
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12087  | https://doi.org/10.1038/s41598-021-91244-w

www.nature.com/scientificreports

A convolutional neural network 
for estimating synaptic 
connectivity from spike trains
Daisuke Endo1,9, Ryota Kobayashi2,3,4,9, Ramon Bartolo5, Bruno B. Averbeck5, 
Yasuko Sugase‑Miyamoto6, Kazuko Hayashi6,7, Kenji Kawano6, Barry J. Richmond5 & 
Shigeru Shinomoto1,8*

The recent increase in reliable, simultaneous high channel count extracellular recordings is exciting 
for physiologists and theoreticians because it offers the possibility of reconstructing the underlying 
neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal 
spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm 
can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each 
individual dataset. Here we present another method using a Convolutional Neural Network for 
Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated 
data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-
correlogram. There are no user-adjustable parameters. With this new method, we have constructed 
diagrams of neuronal circuits recorded in several cortical areas of monkeys.

More than half a century ago, Perkel, Gerstein, and Moore1 pointed out that by measuring the influence of one 
neuron on another through a cross-correlogram, physiologists could infer the strength of the connection between 
the neurons. If this were done for lots of pairs of neurons, a map of the neuronal circuitry could be built. Now, 
with the advent of high-quality simultaneous recording from large arrays of neurons, it might have become pos-
sible to map the structures of neuronal circuits.

The original cross-correlation method can give plausible inferences about connections. However, in many 
cases, it also tended to suggest the presence of connections that are spurious, i.e., false positives (FPs). There 
were many possible sources for the lack of reliability and specificity, such as large fluctuations produced by 
external signals or higher-order interactions among neurons. Over the years, there have been many attempts to 
minimize the presence of such spurious connections, by shuffling spike trains2, by jittering spike times3–6, or by 
taking fluctuating inputs into account7–13. These, in general, helped eliminate the FPs, but they then tended to 
be conservative, giving rise to false negatives (FNs), i.e., missing existing connections.

Recently, we developed an estimation method by applying the generalized linear model (GLM) to each 
cross-correlogram14. The estimation method we call GLMCC works well in balancing the conflicting demands 
of reducing FPs and reducing FNs, demonstrating that the cross-correlogram image actually contains sufficient 
information from which to infer the presence of monosynaptic connectivity. GLMCC nonetheless has a short-
coming: the estimation results are sensitive to the model parameters, and therefore the parameters need to be 
tuned for the spiking data.

Here, we develop another method: Convolutional Neural Network for Estimating synaptic Connectivity 
from spike Trains (CoNNECT). The premise is that a convolutional neural network is good at capturing the fea-
tures important for distinguishing among different categories of images15–18; we apply it to a cross-correlogram, 
expecting that it is capable of detecting the signature of the monosynaptic impact in the one-dimensional cross-
correlogram image. Our new method CoNNECT is easy to use, and it works robustly with data arising from 
different cortical regions in non-human primates. The convolutional neural network has tens of thousands of 
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internal parameters. The parameters can be adjusted using hundreds of thousands of pairs of spike trains gener-
ated with a large-scale simulation of the circuitry of realistic model neurons. To reproduce large fluctuations in 
real spike trains, we added external fluctuations to the model neurons in the simulation.

CoNNECT promptly provides reasonable inference. It does not, however, give a rationale for why the result 
was derived, whereas our previous algorithm GLMCC does because it fits an interaction kernel to the cross-
correlogram. These methods, therefore, have different strengths and weaknesses and can be used in combination 
in a complementary manner. Namely, the inference given by CoNNECT can be used for guiding GLMCC to 
search for suitable parameters, and GLMCC can provide interpretation.

We evaluated the accuracy of estimation by comparing the inference with the true connections, using syn-
thetic data generated by simulating circuitries of model neurons, and compared the performance of CoNNECT 
with that of GLMCC, as well as the classical cross-correlogram method19,20, the Jittering method4,5, and an 
extended GLM method13. After confirming the performance of the model, we applied CoNNECT to parallel spike 
signals recorded from three cortical areas of monkeys and obtained estimation of the local neuronal circuitry 
among many neurons. We have found that the connections among recorded units are sparse; they are less than 
1% for all three datasets.

Results
Training and validating with synthetic data.  CoNNECT infers the presence or absence of monosyn-
aptic connections between a pair of neurons and estimates the amplitude of the postsynaptic potential (PSP) that 
one neuron would drive in another. The estimation is performed by applying a convolutional neural network15–18 
to a cross-correlogram obtained for every pair of spike trains (Fig. 1a). The network has an output layer con-
sisting of two units. One unit indicates the presence or absence of connectivity with a real value z ∈ [0, 1] by 
thresholding at 0.5. Another is the level of PSP represented in a unit of (mV). The network was trained with 
spike trains generated by a numerical simulation of a network of multiple-timescale adaptive threshold (MAT) 
model neurons21–25 interacting through fixed synapses. In a large-scale simulation, we applied fluctuating inputs 
to a subset of neurons to reproduce large fluctuations in real spike trains in vivo (Fig. 1b). Figure 1c,d, and e 
demonstrate sample spike trains, histograms of the firing rates of excitatory and inhibitory neurons26, and firing 
irregularity measured in terms of the local variation of the interspike intervals Lv27,28. The training data does not 
contain many low firing rate neurons, considering the situation that low firing units are often discarded when 
analyzing real data. The details of the learning procedure are summarized in “Methods” section.

We validated the estimation performance of CoNNECT using novel spike trains generated by another neu-
ronal circuit with different connections. Figure 2a depicts an estimated connection matrix, referenced to the 
true connection matrix, of 50 neurons. Here, the estimation was done with spike trains recorded for 120 min. Of 
50 spike trains, 40 and 10 are, respectively, sampled from 800 excitatory and 200 inhibitory neurons. Figure 2b 
compares the estimated PSPs against true values. We have presented an estimated PSP as being 0 if the connection 
is not detected. Points lying on the nonzero x-axis are existing connections that were not detected or FNs. Points 
lying on the nonzero y-axis are spurious connections assigned for unconnected pairs or FPs. Figure 2c depicts 
how the numbers of FNs and FPs for excitatory and inhibitory categories changed with the recording duration 
or the length of spike trains (10, 30, and 120 min). While the number of FPs or spurious connections does not 
depend largely on the recording duration, the number of FNs or missing connections decreased with the period, 
implying that more synaptic connections of weaker strength are revealed by increasing the recording time.

Comparison with other estimation methods.  There are many algorithms that were developed to estimate syn-
aptic connections from spike trains1–13,19,29–31. We compared CoNNECT with the conventional cross-correlation 
method (CC)19, Jittering method4, Extended GLM13, and GLMCC21 for their ability to estimate connectivity 
using synthetic data. Figure 3 shows connection matrices determined by the four methods referenced to the 
true connection matrices. In the lower panels, we demonstrated the performances in terms of the false positive 
(discovery) rate (FPR) and false negative (omission) rate (FNR) for excitatory and inhibitory categories; smaller 
values are better. Here we estimated the mean and SD of the performance by applying each method to 8 test data-
sets of 50 neurons. Overall performance with FPR and FNR was measured in terms of the Matthews correlation 
coefficient (MCC) (see “Methods” section). The MCCs for these estimation methods are shown in the right edge 
panel; a larger MCC is better. For evaluating the performances, we adopted spiking data generated by a network 
of MAT models and a network of Hodgkin–Huxley (HH) type models (“Methods” section). In computing the 
numbers of FPs and FNs, we ignored small excitatory connections, which are inherently difficult to discern with 
this observation duration. We took the lower thresholds as 0.1 mV for the MAT simulation and 1 mV for the HH 
simulation so that the visible connectivity is about 10%, but the relative performances between different models 
are unchanged even if we change the thresholds.

The conventional cross-correlation analysis produced many FPs, revealing a vulnerability to fluctuations in 
cross-correlograms. The Jittering method succeeded in avoiding FPs but missed many existing connections, 
thus generating many FNs. The Extended GLM method of given parameters was also rather conservative. In 
comparison to these methods, GLMCC and CoNNECT have better performance, producing a small number of 
FPs and FNs and a larger MCC value. Here we have modified GLMCC so that it achieves higher performance 
than the original algorithm14 by using the likelihood ratio test to determine the statistical significance (“Methods” 
section). When comparing these two algorithms, GLMCC was slightly conservative, producing more FNs, while 
CoNNECT tended to suggest more connections, producing more FPs.

The converted GLMCC was better than CoNNECT for the HH model data (Fig. 3b), but the converse was 
true for the MAT model data (Fig. 3a). This might be because CoNNECT was trained using the MAT model data 
of a similar kind, and GLMCC was constructed by considering the HH model simulation. Although the model 
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performance was examined with independent datasets, the HH model simulations would be more similar than 
across the HH model and MAT model. As the GLMCC parameters were selected with the HH model simulation, 
it naturally works better for the HH data than MAT simulation data and vice versa.

Comparison of different learning conditions.  While the convolutional neural network has the advantage that 
tens of thousands of parameters can be suitably adjusted to reproduce given datasets, it does not guarantee the 
generalization capability. We evaluated the generalization capability of our convolutional network by changing 
the number of out-channels representing the degree of system adaptability from 1 to 10. Figure 4a depicts the 
numbers of FPs and FNs in the above, and the overall performances measured in terms of MCC in the below, 
which were obtained for the MAT model simulation data (left panel) and the Hodgkin-Huxley model simula-
tion data (right panel). We observe that the convolutional network consisting of 1 channel slightly “under-fits” 
because of the little flexibility, whereas that of 10 channels slightly over-fits the data, exhibiting slightly lower 
MCC. Thus we have employed the network of 5 channels, consisting of about fifty thousand parameters.
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Figure 1.   The architecture of CoNNECT. (a) The algorithm infers the presence or absence of monosynaptic 
connectivity and the value of postsynaptic potential (PSP) from the cross-correlogram obtained from a pair of 
spike trains. The figure of a monkey was illustrated by Kai Shinomoto and licenced to Springer Nature Limited. 
(b) The algorithm is trained with spike trains generated by a numerical simulation of neurons interacting 
through fixed synapses. Slow fluctuations were added to a subset of neurons to reproduce large fluctuations in 
real spike trains in vivo. (c) Sample spike trains (cyan: inhibitory neurons; magenta: excitatory neurons). (d) 
Firing rates of excitatory and inhibitory neurons. (e) Firing irregularity measured in terms of the local variation 
of the interspike intervals Lv.
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Selection of training data sets.  To make the convolutional network applicable to data of a wider variety, we 
have trained the network using the cross-correlograms augmented by rescaling the time. Figure 4b depicts the 
estimation performances of networks trained using the cross-correlations rescaled by 1/4 and 1/2 times of the 
original (indicated as “1/4” and “1/2”), the original cross-correlations (“1”), and all the data (“1/4 + 1/2 + 1”). The 
networks trained with lower firing rates exhibited lower performances. We have adopted the network trained 
with all the data (“1/4 + 1/2 + 1”) because it gave the highest performance in estimating connectivity.

Cross‑correlograms.  To observe the situations in which different estimation methods succeeded or failed in 
detecting the presence or absence of synaptic connectivity, we examined sample cross-correlograms of neuron 
pairs of a network of MAT model neurons. Figure 5 depicts neuron pairs that exhibited various patterns includ-
ing pathological cases. The majority of neuron pairs are of successful cases demonstrated in the upper part of 
the figure. Some cross-correlograms from this simulation exhibited large fluctuations that resemble what is seen 
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Figure 2.   Synaptic connections estimated using CoNNECT. (a) An estimated connection matrix, referenced to 
a true connection matrix. Of 50 neurons, 40 and 10 are excitatory and inhibitory neurons sampled from 1000 
model neurons simulated for 120 min. Excitatory and inhibitory connections are represented by magenta and 
cyan squares of the sizes proportional to the postsynaptic potential (PSP). (b) Estimated PSPs plotted against 
true parameters. Points on the nonzero y-axis represent the false positives (FPs) for unconnected pairs. Points 
on the nonzero x-axis represent the false negatives (FNs). (c) The numbers of FPs and FNs for excitatory and 
inhibitory categories counted for different recording durations.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12087  | https://doi.org/10.1038/s41598-021-91244-w

www.nature.com/scientificreports/

in real biological data. These were produced by external fluctuations added to a subset of neurons, making the 
connectivity inference difficult. The inference results obtained by the four estimation methods are distinguished 
with colors; magenta, cyan, and gray represent that estimated connections were excitatory, inhibitory, or uncon-
nected, respectively. We also superimposed a GLM function fitted to each cross-correlogram.

Figure 5a,b depict sample cross-correlograms of neuron pairs that are connected with excitatory and inhibi-
tory synapses, respectively. For the first three cross-correlograms from the top, all four estimation methods 
succeeded in detecting excitatory or inhibitory connections, thus making true positive (TP) estimations. For 
the fourth case, the Jittering method failed to detect the connection. This implies that the Jittering method is 
rather conservative for producing FPs, and as a result, has produced many FNs. In this case, the cross-correlation 
method (CC) has mistaken the excitatory synapse as inhibition due to the large wavy fluctuation in the cross-
correlogram. For the last cases, all four estimation methods failed to detect the connection, resulting in FNs. 
This would have been because the original connections were not strong enough to produce significant impacts 
on the cross-correlograms.
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Figure 3.   Comparison of estimation methods using two kinds of synthetic data. (a) The multiple-timescale 
adaptive threshold (MAT) model simulation. (b) The Hodgkin–Huxley (HH) type model simulation. estimated 
using the conventional cross-correlation method (CC), Jittering method, Extended GLM (ExGLM), GLMCC, 
and CoNNECT are depicted, referenced to the true connectivity of the synthetic data. Estimated connections 
are depicted in equal size for the first two methods because they do not estimate the amplitude of PSP. (lower 
panels) The false-positive rate (FPR) and false-negative rate (FNR) for excitatory and inhibitory categories; 
smaller values are better. The mean and SD were obtained by applying each method to 8 test datasets of 50 
neurons. The sum of FPR and FNR averaged over excitatory and inhibitory categories is presented above each 
panel. (lower rightmost panel) Overall performances of the estimation methods compared in terms of the 
Matthews correlation coefficient (MCC); the larger, the better.
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Figure 5c depicts sample cross-correlograms of unconnected pairs. For the first two cross-correlograms, all 
four estimation methods judge the absence of connections correctly (or the null hypothesis of the absence of 
connection was not rejected), resulting in true negatives (TNs). For the third pair, the CC suggested the presence 
of a connection, resulting in an FP. This demonstrates that the conventional cross-correlation method is fragile 
in the presence of large fluctuations. For the fourth and the last cases, the CC, GLMCC, and CoNNECT have 
suggested monosynaptic connections. The sharp peaks appearing in the cross-correlogram would have been 
caused by indirect interaction via other neurons. In such cases, however, it is difficult to discern the absence of 
a monosynaptic connection solely from the cross-correlogram.

Analyzing experimental data.  We examined spike trains recorded from the prefrontal (PF), inferior 
temporal (IT), and the primary visual (V1) cortices of monkeys using the Utah arrays. Experimental conditions 
of individual data are summarized in “Methods” section. Because neurons with low firing rates do not provide 
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Figure 4.   Comparison of different learning conditions. (a) The convolutional networks of different numbers 
of channels. We have adopted a network of 5 channels. (b) The convolutional networks trained using the 
cross-correlations rescaled by 1/4 and 1/2 times the original (indicated as “1/4” and “1/2”), the original cross-
correlations (“1”), and all the data (“1/4 + 1/2 + 1”). We have adopted the network trained with all the data. The 
numbers of FPs and FNs for the excitatory and inhibitory categories estimating the connectivity of 50 neurons 
are depicted above, and the Matthews correlation coefficient (MCC) is depicted below. The performances are 
tested with the MAT model simulation data (left panel) and the Hodgkin-Huxley model simulation data (right 
panel).
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enough evidence for the connectivity, we have excluded low firing units and examined those that have fired more 
than 1 Hz.

Preprocessing experimental data.  Some of the experimentally available cross-correlograms exhibit a sharp 
drop near the origin for a few ms due to the shadowing effect, in which near-synchronous spikes cannot be 
detected32. This effect disrupts the estimation of synaptic impacts that should appear near the origin of the cross-
correlogram. The data were obtained with a sorting algorithm specifically used for the Utah array exhibit rather 
broad shadowing effects larger than 1 ms (up to 1.75 ms). Here, we analyzed the experimental data by removing 
an interval of 0± 2 ms in the cross-correlogram and applying the estimation method to a cross-correlogram 
obtained by concatenating the remaining left and right parts (Fig. 6a,b). We also conducted this operation in the 
analysis of synthetic data.

Figure 6c demonstrates the cross-correlograms of sample neuron pairs for which both CoNNECT and 
GLMCC estimated connections which were excitatory, inhibitory, or absent (unconnected). It was observed 
that the real cross-correlograms are accompanied by large fluctuations. Nevertheless, CoNNECT and GLMCC 
are able to detect the likely presence or absence of synaptic interaction by ignoring the severe fluctuations.
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Figure 5.   Sample cross-correlograms obtained from the MAT model simulation. (a), (b), and (c) Pairs of 
neurons that have excitatory and inhibitory connections, and are unconnected, respectively. Four kinds of 
estimation methods, the cross-correlation (CC), the Jittering (Jit), GLMCC (GLM), and CoNNECT (CoNN), 
were applied to cross-correlograms. Their estimation (excitatory, inhibitory, and unconnected) are respectively 
distinguished with colors (magenta, cyan, and gray). The lines plotted on the cross-correlograms are the GLM 
functions fitted by GLMCC. The causal impact from a pre-neuron to a post-neuron appears on the right half in 
each cross-correlogram.
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Connection matrices.  Figure 7 depicts the estimated connections for the entire three datasets of PF, IT, and V1. 
The units in the connection matrices are arranged in the order provided by a sorting algorithm, and accordingly, 
units of neighboring indexes of the matrices tended to have been spatially closely located. All three connection 
matrices had more components in near diagonal elements, implying that neurons in a nearby location are more 
likely to be connected. The firing rate and irregularity (the local variation of the interspike intervals Lv27,28) are 
shown in the rightmost panels. The summary statistics in Table 1 reflect differences in firing rate between excita-
tory and inhibitory cells in PF and IT but not V1. The firing irregularity of excitatory neurons is slightly higher 
than that of inhibitory neurons, consistent with the previous results.

Table 1 summarizes the statistics of the three datasets. Each neuron is assigned as putative excitatory, puta-
tive inhibitory, or undetermined, according to whether the excitatory–inhibitory (E–I) dominance index is 
positive, negative, or undetermined (or zero), respectively. Here, the E–I dominance index is defined as 
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Figure 6.   Cross-correlograms of real spike trains recorded from PF, IT, and V1 using the Utah arrays. (a) An 
interval of 0± 2 ms in the original cross-correlogram was removed to mitigate the shadowing effect, in which 
near-synchronous spikes were not detected. (b) Processing real cross-correlograms. (c) The cross-correlograms 
for which CoNNECT and GLMCC gave the same inference. The fitted GLM functions are superimposed on 
the histograms. The causal impact from a pre-neuron to a post-neuron appears on the right half in the cross-
correlogram.
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dei = (ne − ni)/(ne + ni) , in which ne and ni represent the numbers of excitatory and inhibitory identified con-
nections projecting from each unit, respectively14. The row “num. connections” indicates the average number of 
innervated connections per neuron. Because the number of innervated connections for each neuron is only a 
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Figure 7.   Connection matrices and diagrams estimated for spike trains recorded from the prefrontal (PF), 
inferior temporal (IT), and the primary visual (V1) cortices of monkeys. In the connection diagrams, excitatory 
and inhibitory dominant units are depicted as triangles and circles, respectively, and units with no outgoing 
connections or those that innervate equal numbers of estimated excitatory and inhibitory connections are 
depicted as squares. (rightmost panels) The firing rate and irregularity ( Lv ) of the putative excitatory and 
inhibitory units identified by the E–I dominance index. Units that had no innervating connections or those that 
exhibited vanishing E–I dominance indices are depicted in gray.
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few, the majority of dei is either 0 or 1. Though we have obtained many connections, the total number of all pairs 
is enormous, scaling with the square of the number of units, and accordingly, the connectivity is sparse (less 
than 1% for each (directed) pair of neurons).

In contrast to synthetic data, the currently available experimental data do not contain information regarding 
the true connectivity. To examine the stability of the estimation, we split the recordings in half and compared 
estimated connections from each half. If the real connectivity is stable, we may expect the estimated connections 
have overlap between the first and second halves. Figure 8a represents the connection matrices obtained from 
the first and second halves of the spike trains recorded from PF, IT, and V1. Figure 8b compares the estimated 
PSPs in two periods. Many estimated connections appear only on one of the two. This might be simply due to 
statistical fluctuation or due to real changes in synaptic connectivity. Nevertheless, it may be noteworthy that 
the excitatory connections of large amplitudes were detected relatively consistently between the first and second 
halves. Namely, they appear in the first and third quadrants diagonally, implying that they have the same signs 
with similar amplitudes.

Table 1.   Results of analyzing experimental datasets.

Area PF IT V1

Recording time 120 min 120 min 30 min

Neurons 214 170 88

(Putative excitatory) 95 55 28

Firing rates ± SD (Hz) 3.55± 2.83 3.57± 3.48 7.48± 5.82

Irregularity ± SD (Lv) 0.98± 0.20 1.02± 0.18 1.30± 0.21

(Putative inhibitory) 27 22 5

Firing rates ± SD (Hz) 6.12± 3.03 7.96± 5.90 3.93± 1.59

Irregularity ± SD (Lv) 0.85± 0.16 0.99± 0.16 1.21± 0.16

Num. connections 0.91 0.76 0.53

Directed pairs 45582 28730 7656

(Putative excitatory) 143 92 37

(Putative inhibitory) 52 37 10

Connecting % 0.42 0.45 0.61
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Figure 8.   Stability of connection estimation. (a) Connection matrices estimated for the first and second halves 
of the spike trains recorded from PF, IT, and V1. (b) Comparison of the PSPs estimated from the first and 
second halves.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12087  | https://doi.org/10.1038/s41598-021-91244-w

www.nature.com/scientificreports/

Discussion
Here we have devised a new method for estimating synaptic connections based on a convolutional neural net-
work. While this method does not require adjusting parameters for individual data, it robustly provides a rea-
sonable estimate of synaptic connections by tolerating large fluctuations in the data. This high performance was 
obtained by training a convolutional neural network using a considerable amount of training data generated by 
simulating a network of model spiking neurons subject to fluctuating current.

We compared CoNNECT with the conventional cross-correlation method, the Jittering method, Extended 
GLM, and GLMCC in their ability to estimate connectivity, using synthetic data obtained by simulating neuronal 
circuitries of fixed synaptic connections. Both CoNNECT and GLMCC exhibited high performance in predicting 
individual synaptic connections, superior to other methods.

Then we applied CoNNECT to simultaneously recorded spike trains recorded from monkeys using the Utah 
arrays. We have found that the connections among recorded units are sparse; they are less than 1% for all three 
datasets. To test the reliability of the estimation, we divided the entire recording interval in half and estimated 
connections for respective intervals. We have seen that strong excitatory connections overlap between the peri-
ods. This result implies that the estimation is reliable for the strong connectivity, and the connectivity lasts at 
least for hours.

The cross-correlograms of real biological data (Fig. 6) turned out to be even more complicated than those 
of synthetic data (Fig. 5), which were generated by adding large fluctuations to individual neurons (Fig. 1). The 
complicated features in real cross-correlograms were not only due to fluctuations in real circuitry but also due 
to the sorting algorithm. The most severe bottleneck in estimating connectivity may have been the shadowing 
effect of a few ms, in which near-synchronous spikes were not detected (Fig. 6a); this effect might hide the first 
part of a monosynaptic impact, which is expected to show up in a few ms in a cross-correlogram. If the sorting 
algorithm is improved such that the shadowing duration is shortened, the estimation might be more reliable.

In this study, we have employed the convolutional neural network to capture the specific signature of mono-
synaptic impact in a cross-correlogram image. While the convolutional network is known to be robust against the 
translation of images, the monosynaptic impact is expected to appear at a specific location in the cross-correlo-
gram, particularly exhibiting the delay of a few milliseconds. Thus it might be an interesting challenge to search 
for other learning algorithms that utilize such information and perform better than the convolutional network.

We used data augmentation technique33 to increase the number of training examples artificially. Data aug-
mentation is known to improve the performance on various tasks in computer vision18,34 and acoustic signal 
processing35,36. Here we augmented the cross-correlation data by rescaling the time to capture the diverse synaptic 
interactions. This augmentation also improved the estimation performance of synaptic connectivity (Fig. 4b). 
Recently, several authors proposed a more systematic approach for data augmentation, e.g., generating augmented 
data using generative adversarial networks (GANs)37,38 and learning the data augmentation policy39. Though these 
approaches focus on the image classification task and require a vast computational resource, it may be interesting 
to apply these techniques to pursue an advanced data augmentation method for synaptic connectivity estimation.

So far, we have little knowledge about neuronal circuitry in the brain. By collecting more data from high chan-
nel count recordings and applying these reliable analysis methods to them, we shall be able to obtain information 
about neuronal circuitry in different brain regions and learn about network characteristics and the information 
flow in each area. Ultimately, we expect that we will characterize the network characteristics of different brain 
regions processing various kinds of information.

Methods
Configuration of a neural network for estimating synaptic connectivity.  Here we describe the 
details of a four-layered convolutional neural network15–18 applied to cross-correlograms obtained for every pair 
of spike trains to estimate the presence or absence of a connection and its postsynaptic potential (PSP) (Fig. 1). 
The neural network learns to find a bump or dent in the cross-correlogram caused by a monosynaptic connec-
tion.

In particular, the input consists of 100 integer values of the spike counts in a cross-correlation histogram in 
an interval of [−50, 50] ms with 1 ms bin size. The network comprises a 1-dimensional convolution layer, the 
average pooling, and the internal layer of fully connected 100 nodes. The output layer consists of two units; one 
indicates the presence or absence of connectivity with a real value z ∈ [0, 1] . Another is the level of PSP repre-
sented in a unit of (mV).

Training the convolutional neural network.  We ran a numerical simulation of a network of 1000 neurons inter-
acting through fixed synapses in various conditions and trained the neural network with spike trains from 400 
units selected from the entire network. Thus, we constructed cross-correlograms of about 80, 000 pairs, each 
assigned with the teaching signals consisting of the true information about the presence or absence of connec-
tivity (respectively represented as z = 1 or 0) and its PSP value in either direction. The training was performed 
using an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adap-
tive estimates of lower-order moments, named Adam40. The parameters adopted in the learning are summarized 
in Table 2. Details of the architecture are summarized in Table 3. Figure 9 demonstrates a set of convolutional 
kernels that were learned with training data. From the set of learned kernels, we can see some specific features 
of monosynaptic impact of a few milliseconds appearing in a cross-correlogram. It is also interesting to see a 
kernel exhibiting a roughly monotonic gradient (the second panel from the left). This might have worked for 
detrending the large slow fluctuations in the cross correlogram produced by our simulation, which aimed at 
reproducing real situations.
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Data augmentation.  To make the estimation method applicable to data of a wider range, we performed data 
augmentation18,34–37 (see33 for review). Namely, we augmented the data by rescaling the cross-correlations by 2 
and 4 times and used all the data, including the original data in the learning.

Web‑application program.  A ready-to-use version of the web application, the source code, and example data 
sets are available at our website, https://s-​shino​moto.​com/​CONNE​CT/ and are also hosted publicly on Github, 
accessible via https://​github.​com/​shige​rushi​nomoto. The simulation code is also available at this Github.

Improvement of GLMCC.  Original framework of GLMCC.  In the previous study14, we developed a meth-
od of estimating the connectivity by fitting the generalized linear model to a cross-correlogram, GLMCC. We 
designed the GLM function as

where t is the time from the spikes of the reference neuron. a(t) represents large-scale fluctuations in the cross-
correlogram in a window [−W ,W] ( W = 50 ms). By discretizing the time in units of �(= 1ms) , a(t) is repre-
sented as a vector �a = (a1, a2, . . . , aM) ( M = 2W/� ). J12 ( J21 ) represents a possible synaptic connection from 
the reference (target) neuron to the target (reference) neuron. The temporal profile of the synaptic interaction 
is modeled as f (t) = exp(− t−d

τ
) for t > d and f (t) = 0 otherwise, where τ is the typical timescale of synaptic 

impact and d is the transmission delay. Here we have chosen τ = 4 ms, and let the synaptic delay d be selected 
from 1, 2, 3, and 4 ms for each pair.

The parameters �θ = {J12, J21, �a} are determined with the maximum a posteriori (MAP) estimate, that is, by 
maximizing the posterior distribution or its logarithm:

where {ti} are the relative spike times. The log-likelihood is obtained as

(1)�cc(t) = exp
[

a(t)+ J12f (t)+ J21f (−t)
]

,

(2)log p(�θ |{ti}) = log p({ti}|�θ)+ log p(�θ)+ const.,

Table 2.   Hyperparameters of the convolutional neural network.

Learning rate, β1 , β2 0.001, 0.9, 0.999

Dropout No

Epochs 20

Loss PSP: mean squared error

Connectivity: binary cross entropy

Loss weight PSP: 0.5, connectivity: 0.5

Table 3.   Architecture of the convolutional neural network.

Convolution layer

Kernel size 10

Number of out-channels 5

Slide range 1

Activation function tanh

 Hidden layer

Number of nodes 100

Activation function ReLU
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Figure 9.   A set of convolutional kernels that were learned from training data. The range of the kernel is 10 ms.
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where npre is the number of spikes of presynaptic neuron (j). Here we have provided the prior distribution of �a 
that penalizes a large gradient of a(t) and uniform prior for {J12, J21}

where the hyperparameter γ representing the degree of flatness of a(t) was chosen as γ = 2× 10−4 [ms−1].

Likelihood ratio test.  The likely presence of the connectivity can be determined by disproving the null hypoth-
esis that a connection is absent. In the original model, this was performed by thresholding the estimated param-
eters with |Ĵij| > 1.57zα(τT�pre�post)

−1/2 , where zα , T, �pre , and �post are a threshold for the normal distribution, 
recording time, firing rates of pre- and post-synaptic neurons. But we realized that this thresholding method 
might induce a large asymmetry in detectability between excitatory and inhibitory connections.

Instead of a simple thresholding, here we introduce the likelihood ratio test that is a general method for testing 
hypothesis (Chapter 11 of41, see also42): We compute the likelihood ratio between the presence of the connectivity 
Jij = Ĵij and the absence of connectivity Jij = 0 or its logarithm:

where L∗
(

Jij = c
)

 in each case is the likelihood obtained by optimizing all the other parameters with the con-
straint of Jij = c . It was proven that 2D obey the χ2 distribution in a large sample limit (Wilks’ theorem)43. 
Accordingly, we may reject the null hypothesis if 2D > zα , where zα is the threshold of χ2 distribution of a 
significance level α . Here we have adopted α = 10−4.

Model validation.  The performance of CoNNECT was evaluated using the synthetic data generated by 
independent simulations. The presence or absence of connectivity in each direction is decided by whether or 
not an output value z ∈ [0, 1] exceeds a threshold θ . It is possible to reduce the number of FPs by shifting the 
threshold θ to a high level. But this operation may produce many FNs, making many existing connections be 
missed. To balance the false-positives and false-negatives, we considered maximizing the Matthews correlation 
coefficient (MCC)44, as has been done in our previous study14. The MCC is defined as

where NTP , NTN , NFP , and NFN represent the numbers of true positive, true negative, false positive, and false 
negative connections, respectively.

We have obtained two coefficients for excitatory and inhibitory categories and taken the macro-average MCC 
that gives equal importance to these categories (Macro-average)45, MCC = (MCCE +MCCI)/2 as we have done 
in the previous study14. In computing the coefficient for the excitatory category MCCE , we classify connections 
as excitatory or other (unconnected and inhibitory); for the inhibitory category MCCI , we classify connections 
as inhibitory or other (unconnected and excitatory). Here we evaluate MCCE by considering only excitatory 
connections of reasonable strength (EPSP > 0.1 mV for the MAT simulation and > 1 mV for the HH simulation).

We have confirmed that the Matthews correlation coefficient exhibits a wide peak at about θ ∼ 0.5 (Fig. 10), 
and accordingly, we adopted θ = 0.5 as the threshold.

A large‑scale simulation of a network of MAT neurons.  To obtain a large number of spike trains that 
have resulted under the influence of synaptic connections between neurons, we ran a numerical simulation of a 
network of 1000 model neurons interacting through fixed synapses. Of them, 800 excitatory neurons innervate 
to 12.5 % of other neurons with EPSPs that are log-normally distributed14,46–49, whereas 200 inhibitory neurons 
innervate randomly to 25% of other neurons with IPSPs that are normally distributed.

Neuron model.  As for the spiking neuron model, we adopted the MAT model, which is superior to the Hodg-
kin–Huxley model in reproducing and predicting spike times of real biological neurons in response to fluctuat-
ing inputs21,23. In addition, its numerical simulation is stable and fast. The membrane potential of each neuron 
obeys a simple relaxation equation following the input signal:

where ge , gi represents the excitatory conductance and the inhibitory conductance, respectively. Here RIbg rep-
resent the background noise. The conductance evolves with the

(3)log p({t(j)i }|�θ) =
npre
∑

j=1

nsp
∑

i=1

log �cc

(

t
(j)
i

)

−
∫ W

−W
�cc(t)dt,

(4)log p(�θ) = −
M−1
∑

k=1

1

γ�
(ak+1 − ak)

2 + const,

(5)D = log L∗
(

Jij = Ĵij

)

− log L∗
(

Jij = 0
)

,

MCC = NTPNTN − NFPNFN√
(NTP + NFP)(NTP + NFN)(NTN + NFP)(NTN + NFN)

,

(6)τm
dvm

dt
= −(vm − VL)− τm

[

ge(vm − VE)+ gi(vm − VI )
]

− RIbg

(7)
dgx

dt
= − gx

τs,X
+

∑

j

∑
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Gjδ
(

t − tjk − dj
)



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12087  | https://doi.org/10.1038/s41598-021-91244-w

www.nature.com/scientificreports/

where τs,X is the synaptic time constant, X stands for e (excitatory) or i (inhibitory), tjk is the kth spike time of 
jth neuron, dj is a synaptic delay and Gj is the synaptic weight from jth neuron. δ(t) is the Dirac delta function.

Next, the adaptive threshold of each neuron θ(t) obeys the following equation:

where tj is the jth spike time of a neuron, ω is the resting value of the threshold, τk is the kth time constant, and 
αk is the weight of the kth component. The parameter values are summarized in Table 4.

Synaptic connections.  We ran a simulation of a network consisting of 800 pyramidal neurons and 200 interneu-
rons interconnected with a fixed strength. Each neuron receives 100 excitatory inputs randomly selected from 
800 pyramidal neurons and 50 inhibitory inputs selected from 200 interneurons. The excitatory and inhibitory 
synaptic connections were sampled from respective distributions so that the resulting EPSPs and IPSPs are simi-
lar to the distributions adopted in our previous study14. In particular, the excitatory conductances {GE

ij } were 
sampled independently from a log-normal distribution46,47.

where µ = −5.543 and σ = 1.30 are the mean and SD of the natural logarithm of the conductances.
The inhibitory conductances {GI

ij} were sampled from the normal distribution:

(8)θ(t) =
∑

j

H(t − tj)+ ω

(9)H(t) =
∑

k=1,2

αk exp

(

− t

τk

)

(10)P(x) = 1√
2πσx

exp

(

− (log x − µ)2

2σ 2

)
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Figure 10.   The Matthews correlation coefficient (MCC) plotted against the threshold θ for determining the 
presence and absence of the connection.

Table 4.   Parameters for neuron models.

Membrane dynamics

τ
excitatory
m  , τ inhibitorym  (ms) 20, 10

VL , VE , VI (mV) − 70, 0, − 80

τs,e , τs,i (ms) 1, 2

 Threshold dynamics

τ1 , τ2 (ms) 10, 200

ωexcitatory , ωinhibitory (mV) − 55, − 57

α
excitatory
1  , αexcitatory

2  (mV) Gauss(1.5, 0.25), 0.5

α
inhibitory
1  , αinhibitory

2  (mV) 3, 0
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where µ = 0.0217 mS cm−2 , σ = 0.00171 mS cm−2 are the mean and SD of the conductances. If the sampled 
value is less than zero, the conductance is resampled from the same distribution. The delays of the synaptic 
connections from excitatory neurons are drawn from a uniform distribution between 3 and 5 ms. The delays of 
the synaptic connections from inhibitory neurons are drawn from a uniform distribution between 2 and 4 ms.

Background noise.  Because our model network is smaller than real mammalian cortical networks, we added a 
background current to represent inputs from many neurons, as previously done by Destexhe et al.11,50.

The summed conductance RIbg represents random bombardments from a number of excitatory and inhibitory 
neurons. The dynamics of excitatory or inhibitory conductances can be approximated as a stationary fluctuating 
process represented as the Ornstein–Uhlenbeck process51,

where gX stands for ge or gi , and ξ(t) is the white Gaussian noise satisfying �ξ(t)� = 0 and �ξ(t)ξ(s)� = δijδ(t − s).
The real biological data has a wide variety of fluctuation, including non-trivial large variations with some 

characteristic timescales. For instance, the hippocampal neurons are subject to the theta oscillation of the fre-
quency range of 3− 10 (Hz)52. To reproduce such oscillations that are also observed in the cross-correlogram, 
we introduced slow oscillations into the background noise for excitatory neurons, as

where ξ1(t) and ξ2(t) are the white Gaussian noise satisfying �ξi(t)� = 0 and �ξi(t)ξj(s)� = δijδ(t − s).
Among N = 1000 neurons, we added such oscillating background signals to three subgroups of 100 neurons 

(80 excitatory and 20 inhibitory neurons), respectively with 7, 10, and 20 Hz. The phases of the oscillation δ were 
chosen randomly from the uniform distribution. Amplitudes of the oscillations were chosen randomly from 
uniform distribution in an interval [Ã/2, 3Ã/2] . The parameters for the background inputs are summarized in 
Table 5.

Numerical simulation.  Simulation codes were written in C++ and parallelized with OpenMP framework. The 
time step was 0.1 ms. The neural activity was simulated up to 7200 s.

Experimental data.  Spike trains were recorded from the PF, IT, and V1 cortices of monkeys in three exper-
imental laboratories using the Utah arrays. All the studies were carried out in compliance with the ARRIVE 
guidelines. Individual experimental settings are summarized as follows.

Prefrontal cortex (PF).  The experiments were carried out on an adult male rhesus macaque Macaca mulatta 
(6.7 kg, age 4.5 y). The monkey had access to food 24 h a day and earned liquid through task performance on 
testing days. Experimental monkeys were socially pair housed. All experimental procedures were performed in 
accordance with the ILAR Guide for the Care and Use of Laboratory Animals and were approved by the Animal 
Care and Use Committee of the National Institute of Mental Health (U.S.A.). Procedures adhered to applicable 
United States federal and local laws, including the Animal Welfare Act (1990 revision) and applicable Regula-
tions (PL89544; USDA 1985) and Public Health Service Policy (PHS2002). Eight 96–electrode arrays (Utah 
arrays, 10 × 10 arrangement, 400 μm pitch, 1.5 mm depth, Blackrock Microsystems, Salt Lake City, U.S.A.) were 
implanted on the prefrontal cortex following previously described surgical procedures53. Briefly, a single bone 
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flap was temporarily removed from the skull to expose the PFC, then the dura mater was cut open to insert the 
electrode arrays into the cortical parenchyma. Next, the dura mater was closed and the bone flap was placed back 
into place and attached with absorbable suture, thus protecting the brain and the implanted arrays. In parallel, 
a custom-designed connector holder, 3D-printed using biocompatible material, was implanted onto the poste-
rior portion of the skull. Recordings were made using the Grapevine System (Ripple, Salt Lake City, USA). Two 
Neural Interface Processors (NIPs) made up the recording system, one NIP (384 channels each) was connected 
to the 4 multielectrode arrays of one hemisphere. Synchronizing behavioral codes from MonkeyLogic and eye-
tracking signals were split and sent to each NIP. The raw extracellular signal was high-pass filtered (1 kHz cutoff) 
and digitized (30 kHz) to acquire single-unit activity. Spikes were detected online and the waveforms (snippets) 
were stored using the Trellis package (Grapevine). Single units were manually sorted offline using custom Mat-
lab scripts to define time-amplitude windows in combination with clustering methods based on PCA feature 
extraction. Further details about the experiment can be found elsewhere54. Briefly, the recordings were carried 
out while the animals were comfortably seated in front of a computer screen, performing left or right saccadic 
eye movements. Each trial started with the presentation of a fixation dot on the center of the screen and the 
monkeys were required to fixate. After a variable time (400–800 ms) had elapsed, the fixation dot was toggled off 
and a cue (white square, 2◦ × 2◦ side) was presented either to the left or right of the fixation dot. The monkeys 
had to make a saccade towards the cue and hold for 500 ms. 70% of the correctly performed trials were rewarded 
stochastically with a drop of juice (daily total 175–225 mL). Typically, monkeys performed > 1000 correct trials 
in a given recording session for recording time of 120-150 min.

Inferior temporal cortex (IT).  The experiments were carried out on an adult male Japanese monkey (Macaca 
fuscata, 11 kg, age 13 y). The monkey had access to food 24 h a day and earned its liquid during and addition-
ally after neural recording experiments on testing days. The monkey was housed in one of adjoining individual 
primate cages that allowed social interaction. All experimental procedures were approved by the Animal Care 
and Use Committee of the National Institute of Advanced Industrial Science and Technology (Japan) and were 
implemented in accordance with the “Guide for the Care and Use of Laboratory Animals” (eighth ed., National 
Research Council of the National Academies). Four 96 microelectrode arrays (Utah arrays, 10× 10 layout, 400 
μm pitch, 1.5 mm depth, Blackrock Microsystems, Salt Lake City, USA) were surgically implanted on the IT 
cortex of the left hemisphere. Three arrays were located in area TE and the remaining one in area TEO. Surgical 
procedures were roughly the same as having been described previously53, except that a bone flap that was tempo-
rarily removed from the skull was located over the IT cortex and that a CILUX chamber was implanted onto the 
anterior part of the skull protecting connectors of the arrays. Recordings of neural data and eye positions were 
done in a single session using CerebusTM system (Blackrock Microsystems). The extracellular signal was band-
pass filtered (250–7.5 k Hz) and digitized (30 kHz). Units were sorted online before the recording session for 
the extracellular signal of each electrode using a threshold and time-amplitude windows. Both the spike times 
and the waveforms (10 and 38 samples, preceding and after a threshold crossing, respectively) of the units were 
stored using Cerebus Central Suite (Blackrock Microsystems). Single units were refined offline by hand using the 
PCA projection of the spike waveforms in Offline sorterTM (Plexon Inc., Dallas, USA). The monkey seated in a 
primate chair, and the head was restrained with a head holding device so that the eyes were positioned 57 cm in 
front of a color monitor’s display (GDM-F520, SONY, Japan). The display subtended a visual angle of 40◦ × 30◦ 
with a resolution of 800× 600 pixels. A television series on animals (NHK’s Darwin’s Amazing Animals, Asahi 
Shimbun Publications Inc., Japan) was shown on the display throughout the online spike sorting and the record-
ing session. The monkey’s eye position was monitored using an infrared pupil-position monitoring system55 and 
was not restricted.

The primary visual cortex (V1).  The data set was obtained from Collaborative Research in Computational Neu-
roscience (CRCNS), pvc-1156 by the courtesy of the authors of57. In this experiment, spontaneous activity was 
measured from the primary visual cortex while a monkey viewed a CRT monitor ( 1024× 768 pixels, 100 Hz 
refresh) displaying a uniform gray screen (luminance of roughly 40 cd/m2 ). Briefly, the animal was premedi-
cated with atropine sulfate (0.05 mg/kg) and diazepam (Valium, 1.5 mg/kg) 30 min before inducing anesthesia 
with ketamine HCl (10.0 mg/kg). Anesthesia was maintained throughout the experiment by a continuous intra-
venous infusion of sufentanil citrate. To minimize eye movements, the animal was paralyzed with a continuous 
intravenous infusion of vecuronium bromide (0.1 mg/kg/h). Vital signs (EEG, ECG, blood pressure, end-tidal 
PCO2, temperature, and lung pressure) were monitored continuously. The pupils were dilated with topical atro-
pine and the corneas protected with gas-permeable hard contact lenses. Supplementary lenses were used to 
bring the retinal image into focus by direct ophthalmoscopy and later adjusted the refraction further to optimize 
the response of recorded units. Experiments typically lasted 4–5 d. All experimental procedures complied with 
guidelines approved by the Albert Einstein College of Medicine of Yeshiva University and New York University 
Animal Welfare Committees.

Spike sorting and analysis criteria: Waveform segments were sorted off-line with an automated sorting algo-
rithm, which clustered similarly shaped waveforms using a competitive mixture decomposition method58. The 
output of this algorithm was refined by hand with custom time-amplitude window discrimination software (writ-
ten in MATLAB; MathWorks) for each electrode, taking into account the waveform shape and interspike interval 
distribution. To quantify the quality of the recording, the signal-to-noise ratio (SNR) of each candidate unit was 
computed as the ratio of the average waveform amplitude to the SD of the waveform noise59–61. Candidates that 
fell below an SNR of 2.75 were discarded as multiunit recordings.
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