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Abstract: Diffraction gratings are becoming increasingly widespread in optical applications, notably
in lasers. This study presents the work on the characterization and evaluation of Multilayer Dielectric
Diffraction Gratings (MDG) based on the finite element method using Comsol MultiPhysics software.
The optimal multilayer dielectric diffraction grating structure using a rectangular three-layer structure
consisting of an aluminum oxide Al2O3 layer sandwiched between two silicon dioxide SiO2 layers
on a multilayer dielectric mirror is simulated. Results show that this MDG for non-polarized lasers
at 1064 nm with a significantly enhanced −1st diffraction efficiency of 97.4%, reaching 98.3% for
transverse-electric (TE) polarization and 96.3% for transverse-magnetic (TM) polarization. This
design is also preferable in terms of the laser damage threshold (LDT) because most of the maximum
electric field is spread across the high LDT material SiO2 for TE polarization and scattered outside
the grating for TM polarization. This function allows the system to perform better and be more stable
than normal diffraction grating under a high-intensity laser.

Keywords: multilayer dielectric grating; diffraction efficiency; high laser damage threshold

1. Introduction

Laser technology is advancing at a breakneck pace, with extensive use in appli-
cations [1] such as material processing, scientific research, laser weaponry, and three-
dimensional printing. The attempt to power-scale laser systems has centered on two
different techniques for years [2]. One of the techniques is the improvement of each laser
system component, such as the lasing mode [3], the pumping technology, and the devel-
opment of near-diffraction suppression systems [4–8]. Nevertheless, this approach has
significant drawbacks due to the nonlinearity effect [9], and the broadening of the spec-
trum for high-power lasers is unavoidable, severely limiting the output power of the laser
channel [10,11].

Another technique for overcoming these drawbacks is to employ a multi-aperture
beam combining method to produce high-quality composite beams. Coherent beam com-
bining (CBC) and spectral beam combining (SBC) methods have been used to considerably
increase the output of laser power [12]. A CBC system involves vectorially summing the
outputs of multiple lasers by loading them into a spatial array and then phase-locking
individual emitters to each other or to a common master oscillator. However, combining
many lasers into a single coherent beam is challenging with only limited success [13].

Nanomaterials 2022, 12, 1952. https://doi.org/10.3390/nano12121952 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12121952
https://doi.org/10.3390/nano12121952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9525-4681
https://doi.org/10.3390/nano12121952
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12121952?type=check_update&version=2


Nanomaterials 2022, 12, 1952 2 of 11

Meanwhile, the SBC method combines many wavelength sources into a single output beam.
In the SBC system, each source operates at a different wavelength. Therefore, the combined
beam overlaps in the near and far fields without spatial interference.

Many research works have been conducted to discover the appropriate structure for
the SBC method recently. Cho et al. [14] reported basic design methods and modal analysis
for a near-Littrow grating with a high diffraction efficiency for both polarization forms in a
given range of wavelengths. However, further enhancement in the diffraction efficiency
required some modifications to the grating structure. As increasingly complicated and
efficient diffractive structures were needed, the complexity of the grating structure quickly
increased [15]. Depending on the desired optical functionality, the required grating surface
patterns might have two, three, or even more layers. Li and Wang [16] employed a modal
technique to build and evaluate a three-layer all-dielectric rectangular-groove transmission
grating. The design exhibited the −first diffraction efficiency of more than 95% in the
wavelength bandwidth range of 766–833 nm. This efficiency was significantly enhanced
compared to those of single-layer and two-layer gratings.

Many researchers have devised different formalisms that can yield reliable compu-
tations of dielectric gratings. Compared with other methods, the finite element method
(FEM) is a simpler and more efficient analytical tool for grating diffraction issues [17,18].

Alessi et al. reported a simulation using FEM to investigate the thermal-mechanical
evolution of a single diffraction grating of a compressor [19]. Huang et al. [20] developed
multilayer trapezoidal gratings, which comprise a layer of Hafnium dioxide HfO2 sand-
wiched between two SiO2 layers on a metal layer. This structure had a diffraction efficiency
of 95.62% for TE polarization at an incidence angle of 53◦. They employed the FEM to
illustrate the normalized electric field intensity of the metal multilayer dielectric gratings
(MDG) and discovered that the electric field focused on the interlayer HfO2 of the grating
region. Nevertheless, their research had two limitations. Firstly, the metal used for this
grating would exhibit losses of at least several percent due to absorption, particularly in
power scaling, where such losses are completely undesirable [21]. Secondly, although the
laser damage threshold (LDT) was improved, the increment still did not reach the optimal
level because the electric field was still primarily focused on the HfO2 layer, which has an
average LDT of 1.97 J/cm2 [22].

Therefore, multilayer dielectric mirrors are extensively utilized instead of metallic
layers owing to their absorption-free properties [14,19–21]. As a result of replacing the metal
with a dielectric multilayer dielectric mirror in our investigation, the diffraction efficiency is
greatly boosted. The HfO2 material is substituted with a high LDT Al2O3 of 2.52 J/cm2 [22]
in our study. Al2O3 is a material with a high refractive index and high LDT paired with a low
refractive index SiO2 to provide a high diffraction efficiency and stability of MDG in high
laser intensity environments. In addition, many rectangular gratings have been extensively
studied using the photoresist mask method and ion beam etching method because of their
ease of fabrication and high diffraction efficiency stability [23–25]. Consequently, utilizing
gratings with a rectangular structure will result in great productivity.

The aim of the study is to use FEM to develop the structure of the grating in order to
meet the criteria of high diffraction efficiency and LDT. Grating’s parameter computations
are used to evaluate the diffraction efficiency and electric field distribution. Our study
on the rectangular-groove three-layer grating on a multilayer dielectric mirror obtained
after scanning data using the FEM demonstrates a considerable increase in the diffraction
efficiency of the grating for TE and TM polarization. Simultaneously, most of the strongest
electric fields for TE polarization are spread on the high LDT SiO2 layers and scattered
outside the grating for TM polarization in the given grating model. This finding indicates
that this design provides a significant improvement in LDT.
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2. Materials and Methods

The diffraction equation in reflection is as follows [26]:

nisinθm = nisinθi + m
λ

p
(1)

where: p is the grating period, ni is the refractive index of the incident media, θm is the
diffraction angle, θi is the incident angle, m is the diffraction order, and λ is the wavelength
of incident light.

A particular grating in which light is diffracted back toward the direction (i.e., θm= θi)
is termed the Littrow mounting (or Littrow configuration). The grating equation is stated
as follows [14]:

− 2nisinθm = m
λ

p
(2)

Figure 1 shows the dispersion of diffraction orders in reflection and transmission as a
function of incident angle and (wavelength/period), ni is the refractive index of air (=1).
Only the 0th and −1st orders in R and T exist in a dashed area, delimited by −1st R, +1st T,
and −2nd T lines. The Littrow condition showed as a long-dashed line in which the −1st
order diffracted back in the incident direction λ

ni p = 2sinθi.
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Figure 1. Dispersion of diffraction orders in reflection and transmission.

Hehl et al. [27] used the effective index of a diffraction grating to set the range of the grat-
ing period and incident angle. Diffraction orders may be used to represent the reflected and
transmitted fields as a sum of plane waves. Based on their method, Figure 2 shows the range
of diffraction orders as a function of the incident angle and grating period at a wavelength of
1064 nm. Gratings suitable for SBC at the −1st order are determined by the area bounded
by the three sets of lines, including R−1

(
λ

ni p = sinθi + 1
)

, T+1

(
λ

ni p = −sinθi +
ns
ni

)
and

T−2

(
λ

ni p = 1
2 sinθi +

ns
2ni

)
; with ns = 1.44964, and n0 = 1. Diffraction orders are only affected

by the grating period, not the geometrical form of the grooves, according to Equation (2).
Nevertheless, the amplitudes or diffraction efficiencies of the orders cannot be calculated by
such a simple equation. The electromagnetic field inside the grating region, and hence the
precise groove geometry, must be taken into account while calculating them. The angular
separation between the diffraction orders is determined by the grating structure’s period,
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while the structure within a single grating period controls how the power is divided across
the orders.
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Figure 2. Schematic of MDG.

The propagation properties of the laser beams are characterized by a beam quality
factor M2. It shows the number of times the far-field divergence of a real beam is greater
than the divergence of a perfect diffraction-limited Gaussian beam of the same size. The
beam quality has improved when the beam quality factor M2 is closer to 1 [12,26].

Assuming diffraction-limited output for individual lasers, incidence angles near Lit-
trow, and wavefront-distortion-free diffraction from the grating, the combined beam quality
varies with the single-channel 1/e2 linewidth ∆λ as follows [12]:

M2 =

√
1 +

(
πω0∆λ

2pλcosθi

)2
(3)

where: ω0 is the 1/e2 beam radius. For a SBC fiber array with total output power P, the
peak irradiance on the grating is given by the following [12]:

Ipeak =
2Pcosθi

πω2
1

(4)

where: ω1 is the 1/e2 beam radius for the diffracted beam. For a given value of ∆λ and p,
increasing θi will decrease Ipeak and the combined beam quality simultaneously.

The angular spread ∆ϕ of a spectrum of order m between the wavelength λ and
λ + ∆λ can be obtained by differentiating the grating equation, assuming the incidence
angle θi to be constant. The change D in diffraction angle per unit wavelength is, therefore,
the following [26]:

D =
dϕ

dλ
=

m
pcosθm

(5)

The quantity D is called the angular dispersion. The substitution of Equation (1) into
Equation (5) for the angular dispersion obtains the following [14]:

D =
dϕ

dλ
=

sinθi + sinθm

λcosθm
(6)
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When we consider the Littrow condition (θi = θm), Equation (6) will reduce to
the following:

D =
dϕ

dλ
=

2
λ

tanθi (7)

Therefore, the incident angle at the Littrow condition can be determined by the following:

θi = tan−1
(

Dλ

2

)
(8)

The effective indices of the grating modes can be found by the following [28]:

cos(αp) = F
(

n2
e f f

)
(9)

where: p is the grating period and α = k0sinθi, k0 is a unit vector of incident wave.
For the TE polarization, the right-hand side of Equation (9) is given by the follow-

ing [28,29]:

F
(

n2
e f f

)
= cos(βb) cos(γg)− β2 + γ2

2βγ
sin(βb) sin(γg) (10)

with: β = k0

√
n2

b − n2
e f f , γ = k0

√
n2

g − n2
e f f , b and g are the ridge and groove widths.

Because the grating is illuminated under Littrow mounting, the intersection of the
illustrated functions F

(
n2

e f f

)
and cos(αp) = −1 gives the effective indices of the modes

that can be excited by the incident wave. Only two propagating modes have real effective
indices; all higher-order modes are evanescent since their neff is imaginary. The diffraction
efficiency of the negative first order η−1 can be expressed by the following:

η−1(h) = sin2
(

π
h
λ

∣∣∣ne f f 1 − ne f f 2

∣∣∣) (11)

Based on their calculation, the optimum height for the TE polarization can be deter-
mined by the following [28]:

hTE
max =

λ

2
∣∣∣nTE

e f f 1 − nTE
e f f 1

∣∣∣ (12)

Equation (12) implies that the incidence wavelength is directly proportional to the
depth of the local surface relief structure. For the TM polarization, F

(
n2

e f f

)
is in the

following form [28]:

F
(

n2
e f f

)
= cos(βb) cos(γg)−

β2 + ε2
bγ2

2εbβγ
sin(βb) sin(γg) (13)

where: εb = n2
b is the dielectric permittivity of the substrate material.

To achieve a high diffraction efficiency for TM polarized light, it is also necessary to
fulfill the phase condition Equation (12). The grating depth can be decided by solving
Equations (11) and (13) for TE and TM polarizations. Therefore, the design must compro-
mise between the contradictory tendencies. Moreover, no theoretical equation can estimate
the number in an unpolarized case. For non-polarized light, according to Ref. [30], the
average diffraction efficiency is defined as follows:

ηave =
1
2
(ηTE + ηTM) (14)

In this study, an MDG structure is proposed for the high diffraction efficiency grating
based on the finite element method by parameter scanning using COMSOL Multiphysics
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software version 5.5. Generally, diffraction gratings can be entirely characterized by the
following set of parameters: duty cycle (f), grating period (p), and grating thickness (h).
The width of the grating’s ridge b is represented by the product of f.p. The duty cycle value
is optimized during the computation so that the grating has the most thorough structure.
Besides, we need to be concerned about the light parameters, including polarization type
(TE, TM, or unpolarized) incident angle θi. Figure 2 shows a schematic of a basic rectangular
diffraction grating. Between the gratings and the multilayer mirror, we add a matching
layer. This layer not only serves as a transition layer between gratings and multilayer thin
films but also improves the adhesion to the thin films, affecting the duration and operation
efficiency of the whole system.

The combined efficiency of the SBC system is mostly determined by the grating
diffraction efficiency [14]. The design of MDG for the SBC system of real beams is a
procedure of optimizing grating parameters and desired parameters of individual lasers.
In other words, the purpose of this approach is to minimize diffraction losses in the
SBC system.

3. Results and Discussion

Narrowing the parameter value is required to assess and determine the optimal param-
eters for grating. The incident angle near the Littrow line is selected based on the properties
of Littrow mounting for a high diffraction efficiency. As a result, the Littrow criterion is
met for this grating at an incidence angle of 44.43◦ (in the air). For the mentioned incidence
angle, Equation (2) is used at 1064 nm, and the grating period is 760 nm. To demonstrate
the increase in the diffraction efficiency, gold metal is employed as the reflective layer for
the grating in the first stage. The performance of the grating depends on the polarization
of the incident wave. Therefore, both a transverse electric (TE) and a transverse magnetic
(TM) case are taken into account. The TE wave has the electric field component in the
z-direction, out of the modeling xy-plane. For the TM wave, the electric field vector is
pointing in the xy-plane and perpendicular to the direction of propagation, whereas the
magnetic field has only a component in the z-direction. The simulations are run using a
duty cycle range of f = 0.1~0.9. The obtained results from using the above parameters for
the diffraction efficiency for TE, TM polarization are shown in Figure 3a,b. According to
Equation (14), the diffraction efficiency of the grating for unpolarized light is shown in
Figure 3c. Two duty cycle regions exhibit a substantial diffraction efficiency, one around 0.5
and the other around 0.7. The duty cycle f = 0.5 is chosen for its simplicity in design, ease of
manufacturing, low cost, and availability in commercial production. As a result, Figure 3d
shows the −1st diffraction efficiency of the rectangular-shaped grating for unpolarized
light at f = 0.5. As shown in Figure 3d, if the grating may be utilized for non-polarized light,
the grating depth is 2130 nm. The grating parameters are shown in Table 1.

Table 1. Rectangular shaped grating parameters.

Parameters Value

Incident wavelength 1064 nm
Period 760 nm
Incident angle 44.43◦

Duty cycle 0.5
Grating’s height 2130 nm
Reflective layer Gold
The thickness of the matching layer (SiO2) 366.99 nm (δ/2)
Refractive index of the substrate (Glass) 1.50664
Refractive index of SiO2 1.44964

The downside of utilizing metal in the reflective layer, as previously stated, is ab-
sorption, which leads to a loss in the diffraction efficiency of the grating. The challenge
is addressed by replacing the gold layer with a reflective dielectric multilayer according
to the formula (HL)13 H, where H stands for the high refractive index of Ta2O5, and L
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stands for the low refractive index of SiO2. The LDT of coatings based on SiO2 can be
up to 4.28 ± 0.07 J/cm2, which is the highest among other materials normally used for
coatings [22]. This feature enables SiO2 in MDG to be able to withstand high-power laser
radiation, making them ideal elements for high-power SBC. Ta2O5 is an important material
for optical coatings as a result of its wide transparent spectrum, high refractive index,
strong adhesion with substrates, and especially the Ta2O5/SiO2 multilayer high-reflection
mirror, which has been widely investigated [31]. The reflectance of a dielectric multilayer is
simulated using the Essential Macleod software version 11.4.585, as shown in Figure 4. The
diffraction efficiency of the MDG is shown in Figure 5 at various wavelengths. We find that
the unpolarized light’s diffraction efficiency was 94.5% at 1064 nm.
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Figure 5. MDG diffraction efficiency at different wavelengths.

To date, three-layer gratings have greater diffraction efficiency than single-layer grat-
ings. We discover that the diffraction performance may still be enhanced. Thus, in our
work, an interlayer material is applied to the rectangular grating, as shown in Figure 6.
The material must be different from SiO2 and have a high laser-induced damage threshold.
With a reasonably high LDT of 2.52 J/cm2 [22], a high refractive index Al2O3 material is a
good candidate for interlayer grating design. We merely alter the position and thickness
of h2 in this case. The overall thickness of the grating is still 2130 nm, as shown in the
above results.
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The location and height of the Al2O3 interlayer are simulated to determine the opti-
mal position for diffraction efficiency and LDT. The TE-polarization and TM-polarization
diffraction efficiency with different h1 and h2 are given in Figure 7a,b. Similarly, their
means provide the −1st diffraction efficiency for unpolarized light in Figure 7c. Accord-
ing to this figure, two high diffraction efficiency regions are equivalent to two distinct
h2 positions. The maximum electric field intensity (EFI) location is also critical because
it will cause damage to the MDG. Hence, it is essential to determine the position of the
added layer to prevent the maximum electric field focusing on this layer. The simulation
range for LDT is confined to the two locations with the high diffraction efficiency described
previously. This simulation shows the optimal height value of the grating structure for
LDT is (h1, h2, h3) = (409 nm, 150 nm, and 1571 nm). As shown in Figure 8, the majority of
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the maximum EFI was spread on SiO2 layers in the TE polarization, whereas in the TM
polarization, it was scattered outside of the grating. As a consequence, this grating design
will function stably in a high-intensity laser system. The diffraction efficiency of the unpo-
larized light is 97.28% at 1064 nm, as shown in Figure 7d. This value is an increase of 2%
compared with that of normal MDG. Table 2 shows the parameters of the three-layer MDG.
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Figure 7. −1st diffraction efficiency of rectangular−shaped grating for (a) TE polarization and (b) TM
polarization, (c) unpolarized light, and (d) diffraction efficiency of the optimum design.
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Figure 8. Normalized electric field distribution for (a) TE polarization and (b) TM polarization.
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Table 2. Parameter of the three-layer MDG.

Parameters Value

Grating’s shape Rectangular
Incident wavelength 1064 nm
Period 760 nm
Incident angle 44.43◦

Duty cycle 0.5
Grating’s depth/height 2130 nm (409, 150, 1571)
The thickness of the matching layer (SiO2) 366.99 nm (δ/2)
Refractive index of the substrate (Glass) 1.50664
Refractive index of SiO2 1.44964
Refractive index of Al2O3 1.6509
Refractive index of Ta2O5 2.10000
Reference wavelength 1164 nm

Reflective multilayer layer structure Substrate| (HL)ˆ13 H|Air
H: Ta2O5 L: SiO2

4. Conclusions

The grating of a rectangular-groove three-layer on a dielectric multilayer mirror is
reported in this paper. A multilayer mirror ((HL)13 H; H: Ta2O5, L: SiO2), which replaces
metal reflectors, provides a significant contribution to boosting the diffraction efficiency.
Furthermore, using the optimal position for the Al2O3 interlayer of the grating plays a
critical function in improving the diffraction efficiency and laser damage thresholds. The
design of MDG is optimized for a 10 nm bandwidth non-polarized laser at 1064 nm with
an absolute −first diffraction efficiency of 96.1–97.4%. Using appropriate materials and a
well-designed structure, this grating also demonstrates a significant improvement in LDT
through the electric field intensity distribution. The obtained results from the designed
grating have a useful contribution to the development of new devices through the spectral
beam combining method.
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