand-induced alterations in local protein

conformation, and give a fingerprint of where the ligand binds to

the protein [21]. We categorized the CSPs of this single

concentration assay into ‘‘strong’’, ‘‘weak’’ and ‘‘inactive’’ in

comparison with two positive control ligands: the TMM mimetic

n-octyl-thioglucoside (OTG), whose binding to the catalytic site of

Ag85C is defined by a co-crystal structure [9], and the chemically

unrelated fragment 2-aminocyclohepta[b]thiophene-3-carbonitrile

(5) (Fig. S5), which was identified by experimental screening

against a diverse fragment library [22].

FRIGATE docking site confirms in NMR assay
Furthermore the CSPs were utilized to differentiate between

ligand binding to the catalytic site and other sites of Ag85C.

Comparing the CSPs between 1 and OTG shows that 20 out of a

total of 31 CSPs correlate, as defined by being larger than the

CSPs of 15 randomly selected reference peaks, which reflect the

random variation of the assay (Fig. S2; Fig. S4A). Similarly, 21 of

the same total of 31 CSPs correlate between 1 and 5 (Fig. S3; Fig.

S4B). These data indicate that 1 binds to the same site as OTG or

a directly adjacent sub-site in the catalytic cleft, which is in

agreement with the docking model of 1 (Fig. 3B). A small number

of divergent CSPs is within expectation because 1 and OTG as

well as 1 and 5 fill different segments of the catalytic pocket and

locally place variant ligand atoms in the vicinity of the protein
15NH groups.

Applying the same CSP correlation analysis to 2 yields 27 CSPs

out of the total 31 CSPs that correlate between 2 and OTG (Fig.

S4C), indicating binding the catalytic site, which again corrobo-

rates the docking model of 2 (Fig. 3B). The three weak binders

merely show a fraction of the CSPs observed for OTG and 5. Due

to this lack of data points, binding site information could not be

Figure 3. FRIGATE docking models of confirmed hits in the catalytic site of Ag85C. (A) 1 (C atoms dark green) superimposed on the co-
crystal structure of OTG (grey) bound to Ag85C [9] using the protein coordinates for the overlay. H bonds between OTG and Ag85C are shown as
dashed lines with distances in Å, including the catalytic oxyanion (Oc) of S124. The semi-transparent surface of Ag85C is color coded from polar (blue)
to hydrophobic (brown). (B) Superimposition of 2 (purple) (C) Superimposition of 3 (dark brown) (D) Superimposition of 1 to 3 onto OTG
highlighting the differential pocket coverage. Ligand color-coding identical to (A)–(C).
doi:10.1371/journal.pone.0028428.g003
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unambiguously extracted from the CSP data. Taken together, 5

out of 31 FRIGATE hits confirmed in the NMR binding assay,

yielding a hit confirmation rate of 16%, which is within range of

the 1 to 20% hit rates of published target-based virtual screening

campaigns by other software programs [2,23]. The two most

active hits bind to the catalytic site of Ag85C, as predicted by

FRIGATE and expected from the superior druggability of this site.

Antibacterial activity testing
Learning from the rich literature of potent in vitro enzyme

inhibitors that were discarded due to the lack of antibacterial

activity [24], we assayed the 31 selected FRIGATE hits for

antibacterial activity prior to in vitro follow-up work. We utilized

the less pathogenic and faster growing Mtb model organism Msmeg

for primary growth inhibition testing. Of the total 31 FRIGATE

hits, 1 shows the strongest anti-mycobacterial activity with a MIC

value of 50 mg/mL or less (Fig. 5). Two further compounds 3 and

4 showed MIC values of 100 mg/mL, whereas the remaining 28

FRIGATE hits did not inhibit the growth of Msmeg at compound

concentrations between 50 and 200 mg/mL (Table S1). Hence 1
exhibits the highest activity in both the Ag85C binding assay and

the antibacterial Msmeg assay, while 3 is substantially less active in

these assays and 2 and 4 lack either anti-mycobacterial or Ag85C

Figure 4. NMR binding assay of 1. (a) The 15N-HSQC spectra of Ag85C in the presence of 50 mM (purple), 100 mM (green) and 200 mM (red) 1
show mono-directional (arrows) CSPs for exemplary residues (numbered, eg 42) as compared with apo-Ag85C (blue). Twelve randomly selected
reference residues (labeled r1–r12) remain unchanged. (b) Plotting the CSPs vs. the concentration of 1 allows one to fit a binding curve with an
average Kd value of 177 mM. CSP numbering identical to (a).
doi:10.1371/journal.pone.0028428.g004

Figure 5. Msmeg growth inhibition assay of 1 to 3. Addition of 50
and 100 mg/mL of 1 and 3, respectively, blocks the growth of Msmeg
beyond the level of visible detection, whereas Msmeg grows in the
presence of 50–200 mg/mL of 2. The reference antibiotic ampicillin
(Amp) inhibits Msmeg growth at 16 mg/mL as published previously [37].
Growth medium with (labeled ‘untreated’) and without bacteria
inoculum (labeled ‘no bacteria’) is colored black and pale yellow,
respectively.
doi:10.1371/journal.pone.0028428.g005

Novel MDR-Mtb Inhibitor by FRIGATE Virtual Screen
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binding activity. Since 4 was soluble in the NMR assay (Table S1),

but did not show binding to Ag85C in the 15N-HSQC spectrum, it

may inhibit Msmeg growth by a mechanism independent of

Ag85C.

On the basis of this data, we prioritized 1 for follow-up assays.

By 15N-HSQC-NMR titration experiments we determined a Kd

value of 177 mM for the in vitro binding of 1 to Ag85C (Fig. 4b).

Next we tested 1 against the MDR-Mtb strain 2745/09 in the

radiometric BACTEC 460 assay in liquid broth [25]. 1 stopped

the growth of this MDR-Mtb strain with a MIC of 20 mg/mL,

which is in good agreement with its MIC against Msmeg of

, = 50 mg/mL. The robust inhibitory effect on MDR-Mtb

demonstrates that 1 acts through a mode-of-action (MOA)

different from isoniazid and rifampicin, which define MDR-Mtb

strains and block mycolyl synthesis via enoyl-ACP reductase and

DNA-dependent RNA polymerase, respectively [26,27]. Testing 1
for bacteriotoxicity yielded no bactericidal activity against MDR-

Mtb up to a concentration of 80 mg/mL, which is not unexpected

at this low level of potency. In summary 1 blocks the growth of

Msmeg and MDR-Mtb with similar potency and shows potential for

combating the surge of MDR-Mtb infections.

Confirmed ligands show diverse pocket fill
The FRIGATE docking models of the experimentally validated

hits 1, 2 and 3 reveal that they converge in occupying most of the

central pocket as defined by OTG co-crystallized with Ag85C

(Fig. 3A–C). However, at both termini of the pocket they diverge

in the level of occupancy. 1 fills the hydrophobic sub-pocket more

thoroughly than 2 and 3, and penetrates deeper into this sub-

pocket than OTG (Fig. 3D), even though the carbonyl on the

tricycle of 1 may not be the most favorable functionality for this

lipophilic protein site lacking H bond donor counter-parts. In the

hydrophilic sub-pocket, 1 occupies a similar space as OTG, where

it mediates an H bond between its imidazole p electron cloud and

the NHe of W262 according to our model. OTG also forms an H

bond with W262.NHe through the O atom of its 49 hydroxy

group.

2 shows the least hydrophobic sub-pocket coverage, but

possesses more atoms interacting with the central and hydrophilic

sub-pockets. Its highly solvated carboxylate and amino moieties

stretch away from the protein into solvent (Fig. 3D), which may

favorably orient 2 for binding. In contrast to 1 and 3, 2 lacks the

prominent H bond contact with the catalytic oxyanion of S124, a

pivotal interaction conserved among all ligands co-crystallized

with Ag85 enzymes so far [8,9,20]. In effect 2 does not mediate

any of the three H bond contacts observed between the glucoside

of OTG and Ag85C in the co-crystal, even though the carboxylate

of 2 is within close 2.9 Å distance to the W262.NHe of Ag85C.

3 extends the furthest into the hydrophilic sub-pocket, thereby

replacing water molecule 2025 (Fig. 3C), which is well coordinated

by the backbone amides of Q43, Y46 and G48 and the

carboxylate of D38. Since water 2025 is conserved in all of the

crystal structures of Ag85A, B and C, its replacement may be

energetically costly. Also the secondary amino group of 3 may be a

less preferred functionality in the hydrophobic sub-pocket, as

suggested by the SAR data from analogues of 5, where a tertiary

carbon to nitrogen substitution in this segment of the pocket led to

inactivity [22].

Although these 3D docking models have not been experimen-

tally validated by crystal structures and may be incorrect, three

common themes can be deduced. Firstly, the central pocket

segment is filled by diverse chemical matter. Secondly, the

occupancy of both terminal segments of the pocket varies. Thirdly,

the number of H bond contacts in the glucoside binding sub-

pocket as well as a few contacts in the hydrophobic sub-pocket

appear to be sub-optimal with respect to the interactions observed

with OTG.

Ligand efficiency benchmarking
The identification of diverse hit chemical matter and variant

ligand placement across the entire pocket is highly desirable for

synthetic library follow-up because chemical series with orthogonal

safety profiles can be pursued and hybrid design approaches are

enabled. However sub-optimal ligand - protein interactions are a

serious disadvantage, which may necessitate laborious subtractive

chemistry or even high-risk scaffold hopping. To explore the

protein interaction quality of 1 in more detail, we utilize the ligand

efficiency parameter, BEI, defined as –log10(Kd or IC50 or MIC

[mol/L])/(Mw [kDa]) [28]. Using its Kd value in the NMR

binding assay, an in vitro ligand binding efficiency, BEI, of 8.5 is

calculated for 1, which is substantially lower than the BEI of 20,

measured for the Ag85C ligand 5 in the same NMR-based Kd

assay [22]. Since marketed small molecule drugs for druggable

enzymes, such as protein kinase inhibitors, possess IC50-based BEI

values of 17 to 20 [29], substantial synthetic optimization of 1
seems mandatory.

With the goal of therapeutic usage, anti-mycobacterial ligand

efficiency is even more relevant. Calculated from its MIC against

MDR-Mtb, 1 possesses an anti-tubercular BEI of 9.9, which is in

line with the Msmeg MIC-based BEI of 9.0 of synthetic

phosphonate and sulfonate inhibitors of Ag85C, which were

designed to mimic the enzymatic transition state [30,31]. A similar

anti-mycobacterial BEI of 9.0 is calculated for the covalent Ag85C

inhibitor 6-azido-69-deoxytrehalose from its MIC against M.

aurum. However, compared with the fragment-derived analogue

of 5, 2-amino-6-propyl-cyclohexa[b]thiophene-3-carbonitrile (6),

with MIC-based BEI values of 17 to 18 against MDR-Mtb [22], 1
again underperforms. Benchmarking 1 against the most advanced

clinical phase anti-tuberculars, moxifloxacin (clinical phase III),

TMC207, PA-824 and OPC-67683 (all clinical phase II) with

MIC-based BEI values of 15, 13, 17 and 14 against Mtb strain

H37R, respectively, underlines the notion that 1 needs synthetic

optimization with respect to both ligand efficiency and absolute

potency towards a MIC of 0.5 mg/mL or lower [4,32,33].

In conclusion FRIGATE rapidly produced chemically diverse

hits for all parts of the catalytic pocket of Ag85C. One FRIGATE

hit, 1, was experimentally confirmed to bind to the catalytic site of

Ag85C and inhibits the growth of Msmeg and MDR-Mtb with a

robust MIC of 20 mg/mL. Although 1 does not match the in vitro

binding efficiency and Mtb growth inhibition efficiency of the

Ag85C ligand 6 and clinical development candidates blocking

other targets of Mtb, 1 is a good starting point for synthetic

optimization towards both improved target binding and anti-

tubercular potency. While most published virtual screens fail to

report hits with anti-bacterial activity [24,34,35,36], the discovery

of 1 shows that FRIGATE can quickly and cost-efficiently

generate hits with biological activity and is an attractive tool for

organizations that lack extensive compound screening infrastruc-

ture.

Methods

(see Text S1)

Supporting Information

Figure S1 Parameterization of the the SCG local
optimization algorithm. The average number of function
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and gradient evaluations needed for the SCG algorithm shows a

minimum at s= 1029 with a high quality convergence criterion of

eg = 10210, but not with a low quality eg = 1025. This finding holds

true for both the unbiased (left) and biased (right) training set.

(TIF)

Figure S2 The overlay of the 15N-HSQC spectra of
50 mM 15N-labeled Ag85C alone (blue) and Ag85C in the
presence of 400 mM 1 (red) and 550 mM OTG (green)
shows several CSPs common between 1 and OTG, such
as those labeled 12, 17, 19, 40 and 44 (arrows). The 15

reference resonances (labeled ‘r1’ to ‘r15’) remain virtually

unchanged.

(TIF)

Figure S3 The overlay of the 15N-HSQC spectra of
50 mM 15N-labeled Ag85C alone (blue) and Ag85C in the
presence of 400 mM 1 (red) and 400 mM 5 (green) shows
several CSPs common between 1 and 5, such as those
labeled 12, 17, 19, 40 and 44 (arrows). The 15 reference

resonances (labeled ‘r1’ to ‘r15’) remain virtually unchanged.

(TIF)

Figure S4 31 resolved CSPs (filled rhombs) and 15
reference resonances (open circles) from the 15N-HSQC
spectrum with OTG are plotted against the same CSPs
and reference resonances in the 15N-HSQC spectrum in
the presence of 1 or 2. (A) 20 out of the total 31 CSPs correlate

between 1 and OTG in showing mutual CSPs larger than the

variation of reference resonances. (B) 21 out of the total 31 CSPs

correlate between 1 and 5. (C) 27 out of the total 31 CSPs

correlate between 2 and OTG.

(TIF)

Figure S5 Chemical structures of 5 and 6.
(TIF)

Table S1 Ag85C binding and Msmeg antibacterial
activity of the selected 31 FRIGATE hits, sorted by
decreasing FRIGATE score from top to bottom.
(DOC)

Text S1 NMR binding site and antibacterial assay
results for the abovementioned compounds, experimen-
tal methods, description of computational algorithms.
(DOC)
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