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Abstract
The aim of the current study was to localize the epileptic focus and characterize its causal

relation with other brain regions, to understand the cognitive deficits in children with benign

childhood epilepsy with centrotemporal spikes (BECTS). Resting-state functional magnetic

resonance imaging (fMRI) was performed in 37 children with BECTS and 25 children

matched for age, sex and educational achievement. We identified the potential epilepto-

genic zone (EZ) by comparing the amplitude of low frequency fluctuation (ALFF) of sponta-

neous blood oxygenation level dependent fMRI signals between the groups. Granger

causality analysis was applied to explore the causal effect between EZ and the whole

brain. Compared with controls, children with BECTS had significantly increased ALFF in the

right postcentral gyrus and bilateral calcarine, and decreased ALFF in the left anterior cingu-

late cortex, bilateral putaman/caudate, and left cerebellum. ALFF values in the putaman/

caudate were positively correlated with verbal IQ scores in patients. The ALFF values in

cerebellum and performance IQ scores were negatively correlated in patients. These

results suggest that ALFF disturbances in the putaman/caudate and cerebellum play an

important role in BECTS cognitive dysfunction. Compared with controls, the patients

showed increased driving effect from the EZ to the right medial frontal cortex and posterior

cingulate cortex and decreased causal effects from the EZ to left inferior frontal gyrus. The

causal effect of the left inferior frontal gyrus negatively correlated with disease duration,

which suggests a relation between the epileptiform activity and language impairment. All

together, these findings provide additional insight into the neurophysiological mechanisms

of epilepitogenisis and cognitive dysfunction associated with BECTS.
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Introduction
Benign childhood epilepsy with centrotemporal spikes (BECTS) (also known as rolandic epi-
lepsy) is the most common form of idiopathic focal epilepsy syndrome in childhood [1].
BECTS is not correlated with any brain lesion and may be genetically determined. Its onset is
between the ages of 1 and 14 years, with a peak at 7–10 years, usually followed by recovery dur-
ing adolescence [2]. Given these characteristics, BECTS is classically considered a benign con-
dition. However, there is accumulating evidence that BECTS can present with a variety of
cognitive comorbidities including: language dysfunction [3–6], attention deficit [7–9], and
difficulty with spatial perception [10] and memory and phonological awareness [11]. These
findings suggest that seizures also affect cognitive function during interictal periods in children
with BECTS, but the underlying mechanism of this cognitive impairment remains to be
elucidated.

Resting-state functional magnetic resonance imaging (fMRI) has been used extensively to
study functional brain activity in various types of epilepsy free of specifically designed behav-
ioral tasks [12–17]. Amplitude of low-frequency fluctuation (ALFF) is a useful tool for depict-
ing local brain activity. ALFF measures the magnitude of spontaneous blood oxygenation level
dependent (BOLD) activity of each voxel; reflects brain activity level during a given period of
time; and may be similar to positron emission tomography measurement [18,19]. In temporal
lobe epilepsy, it has been demonstrated that ALFF is useful for localizing epileptic focus in the
mesial temporal lobe, and other cortical and subcortical structures associated with cognitive
impairment [20,21]. Additionally, increased ALFF is positively correlated with the number of
epileptic discharges [20], and reflects the BOLD activation induced by epileptic activity [2]. We
hypothesized that ALFF can identify the increased activity of the epileptic focus of BECTS,
which is mainly located in the inferior part of the rolandic area.

ALFF can provide information regarding regional spontaneous activity, and functional con-
nectivity measures the synchronicity of neuronal activity signals among regions of the brain.
They may complement each other and provide more information about the underlying pro-
cesses resulting in changes in resting-state brain function. It has recently been demonstrated
that functional connectivity is reduced between the sensorimotor and language networks in
children with BECTS [22,23]. Concordant abnormalities in structural connectivity have also
been found in this type of childhood epilepsy [24]. Functional connectivity estimated the func-
tional integrate between brain regions. But it ignored an important point to understand epi-
lepsy—the direction of information flow. The abnormal driving effect from epileptogenic zone
(EZ) to other functional areas could be a major reason of multiple clinic syndromes in epilepsy
patients. Granger causality analysis (GCA) is a prominent technique for inferring the direction
of information flow in brain networks [25–27]. It enabled us to understand better how seizure
activity initiates, propagates and terminates [28].

The aim of the current study was to reveal the underlying mechanism of epileptogenesis
and the cognitive deficit associated with BECTS. We adopted ALFF to identify the possible EZ
of BECTS, and utilized GCA to test directly the direction and magnitude of influence between
the EZ and other brain regions. All the observed abnormality would be correlated with cogni-
tive estimations in BECTS patients.

Materials and Methods

Participants
This study involved 37 children with BECTS aged 7.1–13.5 years and 25 healthy volunteers
aged 7.6–12.4 years, who were all attending regular schools. The mean and standard deviation
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of the ages in these two groups of children were, 9.8 ± 1.5 years and 10.0 ± 1.5 years, respec-
tively. None of the healthy controls had a history of dyslexia, learning disorders or psychiatric
disorders. There were no significant differences between patients and healthy controls for age
(P = 0.522) or sex distribution (BECTS, 46% male; healthy controls, 60% male; P = 0.570). The
inclusion criteria for patients were as follows: (1) diagnosed with BECTS according to the cur-
rent diagnostic criteria [29]; (2) no other neurological disease; (3) no abnormality in routine
structural MRI examinations; (4) aged 7–14 years; and (5) full-scale IQ (FSIQ)>70. Thirty six
patients were right-handed and one was left-handed; 23 healthy controls were right-handed
and two left-handed. Thirty-three patients had not received any antiepileptic drugs, three had
received one antiepileptic drug, and another three antiepileptic drugs. The mean duration of
epilepsy from onset to time of scanning was 12.2 ± 13.3 months (range 0.1–56 months).

Ethics Statement
This study was approved by the Beijing Children’s Hospital Subcommittee on Human
Studies. All study subjects and parents (or guardians) gave written informed consent prior to
participation.

Neuropsychological tests
Twenty-four children with epilepsy and 18 controls were administered the Wechsler Intelli-
gence Scale for Children China-Revised (WISC-CR) test, which included FSIQ, verbal IQ
(VIQ), and performance IQ (PIQ).

fMRI data acquisition
We performed functional and structural neuroimaging in children with BECTS and healthy
controls using a Siemens Trio 3T scanner at Beijing 306 Hospital. We acquired resting-state
functional images using a single-shot, gradient-recalled echo planar imaging sequence (2000
ms repetition time, 30 ms echo time, 90° flip angle, 210×210 mm2 field of view, 64×64 in-plane
matrix, 4 mm slice thickness, 0.8 mm interslice gap, 3.3 × 3.3 × 4 mm3 voxel size, and 30 trans-
verse slices aligned along the anterior–posterior commissure). We instructed subjects simply to
rest, not to think of anything in particular, and not to fall asleep. Subsequently, we acquired
high-resolution T1-weighted anatomical images in sagittal orientation using a magnetization-
prepared rapid gradient-echo sequence (2300 ms repetition time, 2.98 ms echo time, 9° flip
angle, 240 × 256 mm2 field of view, 256 × 256 in-plane matrix, 1 mm slice thickness, 0.5 mm
interslice gap, 1 × 1 × 1 mm3 voxel size, and 176 slices).

fMRI data processing
Functional image preprocessing was carried out using the Data Processing Assistant for Rest-
ing-State fMRI (DPARSF; http://www.restfmri.net) [30], which synthesizes procedures in the
Resting State fMRI Data Analysis Toolkit (REST; http://www.restfmri.net) [31] and Statistical
Parametric Mapping (SPM8; www.fil.ion.ucl.ac.uk/spm). The first 10 images were excluded to
ensure steady-state longitudinal magnetization, and the remaining images were then corrected
for temporal differences and head motion. After subject selection, neither translation nor rota-
tion parameters in any given data set exceeded ±3 mm or ±3°. We warped the functional
images into a standard stereotaxic space at a resolution of 3 × 3 × 3 mm3, using the Montreal
Neurological Institute (MNI) echo-planar imaging template, and then we spatially smoothed
them with a 6-mm full-width half-maximum isotropic Gaussian kernel. Finally, we removed
linear trends from the time courses, performed temporal band-pass filtering (0.01–0.08 Hz),
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and regressed out 9 nuisance signals (global mean, white matter, cerebrospinal fluid signals,
and 6 head-motion parameters).

ALFF analysis
ALFF was defined as the averaged square root of activity in the low-frequency band (0.01–0.08
Hz) [18]. ALFF value of each voxel was standardized by dividing the full-brain mean ALFF val-
ues. Two-sample t tests were used to compare the differences in ALFF between the patients
and controls. Using the REST AlphaSim program, a corrected significance level of P< 0.01
was obtained by clusters with a minimum volume of 1808 mm3 and individual voxel height
threshold of P< 0.05.

GCA
A cluster showing abnormal ALFF was identified in rolandic area, the peak voxel (with a 3-mm
radius) in this cluster was used as the seed region for the following GCA. The voxel-wise coeffi-
cient GCA [32] was performed in the whole brain using REST-GCA, a plug-in implemented in
REST software [33]. We applied bivariate coefficient GCA to investigate the causal relation
between the EZ and each voxel in the entire brain [21]. To explore the driving effect from the
seed (EZ) to whole brain, one-sample t tests were performed for the causal effects within each
group, with an uncorrected significance level of P< 0.05. The resulting maps of the two groups
were combined and taken as a causal effect mask. Two-sample t tests were performed on the
causal effects between groups within the causal effect mask with an AlphaSim-corrected signifi-
cance level of P< 0.05 (height threshold, P< 0.01; extent threshold k = 432 mm3). The analy-
sis for the driving effect from whole brain to seed (EZ) was performed in the same way as the
seed (EZ) to whole brain.

To explore whether the neuroimaging measures correlate with the disease features in
BECTS children, Pearson correlation was performed between causal effect/ALFF and disease
duration/IQ scores at the peak voxel of clusters from the between-group analysis.

Results

Neuropsychological testing
Table 1 shows the demographic, clinical and neuropsychological characteristics of the patients
with BECTS and healthy controls. FSIQ of the patients with BECTS was significantly lower
than that of the control group (t = -2.39, P = 0.024). The PIQ scores did not differ significantly
between the patients with BECTS and the healthy controls (t = -1.55, P = 0.13). The VIQ scores
in the children with BECTS were significantly lower than those in the control group (t = -2.49,
P = 0.021).

Between-group analysis of ALFF
As compared with the healthy controls, the patients with BECTS showed significantly
increased ALFF in the right postcentral gyrus and bilateral calcarine (P< 0.05 corrected)
(Table 2 and Fig 1). Brain regions showing decreased ALFF included the left anterior cingulate
cortex (ACC), bilateral putamen/caudate and left cerebellum (P< 0.05 corrected) (Table 2 and
Fig 1).

Voxel-wise GCA
Seed-to-whole-brain analysis. Widespread cortical and subcortical structures were driven

by the seed region in patients with BECTS (Fig 2A). The pattern in the healthy controls
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(Fig 2B) was clearly distinct from that in the patients. Compared with healthy controls, the
patients showed an increased driving effect from EZ to the right medial frontal cortex (BA8)
and posterior cingulate cortex (PCC) (Fig 2C and Table 3), and a decreased causal effects from
EZ to the left inferior frontal gyrus (BA9/44/45/46) (Fig 2C and Table 3).

Whole-brain-to-seed analysis. Whole-brain-to-seed analysis showed that there was no
abnormal positive or negative driving effect from whole brain to seed in the patients with
BECTS.

Correlation analysis. A positive correlation was identified for ALFF values in the puta-
men/caudate and VIQ scores (r = 0.521, P = 0.009) (Fig 3A). In contrast, the cerebellum and
PIQ scores showed a negative correlation (r = −0.441, P = 0.031) (Fig 3B). The causal effect
from EZ to the left inferior frontal gyrus (r = −0.393, P = 0.02) was negatively correlated with
disease duration (Fig 3C). These associations were absent in the healthy controls.

Discussion
In the current study, we localized the possible EZ of BECTS, and characterized the causal effect
between EZ and the whole brain. We found that the possible EZ of BECTS not only showed
abnormal increased local activity but also had abnormal driving effects to other brain areas.
Findings of correlation analysis suggested that these disrupted brain activities were related to
the abnormal cognitive functions.

Table 1. Demographic, clinical, and neuropsychological characteristics of BECTS patients and healthy controls.

Characteristic Patients Controls t/χ2 P value

Age (years) 9.8±1.5 10.0±1.5 -0.645 0.522a

Sex (female/male) 19/18 11/14 0.323 0.570b

FSIQ 90.50±9.22 100.56±15.94 -2.39 0.024a

VIQ 91.75±8.24 103.44±18.64 -2.49 0.021a

PIQ 91.17±11.37 96.94±12.77 -1.55 0.130a

Duration (months) 12.2±13.3 NA –

The intelligence quotient (IQ) scores in patients and controls were based on the results of 24 and 18 participants, respectively. FSIQ = full scale IQ;

VIQ = verbal IQ; PIQ = performance IQ. NA, not available.
aTwo-sample t test.
bχ2 test.

doi:10.1371/journal.pone.0134361.t001

Table 2. Regions showing abnormal amplitude of low-frequency fluctuation in patients.

Brain region MNI BA Cluster size (mm3) Peak t value

Postcentral gyrus R. 63, -9, 18 3 1323 4.23

Calcarine L. -18, -72, 9 17 3024 3.94

Calcarine R. 21, -72, 15 18 2268 4.07

ACC L. -6, 42, 3 32 2592 -4.63

Putaman/caudate L. -21, 15, -9 NA 1728 -3.87

Putaman/caudate R. 18, 18, -9 NA 3186 -5.30

Cerebellum L. -6, -78, -48 NA 7992 -4.56

ACC = anterior cingulate cortex; L = left side; MNI = Montreal Neurological Institute; R = right side;NA, not

available.

doi:10.1371/journal.pone.0134361.t002
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This study identified that ALFF pattern in children with BECTS was altered compared to
that in healthy controls.We found increased ALFF in the right postcentral gyrus, a presumed
location of the generator of the epileptic discharges as supported by the findings of previous
electroencephalography–fMRI studies [34–37]. We propose that the occipital activations
(bilateral calcarine cortex) detected in our study might reflect some internally evoked second-
ary response of the brain to the initial spike event.

We consider decreased ALFF in the ACC, putamen/caudate and cerebellum to be responsi-
ble for functional impairments in cognitive processes in children with BECTS.

The ACC is involved in attention and concentration [38]. fMRI demonstrates ACC activa-
tion in executive control of attention [39], and conflict monitoring in the engagement of cogni-
tive control [40]. One recent fMRI study of sustained attention demonstrated bilateral ACC
activation, and a correlation between worse performance and lower BOLD signal in the ACC
[41]. Moreover, a novel conflict monitoring task has been used to assess the effects on cognitive
control of excitotoxic lesions in the ACC in rats. The animals with ACC lesions had difficulty
in adjusting cognitive control [42]. Children with BECTS have sustained attention difficulties
[7,43–45]. We infer that this decreased ALFF in the ACC may explain the attention deficit that
is a common symptom in BECTS.

A particularly interesting finding in the current study was decreased ALFF in the putamen/
caudate in children with BECTS, and a positive correlation was seen between ALFF values in

Fig 1. Brain regions showing abnormal ALFF in patients with BECTS. The warm (red) and cold (blue)
colors represent higher and lower ALFF, respectively, in patients compared with controls (P<0.05, corrected).
Color bar represents t values.

doi:10.1371/journal.pone.0134361.g001

Fig 2. Voxel-wise GCA. (A) Regions showing significant causal effect with the seed in patients. (B) Regions
showing significant causal effect with the seed in controls. (C) Regions showing abnormal causal effect with
the seed in patients compared with controls. Color bar represents t values. NC = normal control; PA = patient.

doi:10.1371/journal.pone.0134361.g002
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the putamen/caudate VIQ score. The involvement of the basal ganglia has been demonstrated
in focal and generalized epilepsy [46–48]. The basal ganglia were previously thought to be pri-
marily involved in motor control, however, more recent evidence from neuropsychological and
neuroimaging studies suggests that the basal ganglia also support language processing [49].
The striatal dopaminergic system plays an essential role in grammatical processes that form
the core of human language [50]. The putamen plays a special role in reading but this is likely
to vary with individual reading preferences and strategies [51]. Dysfunction particularly related
to language has been reported in BECTS [3–6,52–54]. In the current study, we found that chil-
dren with BECTS had a significantly lower VIQ score, which agrees with previous studies
[55,56]. In the current study, there were decreased ALFF values in the putamen/caudate in chil-
dren with BECTS, along with a correlation between these decreased ALFF values and VIQ
scores. These results suggest that abnormal spontaneous neural activity in the basal ganglia
may play a role in BECTS-related language dysfunction. One recent study found children with
BECTS demonstrated significant putamen hypertrophy [57]. This finding, with combined our
results, suggests that a structural abnormality underlies the functional abnormality in
basal ganglia in BECTS. Additionally, the altered structural features in basal ganglia was also
reported in children with absence seizures[58] As both absence epilepsy and BECTS are child-
hood onset and most patients of them become seizure free after adulthood, we speculate the
basal ganglia may be a common target for epileptic patients with abnormal neurodevelopment.

Like basal ganglia, decreased ALFF values were also found in the cerebellum in children
with BECTS. The involvement of the cerebellum in a wide range of cognitive functions has
been found in many studies [59–61]. In addition, decreased ALFF values in the cerebellum

Table 3. Regions showing abnormal causal effect with epileptogenic zone in patients (seed-to-whole-brain).

Brain region MNI BA Volume (mm3) Peak t value BECTS NC

MFG R 45, 12, 51 8 1620 4.02 3.53* -2.27*

PCC 0, -48, 18 23 459 3.75 1.22 -3.83*

IFG L -57, 6, 18 44/9 2133 -4.45 -3.79* 2.62*

IFG L -39, 21, 21 45/46 1053 -3.67 -0.15 4.43*

WM -42, -3, 18 NA 1188 -3.98 -3.49* 2.32

The last two columns show the t value of the corresponding peak voxel within the patient and control group, respectively. Values with an asterisk show

that the mean causal effect of the corresponding cluster is significantly different from zero. BA = Brodmann’s area; IFG = inferior frontal gyrus; L = left

side; PCC = posterior cingulate cortex, R = right side; MNI = Montreal Neurological Institute coordinate; NC = normal control; WM = white matter;NA, not

available.

doi:10.1371/journal.pone.0134361.t003

Fig 3. Correlation between fMRI measures and cognitive estimation or disease duration. (A) A positive
correlation was identified for ALFF values in the putamen/caudate and VIQ scores. There were four children
had same scores of verbal IQ(90), 4 points overlapping together, so there were only 22 points in the this
figure. (B) The cerebellum and PIQ scores showed a negative correlation. (C) The causal effect from EZ to
the left inferior frontal gyrus was negatively correlated with disease duration.

doi:10.1371/journal.pone.0134361.g003
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were found to be negatively correlated with PIQ scores in children with BECTS. Whether these
decreased cerebellar ALFF values were part of a compensatory mechanism limited progression
of cognitive decline in BECTS remains to be determined in longitudinal studies.

After we identified the EZ (postcentral gyrus) by ALFF, we utilized coefficient-based GCA
to obtain information about the flow directions and magnitude between the EZ (postcentral
gyrus) and the whole brain. Unlike the residual-based GCA, this novel GCA method can char-
acterize not only the positive causality but also negative causality. These two kinds of causalities
may represent inhibitory and excitatory effect in physiology and have shed new light on the
pathophysiology of several disorders [21,62,63]. Here, the predominant finding was that the
abnormal causal effect in BECTS is unidirectional (seed to whole brain), without abnormal
feedback (whole brain to seed). Compared with controls, patients demonstrated a decreased
driving effect from the EZ to the inferior frontal gyrus (BA44/9, BA 45/46). Furthermore, we
found that the abnormal driving effect from the EZ to the inferior frontal gyrus (BA 45/46) in
patients was negatively correlated with disease duration. The traditional Broca’s area usually
refers to the pars triangularis (BA 45) and pars opercularis (BA 44) of the inferior frontal
gyrus. Broca’s area is one of the essential nodes in the language network. Evidence shows that
BA 45 is implicated in semantic processing, while BA 44 is involved in phonological and syn-
tactic processing [64]. Recent studies have demonstrated reduced functional connectivity
between the sensorimotor network and the inferior frontal gyrus (Broca’s area) in children
with BECTS [22,23], although the directions of information flow have been overlooked. For
the first time, we identified a decreased driving effect from the EZ to Broca’s area in children
with BECTS, and this agrees with the decreased VIQ. Our results provide new evidence that
epileptiform activity in BECTS may cause language impairment.

In the current study, the ipsilateral medial frontal cortex (BA8) and PCC showed an
increased causal effect driven by the right postcentral gyrus. The medial frontal cortex has pre-
viously been implicated in action selection/outcome monitoring, behavioral adjustments and
learning [65–67]; all of which are important in complex cognitive tasks such as language. The
PCC is the main hub within the default network whose activation is greater at rest than during
tasks [68]. Several studies have found decreased resting-state connectivity within the default
network in patients with epilepsy [69–72]. Oser and coworkers [73] have provided evidence of
abnormal functional integration of the default network in BECTS. We speculate that the
increased causal effects driven by the EZ to the medial frontal cortex and PCC are compensa-
tory reallocations for the neural system to compensate for cognitive deficits in BECTS. Future
studies are needed to confirm this speculation.

The current study had several limitations. First, it was not a longitudinal survey, therefore, it
is unknown if the ALFF values and causal effect alterations will normalize with seizure remis-
sion in BECTS. Second, although only 4 children received antiepileptic drugs, the effects of
medications cannot be fully excluded. Ideally, these results need validation in drug-naïve
patients. Third, we did not simultaneously perform electroencephalography during fMRI, thus
we did not know to what extent the functional alteration was caused by interictal discharges.
Fourth, clinically, the identification of a real EZ should be based on a comprehensive evalua-
tion, including video-EEG, clinical characteristics or even surgery. Although previous studies
found ALFF significantly correlated with epileptic activity, the ‘potential’ EZ found here
through ALFF still need further validation. Fifth, the maintaining of normal brain function
may be largely dependent on the interaction between multiple networks. To estimate the effect
of epileptic network on brain function, a network based analytic strategy may be adopted as
previous epilepsy studies [74].

In conclusion, we characterized the abnormal local activity and causal connectivity in
patients with BECTS using resting-state fMRI data. The findings from ALFF suggested that
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the inferior part of postcentral gyrus may be the EZ of BECTS, and the putamen/caudate and
cerebellum play an important role in the cognitive dysfunction of BECTS. GCA indicated a
decreased driving effect from the EZ to Broca’s area in children with BECTS, which was nega-
tively correlated with disease duration, giving new evidence that epileptiform activity in
BECTS may cause language impairment. Our findings provide neuroimaging evidence of the
neuropathophysiological mechanisms underlying the cognitive impairments in BECTS.
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