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Abstract
Lyme borreliosis is a bacterial infection that can be spread to humans by infected ticks and may severely affect many organs and
tissues. Nearly four decades have elapsed since the discovery of the disease agent called Borrelia burgdorferi. Although there is a
plethora of knowledge on the infectious agent and thousands of scientific publications, an effective way on how to combat and
prevent Lyme borreliosis has not been found yet. There is no vaccine for humans available, and only one active vaccine program
in clinical development is currently running. A spirited search for possible disease interventions is of high public interest as
surveillance data indicates that the number of cases of Lyme borreliosis is steadily increasing in Europe and North America. This
review provides a condensed digest of the history of vaccine development up to new promising vaccine candidates and strategies
that are targeted against Lyme borreliosis, including elements of the tick vector, the reservoir hosts, and the Borrelia pathogen
itself.
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Introduction

Lyme borreliosis, or Lyme disease, is the most common tick-
transmitted disease worldwide and is known to infect humans
as well as domestic animals including cattle, cats, and dogs
(Krupka and Straubinger 2010). Since the discovery of Lyme
borreliosis in 1975 (Steere et al. 1977), a great deal of effort
has been dedicated to the goal of preventing the detrimental
effects of this disease. Despite improvements in diagnostic
tests and public awareness of Lyme borreliosis, up to
300,000 cases in the USA (Kuehn 2013) and 65,000 cases
in Europe (Hubálek 2009) are reported. However, the number
of infections in Europe is likely to be an underestimation, as
not all countries have made Lyme borreliosis a mandatorily
notifiable disease (Smith and Takkinen 2006). The agents re-
sponsible for Lyme borreliosis are a diverse group of spiro-
chetal bacteria within the Borrelia genus.Borrelia burgdorferi

sensu lato complex comprises at least 20 named species
(Margos et al. 2019), with most human Lyme cases being
caused by B. burgdorferi sensu stricto, B. afzelii, B. garinii,
and B. bavariensis (Stanek et al. 2012).

B. burgdorferi is an extracellular pathogen (Strnad et al.
2015) that can infect the skin, heart, and nervous system
(Cadavid et al. 2000; Stanek and Strle 2018). Ticks of the
genus Ixodes transmit B. burgdorferi between reservoir hosts
such as small mammals, lizards, and birds and are the only
natural agents through which humans have been shown to be
infected (Steere 2001). The principal vectors are Ixodes
ricinus in Europe, Ixodes persulcatus in Asia, and Ixodes
scapularis in North America. The overall prevalence of infect-
ed ticks and Borrelia genospecies distribution are highly var-
iable across geographic locations (Strnad et al. 2017).

Ticks most often acquire Borrelia from infected rodents
during their larval feeding. After molting to the next develop-
mental stage, the tick has to find a new host. Upon ingestion of
new blood, the spirochetes migrate from the midgut to the
salivary glands of an infected tick followed by entering the
mammal through the bite site (Ribeiro et al. 1987). The path-
ogen then disseminates throughout the mammalian host to
establish an infection (Moriarty et al. 2008; Norman et al.
2008). All these concerted movements in the two environ-
ments are assumed or known to involve the process of motility
and adhesion to cells involving a high number of protein and
carbohydrate-based interactions (Ebady et al. 2016; Vechtova
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et al. 2018). Infected nymphal ticks occasionally feed on
humans and most likely transmit the spirochete and cause
human Lyme borreliosis as they are abundant in the spring
and early summer and are small and difficult to detect.
Unlike B. miyamotoi, B. burgdorferi sensu lato is considered
not to be transmitted transovarially from female ticks to their
offspring. However, several recent studies have shown that
field-collected I. ricinus larvae may contain borrelial DNA
(Kalmár et al. 2013; Tappe et al. 2014) and are able to transmit
B. afzelii to laboratory rodents (van Duijvendijk et al. 2016),
suggesting the potential role of larvae in spreading the Lyme
borreliosis agent.

In the absence of antibiotic therapy, disseminated
B. burgdorferi can persist in an individual for months or years
even in the face of strong immune response. Currently, anti-
biotic treatment is the only effective tool to clear the infection
and fight against Lyme borreliosis as no vaccine for humans is
available. There are a number of new promising vaccine can-
didates being currently developed and tested by the research
community, representing new hopes for future victims of the
disease. These direct anti-Borrelia strategies can be
complemented with anti-tick vaccines to bring a whole new
level of human protection (Fig. 1), as will be discussed in this
review.

On-demand treatment strategies

Most cases of Lyme borreliosis can be easily managed if treat-
ed early using antibiotics. Post-infection treatment is usually
managed with antimicrobial agents for 2 to 4 weeks.
Doxycycline, amoxicillin, penicillin V, and cefuroxime are

highly effective and are the preferred antibiotics for the treat-
ment of early localized infection (Stanek and Strle 2018).
Early disseminated infection is usually treated with intrave-
nous ceftriaxone or penicillin (Stanek and Strle 2018) or oral
doxycycline (Ljøstad et al. 2008). The most common routes of
antibiotic administration are oral administration and intrave-
nous injection. As an alternative approach, the topical appli-
cation of 4% azithromycin cream was tested (Piesman et al.
2014). The result of the study showed that azithromycin was
highly efficient when applied topically at the sites of tick bites
in mice (Piesman et al. 2014). The outcomes of the study were
however not fully confirmed in human studies (Schwameis
et al. 2017; Shapiro and Wormser 2017). Azithromycin is an
attractive possibility because of its good safety profile, long
half-life in tissues, and potency against various B. burgdorferi
species (Lee and Wormser 2008). Topical application of anti-
microbial agents is a very attractive delivery method for a
number of reasons and could be potentially used to stop the
progression of the disease in the early localized stage of infec-
tion. The advantages include smaller amount of drug to be
used, avoidance of the metabolic processing of the drug in
the liver, ease of administration especially for young children,
higher concentration of the drug to the affected area, and fairly
diminished effects on nontargeted body locations such as in-
testinal florae. The transdermal route apart from the
abovementioned advantages may be more convenient also
for patients who cannot use normal oral intake because of
swallowing problems such as intubation, deep sedation, or
concurrent diseases (Tanner and Marks 2008). However, as
a verymotile organism, B. burgdorferi spread readily and very
fast all over the body from site of skin entrance. Therefore, the

Fig. 1 The intensive research areas of current anti-Borrelia strategies. The focus is set on direct prophylactic anti-Borrelia strategies as well as on anti-
tick vaccines
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risk of Lyme borreliosis is substantially increased when tick
bites are unrecognized, and the topical treatment of tick bite
site is not managed soon enough after onset of tick feeding.

Antibiotic prophylactic treatment, or chemoprophylaxis,
can be loosely defined as the adminis t ra t ion of
drug/antibiotics to prevent the development of a disease at
the very beginning before the symptoms arise. This treatment
strategy can also potentially play an important role as a meth-
od to prevent B. burgdorferi dissemination (Lascher and
Goldmann 2016). Chemoprophylaxis with a single high dose
of doxycycline after removal of tick from the patients within
72 h was found beneficial in the USA. During a 6-week fol-
low-up period, 1 of 235 treated patients developed erythema
migrans, whereas 8 of 247 in the placebo group developed this
skin condition, showing that antibiotic prophylaxis may sig-
nificantly reduce the chances of developing Lyme borreliosis
(Nadelman et al. 2001; Warshafsky et al. 2010). However, the
unnecessary (over)use of antibiotics may lead to accelerated
antibiotic resistance and is not generally recommended.

New antibiotics against Lyme borreliosis

While still a matter of dispute (Auwaerter and Melia 2012;
Baker and Wormser 2017; Wormser et al. 2017), there are
several reports of antibiotic treatment unable to fully eradicate
B. burgdorferi from blood and tissues (Rudenko et al. 2016).
The phenomenon of tolerance to otherwise lethal doses of
antibiotics and the antibiotic resistance is often attributed to
so-called B. burgdorferi persisters. At least three morpholog-
ical forms of persistent B. burgdorferi were described based
on observations from experimental studies. They are capable
of forming round bodies, L-forms, and biofilm-like structures.
Persisters may remain viable despite antibiotic therapy and are
able to reversibly convert into motile spirochetal forms under
favorable conditions (Timmaraju et al. 2015; Vancová et al.
2017; Rudenko et al. 2019). The mechanism that makes the
bacterium less susceptible to killing by therapeutic doses of
antimicrobials is not known; however, human neutrophil
calprotectin was shown to make B. burgdorferi more tolerant
to penicillin (Montgomery et al. 2006). B. burgdorferi in cul-
ture can also become tolerant to antibiotics used in treating
Lyme borreliosis such as ceftriaxone, doxycycline, and amox-
icillin (Feng et al. 2014; Sharma et al. 2015).

If the still limited but slowly growing number of evidence
supporting the existence of chronic/persistent Lyme borreliosis
will end up being accepted by the Lyme community, new
antibiotics or targeted designer drugs to treat the Lyme spiro-
chetes will be needed to cope more efficiently with the out-
comes of the disease (Stricker and Middelveen 2018). Some
studies suggest that treatment of a borrelial infection with the
currently available antimicrobial agents may suppress but not
eradicate the infection (Middelveen et al. 2018). Therefore,
new drug candidates have been investigated and found using

high-throughput screening of existing FDA-approved drugs in
the USA (Feng et al. 2014; Feng et al. 2015; Pothineni et al.
2016), with the ultimate goal of complete microbial eradica-
tion and clinical cure. The usefulness and potential application
in human medicine will have to be evaluated.

Prophylactic treatment strategies

Anti-Borrelia strategies: human-targeted approaches

Research efforts have long focused on ameliorating the symp-
toms and consequences of disease through treatment, com-
monly using various kinds of broad-spectrum antibiotics.
However, prevention of the disease is far preferable to treating
the short- and long-term often debilitating consequences of the
disease. Human vaccination has greatly reduced the burden of
infectious diseases and prevented more suffering than any
other form of medical activity (Andre et al. 2008).
Prophylactic vaccination of humans was the first choice for
companies and health organizations for prevention of Lyme
borreliosis. Despite a plethora of highly antigenic and immu-
nologically accessible borrelial surface-exposed proteins
(Gilmore et al. 1996; Hanson et al. 1998; Probert and
Johnson 1998; Fikrig et al. 2004), the first and only licensed
vaccine developed to prevent Lyme borreliosis was
LYMERix, with efficacy of nearly 80% after all three doses
had been administered (Nigrovic and Thompson 2007). It
stayed on the market for only 4 years, and in 2002 it was
withdrawn from the US market due to several reported cases
of diversely serious side effects. The most common adverse
events noted after receiving at least one dose included pain or
reaction at the injection site, joint pain, muscle pain, and head-
ache. It was hypothesized that the vaccine antigen, outer sur-
face protein A (OspA), behaves as an autoantigen and there-
fore was arthritogenic. The adverse side effects were however
never fully confirmed (Shaffer 2019).

VLA15 is the only vaccination program against Lyme
borreliosis currently under clinical development. To follow
in the footsteps of LYMERix, VLA15 vaccine candidate de-
veloped by Valneva is also OspA-based compound. However,
it seeks to improve on efficacy and global applicability of the
vaccine. LYMERix was a monovalent recombinant vaccine
based on bacterial OspA serotype 1 derived from
B. burgdorferi sensu stricto. This monovalent OspA serotype
1 vaccine had barely any potential to protect against the dis-
ease outside of North America based on the fact that OspA is
antigenically very heterogeneous and at least six OspA sero-
types are connected with B. burgdorferi sensu lato species
present in Europe (Wilske et al. 1993). OspA serotype and
Borrelia species exhibit a clear connection; B. burgdorferi
sensu stricto represents OspA serotype 1; B. afzelii OspA se-
rotype 2; B. garinii OspA serotypes 3, 5, and 6; and
B. bavariensis OspA serotype 4. Since OspA protective
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function is to great degree type-specific, a candidate vaccine
designed to confer protection against the majority of Lyme
borreliosis species has to contain at least two or three antigenic
variants of OspA. VLA15 targets the six most common types
of Borrelia (Comstedt et al. 2017).

An alternative approach is called pre-exposure prophylax-
is, which is based on OspA-specific human monoclonal anti-
bodies that are borreliacidal against a broad range of Borrelia
genospecies. Unlike a vaccine, pre-exposure prophylaxis de-
livers a single defensive antibody and can prevent the trans-
mission of the spirochetes from ticks to mice (Wang et al.
2016). Unless the vaccine is available, the passive administra-
tion of a protective human antibody could be an effective
approach for borreliosis prophylaxis. The feasibility of using
human monoclonal antibodies for pre-exposure prophylaxis
has been already shown to be effective against respiratory
virus infection (Wang et al. 2011).

OspA, expressed during the tick stage of the pathogen life
cycle, is proposed to be an adhesin that binds the spirochetes
to the midgut cells using the tick receptor molecule, TROSPA
(Pal et al. 2004). The primary mode of action of OspA-based
vaccines is to block the migration of the spirochetes from the
midgut to the salivary glands of the tick. It is a rather unusual
mechanism as it occurs within the tick vector rather than in the
vaccinated entity. Several other surface-exposed molecules
were identified during this time, and their potential suitability
as vaccine candidates have been examined. These, most often
lipoproteins, play important roles in various aspects of tick
colonization (Fikrig et al. 2004), mammalian infection, and
host immune evasion and persistent infection (Lawrenz et al.
2004). This is either through direct binding to the target tissues
or by interacting with host factors to create favorable condi-
tions for Borrelia survival. Decorin-binding protein A (DbpA)
is an outer surface molecule that is expressed on mammalian
host-adapted B. burgdorferi. This lipoprotein has exhibited
vaccine efficacy against experimental infection in the mam-
malian model (Hanson et al. 1998; Cassatt et al. 1998) and
was shown to be immunogenic during human Lyme
borreliosis (Cinco et al. 2000). Fibronectin-binding protein
BBK32 plays an important role in the attachment to the extra-
cellular matrix. BBK32 is highly immunogenic and is present
in sera of Lyme disease-infected patients (Heikkilä et al. 2002;
Lahdenne et al. 2006). BBK32 antisera can interfere with
borrelial transmission at various stages of the vector-host life
cycle (Fikrig et al. 2000). Outer surface protein C (OspC) is
required for early mammalian infection (Grimm et al. 2004)
and has been tested as vaccine candidate against
B. burgdorferi infection with varying results (Zhong et al.
1999; Earnhart and Marconi 2007).

Vaccination trials testing various lipoprotein candidates have
yielded mixed results despite the generation of robust antibody
titers. In order to improve on the efficacy, vaccine cocktails
containing multiple immunogens have been formulated and

tested. A DbpA/OspA combination vaccine protected against
100-fold-higher challenge doses than did either single antigen
vaccine or and conferred protection against various Borrelia
genospecies (Hanson et al. 2000). Similarly, an OspA/OspC
combination showed increased vaccine efficacy compared to
single component immunizations (Wallich et al. 2001). A triple
combination vaccine of DbpA, BBK32, and OspC was shown
to be more effective than a single or double antigen vaccine in
mice. Interestingly, the ratio of each component has an impact
on the overall vaccine efficacy (Brown et al. 2005). The situa-
tion is further complicated by the existence of at least five
species of B. burgdorferi sensu lato as causes of human Lyme
borreliosis: B. burgdorferi sensu stricto, B. afzelii, B.
bavariensis, B. mayonii and B. garinii. To deal with the high
degree of heterogeneity of many proteins between the Borrelia
strains and species, some research groups have focused on the
development of a combination vaccine containing multivalent
chimeric vaccinogens with protective effects against diverse
Lyme species. As a result, multivalent OspC-based (Earnhart
et al. 2007; Earnhart and Marconi 2007) and OspA-based
(Wressnigg et al. 2013) chimeric vaccines targeting a broad
spectrum of Borrelia species have been developed for preven-
tion of Lyme borreliosis in Europe and the USA, and possibly
worldwide. Notably, certain surface proteins that fail to evoke
detectable antibody response in the mammalian host during the
experimental infection are still able to elicit high-titer and long-
term antibody response when applied in a recombinant form
(Kung et al. 2016).

Not only the borrelial (lipo)proteins but also glycolipids
(Schröder et al. 2003) and polymers consisting of sugars and
peptides (Jutras et al. 2019) have shown to be antigenic and
could be potential vaccine candidates, or at least serve as ad-
juvants. The glycolipid, acylated cholesteryl galactoside
(ACGal), acts as a strong immunogen as specific antibodies
against this compound are frequently found during late stage
of the disease (Stübs et al. 2009). Notably, all major Lyme
species possess this antigen (Stübs et al. 2009). The strategy
to exploit this or somewhat similar molecules is considerably
appealing for the development of a single universal “pan-vac-
cine” to control multiple infectious agents concomitantly
(Cabezas-Cruz and de la Fuente 2017). For example, galac-
tose-alpha-1,3-galactose (α-Gal) epitope is highly immuno-
genic in humans and is present on the surface of a number
of deadly pathogens causing diseases such as malaria,
sleeping sickness, or Chagas disease. The practical benefits
of immunization with α-Gal against pathogens with α-Gal
on their surface have been already demonstrated (Cabezas-
Cruz and de la Fuente 2017; de la Fuente et al. 2019).

Anti-tick strategies

Ticks are obligate hematophagous arthropods and are consid-
ered to be second only to mosquitoes as vectors of human
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infectious diseases worldwide. Predominantly due to climate
change, ticks have spread to altitudes and latitudes where they
were not present earlier (Jore et al. 2011; Jore et al. 2014), and
the pathogens transmitted by ticks represent a new health threat
in these areas. At least 15 tick-borne bacterial pathogens in-
cluding Rickettsia, Ehrlichia, Francisella, and several species
of theBorrelia burgdorferi sensu lato complex are known to be
transmitted by ticks. Viral pathogens that can cause fatal dis-
eases in human such as tick-borne encephalitis virus (TBEV)
and Powassan virus are found in ticks as are protozoan para-
sites of the genus Babesia (Parola and Raoult 2001; Shi et al.
2018). Finding an efficient way to prevent ticks from feeding
and therefore transmitting multiple human pathogens would
kill more than two birds with one stone and would facilitate
the management of many emerging infectious diseases.

Potential vaccine candidates

The supreme solution to inhibit transmission of multiple path-
ogens from the tick vector to humans would be development
of single universal vaccine. An alternate approach to targeting
antigens that are common to many tick-borne pathogens (as
discussed above) is to use tick antigens as targets of immune
intervention. Recently, the identification and development of
such an anti-tick vaccine has been the subject of intensive
research (Sprong et al. 2014; Rego et al. 2019). Multiple fac-
tors influence the efficacy of an anti-tick vaccine. As any other
vaccine candidate, the vaccinogen should firstly be highly
immunogenic, be able to provide long-lasting immunity, be
associated with a vital function of the tick, and preferably be
able to produce cross-protective immune responses against
different tick species. Additionally, the immunogen should
be expressed during different stages of the tick’s life cycle,
allowing different tick stages to be targeted. Ideally, future
anti-tick vaccine should be applicable to wildlife and domestic
animals and eventually also for humans.

There are three families of ticks. The family Ixodidae, or
“hard ticks” and the Argasidae, or “soft ticks” are known to
transmit pathogens causing diseases to humans. The family
Nuttalliellidae, represented by a single species confined to
Southern Africa, is not known as a pathogen-associated vector
(Keirans et al. 1976). Ticks from Ixodes genus normally take 3
to 7 days to feed, allowing the host to mount an immune
response against exposed tick antigens. The pathogens exploit
saliva-induced modulation of immune defense exerted by the
host to promote their transmission and infection, so-called
saliva-assisted transmission (SAT) (Nuttall and Labuda
2004). Tick saliva, introduced into host skin during the feed-
ing process, contains a wide range of proteins with anti-in-
flammatory, anti-complement, and anti-hemostatic activity
(Chmelar et al. 2011; Perner et al. 2018).

The composition of tick saliva changes during the course of
tick feeding as the tick counters the dynamic response of the

host and appears to differ for different pathogens and tick vec-
tor species and possibly can even depend on the mammalian
host species (Nuttall 2019). At least a few tick salivary gland
proteins seem to facilitate B. burgdorferi transmission. Tick
histamine release factor (tHRF) is upregulated in
B. burgdorferi-infected Ixodes scapularis ticks. Silencing
tHRF by RNA interference significantly impairs tick feeding
and reduces spirochete burden in mice. Active immunization
with recombinant tHRF or passive injection of tHRF antiserum
decreases the efficiency of tick feeding and B. burgdorferi bur-
den in mice (Dai et al. 2010). Additionally, a 15-kDa tick
salivary gland protein Salp15 protects the spirochete directly
from host immune responses by binding to the OspC of
B. burgdorferi spirochetes (Ramamoorthi et al. 2005). Salp15
is also known to be able to suppress host immunity by binding
to CD4 coreceptor to inhibit CD4+ T-cell activation, inhibiting
subsequent receptor ligand-induced cell signaling, and altering
the expression levels of cytokines (Anguita et al. 2002; Hovius
et al. 2008). Tick salivary lectin pathway inhibitor (TSLPI) is a
feeding-induced salivary protein present in I. scapularis
(Schuijt et al. 2011) and I. ricinus (Wagemakers et al. 2016).
Unlike Salp15, TSPLI does not adhere to B. burgdorferi but
instead interacts with the lectin complement cascade. TSLPI-
silenced ticks or ticks feeding on mice immunized with TSLPI
are impaired in B. burgdorferi transmission. Moreover,
B. burgdorferi acquisition and persistence in tick midguts are
reduced in ticks feeding on TSLPI-immunized mice, signify-
ing a crucial role in both B. burgdorferi transmission to the
mammalian host as well as B. burgdorferi acquisition and per-
sistence in ticks (Schuijt et al. 2011).

The design of transcriptomic and proteomic studies for
conserved tick proteins involved in pathogen transmission is
quite cumbersome due to the variation in transmission times
for different pathogens during the tick feeding process. These
complications could be avoided by targeting the niche organ
where the spirochete resides before being transmitted – the
tick midgut. The tick midgut protein Bm86 from
Rhipicephalus microplus has been used as an immunogen in
two licensed tick vaccines TickGARD (now discontinued)
and Gavac since the 1990s (de la Fuente et al. 2007). Bm86-
based vaccines have diverse efficacies reported worldwide
(45–100%), with the greatest effect on the reduction of larval
infestations in subsequent generations (Tabor 2018).
Nevertheless, it has limited efficacy against other tick species
(de la Fuente et al. 2007). Recently, it has been shown that
I. scapularis secretes a protein, PIXR, that modulates the tick
gut microbiome and interfere with the ability of B. burgdorferi
to colonize the tick midgut (Narasimhan et al. 2017). This
approach exploits the principle of rendering competent vec-
tors incompetent and targets tick antigens that the parasites
encounter during their life cycle. The tick microbiome could
possibly be an additional target for the preventive strategies
against the tick-borne pathogens (Rego et al. 2019).
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Non-vaccine anti-tick strategies

Information campaigns are the most common policy measures
to reduce the risk of tick-borne diseases. Common recommen-
dations and prevention measures against Lyme borreliosis in-
clude avoiding tick-endemic areas, staying on trails while in
high-risk areas, the usage of protective clothing, using tick
repellents, and checking the body for ticks and removing them
before or as soon as possible after they attach (Connally et al.
2009; Slunge and Boman 2018). Risk of Lyme borreliosis
from an ecological perspective is measured in terms of density
of infected nymphal ticks (Diuk-Wasser et al. 2012). Common
methods for killing ticks include the application of acaricides
to tick-rich areas, rodents hosts, or to the host animals
(Hinckley et al. 2016). The acaricidal treatment of livestock
remains the most effective way to prevent ticks from biting
and feeding; however, the adverse effects for environmental
and public health are more than self-evident (Walker 2014; De
Meneghi et al. 2016).

Small mammals are considered the primary hosts of tick
larvae and therefore form a key determinant for the abundance
of questing nymphs (Perez et al. 2016). Hence, a possible but
more difficult strategy to achieve could include landscape
modifications and vegetation management strategies in urban
and suburban areas in a way that it favors the small mammal
species that can build resistance to ticks, a phenomenon in
which ticks are unable to feed successfully after several tick
infestations (Perez et al. 2016). As an example, repeated in-
festation of bank voles by larval ticks reduced the feeding
success, whereas feeding on wood mice did not negatively
affect the successive feeding of ticks (Humair et al. 1999).
Changes and growth of agricultural landscapes also signifi-
cantly affect the communities of small mammals. Wooded
habitats are considered favorable for ticks because of temper-
ature and humidity they constantly provide (Perez et al. 2016).
Deforestation would definitely be negatively related to tick
density because woodland areas act as habitats for ticks and
their hosts but the detrimental effects of this action are obvi-
ous. Consequently, highly unconventional strategies such as
building artificial wood ant nests would be elegant and eco-
friendly solutions to reduce the tick density (Zingg et al.
2018), in comparison to rather drastic solutions such as erad-
ication of some mammalian hosts of ticks (Rand et al. 2004).

Reservoir-based approaches

Oral vaccinations

The sources of the microbes that cause infectious diseases and
where the pathogens can multiply or merely survive until they
are transmitted are known as reservoirs. Vector ticks must
acquire B. burgdorferi from wildlife reservoirs as there is no
clear evidence of a transovarial transmission route (Rollend

et al. 2013). Disrupting B. burgdorferi transmission between
the tick vector and reservoir hosts is regarded as a promising
strategy to reduce human exposure to Lyme borreliosis (Melo
et al. 2016). Rodents are a major reservoir for Lyme
borreliosis and as such a very promising target to prevent them
from getting infected withB. burgdorferi. The development of
a specific, easily distributable, thermostable, and economical-
ly viable oral vaccine for wildlife reservoirs surrounding hu-
man communities could significantly reduce the incidence of
Lyme borreliosis (Gomes-Solecki et al. 2006).

Oral vaccination is of high interest as a tool to prevent the
spread of Lyme borreliosis as it can be used to deliver the
vaccine to humans, domestic animals, and wildlife reservoirs
of B. burgdorferi. The immunogen can be administered as a
purified antigen (Luke et al. 1997) or as a genetically altered
Escherichia coli (Fikrig et al. 1991). A number of oral vac-
cines based in E. coli expressing recombinant OspC, OspB,
BBK32 from B. burgdorferi, and Salp25 and Salp15 from
Ixodes scapularis were developed. Of the five immunogenic
candidates, only OspC induced significant antibody response
in mice when they were immunized by intragastric inocula-
tion. Nevertheless, the antibodies did not prevent dissemina-
tion of B. burgdorferi as determined by the presence of spiro-
chetes in the ear, heart, and bladder (Melo et al. 2016). Again,
OspA seems to be a more promising oral vaccine candidate as
oral vaccination of wild white-footed mice resulted in reduc-
tions of 23% and 76% in the nymphal infection prevalence
(Richer et al. 2014). Significant decreases in tick infection
were observed within 2–3 years after oral vaccine deploy-
ment. The usage of reservoir-based vaccines as part of a strat-
egy to fight the expansion of Lyme borreliosis is also vastly
dependent on the development of effective strategies for de-
livery of the immunogen. One of the promising approaches is
the usage of Lactobacillus plantarum as a live vaccine deliv-
ery vehicle. These bacteria are naturally associated with the
gastrointestinal tract and generally regarded as safe by the
FDA. Oral administration of live L. plantarum expressing
OspA was shown to be effective in blocking transmission of
B. burgdorferi (del Rio et al. 2008). Not only is the deploy-
ment of borrelial immunogens in oral vaccines achievable but
also the tick antigens can be used to inhibit the transmission of
B. burgdorferi. Using the recombinant vaccinia virus, a single
dose of the subolesin vaccine resulted in strong immune sys-
tem response and partial protection from B. burgdorferi infec-
tion among vaccinated mice (Bensaci et al. 2012).

Immunization by genome editing

A novel theoretical model for prevention of tick-borne dis-
eases, using CRISPR-based genome editing technology, has
been recently suggested (Buchthal et al. 2019). Mice Against
Ticks is a proof of principle project that aims to heritably
immunize local wild white-footed mouse populations against
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Lyme borreliosis and, potentially, against ticks using antibod-
ies derived from natural adaptive immunity, with the ultimate
goal to reduce the reservoir competence of a host for many
decades. It is important to emphasize that the protective anti-
bodies have not yet been identified, nor has heritable genome
editing been ever achieved in white-footed mice.

Conclusion

Presently, the use of acaricides constitutes a major component
of integrated tick control strategies and therefore indirectly
acts as the first line of human-induced defense against a mul-
titude of tick-borne pathogens. However, this is accompanied
by the selection of acaricide-resistant ticks and severe pollu-
tion of the environment (Kunz and Kemp 1994). Lyme
borreliosis is the most common disease spread by ticks in
the Northern Hemisphere with an ever increasing incidence,
and as such this disease is a major topic on the public health
agenda. In order to effectively control the spread of Lyme
borreliosis, a multifront battle should be seriously considered,
involving environment management, wildlife and domestic
animal vaccinations, and of course policymaking. New ap-
proaches and strategies that target against Lyme borreliosis,
including elements of the tick vector, the reservoir hosts, and
the Borrelia pathogen itself, are being developed. Human vac-
cination is the most effective means of prevention. However,
there are a lot of hurdles to overcome, not just regulatory and
scientific ones, but public acceptance as well. Let us hope that
the challenges present today will be met and an efficient de-
fense against Lyme borreliosis will not only be found but also
publicly available in the very near future.
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