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Abstract: Dehydroabietic acid (DAA) is a naturally occurring diterpene resin acid derived from
coniferous plants such as Pinus and Picea. Various bioactive effects of DAA have been studied
including antibacterial, antifungal, and anticancer activities. However, the anti-inflammatory
mechanism of DAA remains unclear. We evaluated the anti-inflammatory effect of DAA in
macrophage cell lines. Dehydroabietic acid clearly reduced nitric oxide (NO) production and
inflammatory gene expression decreased according to RT-PCR results. Dehydroabietic acid displayed
anti-inflammatory activity at the transcriptional level in results from NF-κB- or AP-1-mediated
luciferase assays. To identify the DAA target protein, we investigated NF-κB and AP-1 pathways by
Western blotting analysis. Dehydroabietic acid suppressed the activity of proto-oncogene tyrosine
protein kinase (Src) and spleen tyrosine kinase (Syk) in the NF-κB cascade and transforming growth
factor beta-activated kinase 1 (TAK1) in the AP-1 cascade. Using overexpression strategies, we
confirmed that DAA targeted these kinases. Our findings demonstrate the anti-inflammatory effects
and molecular mechanism of DAA. This suggests that DAA has potential as a drug or supplement to
ameliorate inflammation.
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1. Introduction

Inflammation is an innate defense system of the mammalian body against pathogens. This first
line of defense is activated to remove invading pathogens accompanying fever, swelling, pain, and
redness [1–3]. Immune cells such as monocytes, macrophages, and neutrophils are rapidly recruited to
inflamed sites, recognize foreign invaders, and release chemical mediators (cytokines, chemokines, and
eicosanoids) [4,5]. In the process of recognition, pathogen recognition receptors (PRRs) of cells need to
form a complex with the pathogens’ conserved structure called pathogen-associated molecular patterns
(PAMPs) [2,6]. Toll-like receptors (TLRs) are one of the PRRs and are classified into 10 types. Each
TLR detects different types of activators including lipids, lipoproteins, glycans, and nucleic acids and
initiates the inflammatory signal activation [6,7]. The TLR adaptor molecules myeloid differentiation
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primary response 88 (MyD88) and TIR-domain-containing adaptor-inducing interferon-β (TRIF)
transduce the signal to downstream molecules and finally activate inflammatory transcriptional
factors such as nuclear factor (NF)-κB, activating protein (AP)-1, or interferon regulatory factors
(IRFs) [6,8]. In NF-κB signaling, Src and Syk kinases are involved and transduce the activities to
downstream molecules by phosphorylation [9]. Phosphorylated IκBα is degraded by ubiquitination,
and segregated NF-κB translocates to the nucleus for inflammatory gene transcription. In the case of
AP-1, activating signals from TLRs are delivered through the interleukin-1 receptor-associated kinases
(IRAKs)/TAK1/MAPKs pathway [10–12]. Activated mitogen-activated protein kinases (MAPKs)
phosphorylate AP-1 subunits including those of the Jun family (c-Jun, JunB, and JunD), Fos family
(c-Fos, FosB, Fra-1, and Fra-2), and the activating transcription factor (ATF) family (ATF1, ATF2,
and ATF3) for activation [13]. Both NF-κB and AP-1 play roles as transcriptional factors to produce
inflammatory cytokines and chemokines (i.e., tumor necrosis factor (TNF)-α interleukin (IL)-1β, IL-6,
cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS)) [14–16].

Dehydroabietic acid (DAA) (Figure 1) is, along with abietic acid, a major compound of rosin
derived from coniferous plants such as Pinus, Picea, Larix, and Abies [17–19]. Abietic acids are
known to have biological activity including anti-inflammation or anti-allergy, and DAA has been
studied as a peroxisome proliferator-activated receptor (PPAR) ligand in macrophages to suppress
inflammation [19–22]. However, the detailed regulatory mechanism in inflammatory responses has
not been deciphered. In this study, we confirmed that DAA reduced inflammatory mediators and gene
expression. The mechanism by which DAA suppresses inflammatory response was investigated by
luciferase assay and Western blotting analysis.
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Figure 1. Structure of dehydroabietic acid (DAA).

2. Results

2.1. The Effect of DAA on Nitric Oxide Production

To examine whether DAA has an anti-inflammatory effect, we first investigated the production
of nitric oxide (NO) under lipopolysaccharide (LPS) induction conditions in RAW264.7 cells.
Dehydroabietic acid decreased NO production, with a significant reduction at 100 µM DAA
(Figure 2a). Dehydroabietic acid was not toxic in both RAW264.7 and HEK293 cells, according
to 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide
(PI) staining experiments (Figure 2b,c).
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Figure 2. Effects of DAA on NO production and cytotoxicity. (a) DAA (0–100 µM) was pre-treated for 
30 min, and LPS (1 µg/mL) was treated on RAW264.7 cells for 24 h. Cell supernatants were collected, 
and the production of NO was measured by Griess assay. (b) Cytotoxicity of DAA in RAW264.7 cells 
and HEK293T cells. Cells were incubated with DAA (0–100 µM) for 24 h, and then conventional MTT 
assay was performed. ## p < 0.01 compared to the normal group, ** p < 0.01 compared to the induced 
group. (c) Cytotoxicity of DAA in HEK293T cells was examined by PI staining analysis. The 
percentage of cell death was analyzed by flow cytometry. 
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on transfected HEK293T cells for 24 h. With DAA, MyD88-induced NF-κB and AP-1 transcriptional 
activities were meaningfully reduced at 100 µM (Figure 3b,c). Additionally, we confirmed the 
expression level of Flag-MyD88 by Western blotting to support these data. 
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Figure 2. Effects of DAA on NO production and cytotoxicity. (a) DAA (0–100 µM) was pre-treated for
30 min, and LPS (1 µg/mL) was treated on RAW264.7 cells for 24 h. Cell supernatants were collected,
and the production of NO was measured by Griess assay. (b) Cytotoxicity of DAA in RAW264.7 cells
and HEK293T cells. Cells were incubated with DAA (0–100 µM) for 24 h, and then conventional MTT
assay was performed. ## p < 0.01 compared to the normal group, ** p < 0.01 compared to the induced
group. (c) Cytotoxicity of DAA in HEK293T cells was examined by PI staining analysis. The percentage
of cell death was analyzed by flow cytometry.

2.2. The Anti-Inflammatory Effect of DAA at the Transcriptional Level

Since DAA reduced NO production, we explored the regulatory mechanism of DAA in
TLR4-mediated inflammatory responses. First, we conducted semiquantitative PCR to investigate how
DAA modulates inflammatory reaction at the transcriptional level. The mRNA expression levels of
inflammatory mediators including inducible nitric oxide (iNOS) and TNF-α were significantly reduced.
Cyclooxygenase (COX)-2 level was also slightly affected by DAA (Figure 3a). Then, transcriptional
factors influenced by DAA were analyzed by luciferase assay. We transfected TLR4 adaptor molecule
myeloid differentiation primary response 88 (MyD88) to induce inflammatory signaling in HEK293T
cells and determined NF-κB- or AP-1-mediated luciferase activity [8]. Dehydroabietic acid (0–100 µM)
was non-toxic to HEK293T cells (Figure 2b,c), so DAA was treated on transfected HEK293T cells
for 24 h. With DAA, MyD88-induced NF-κB and AP-1 transcriptional activities were meaningfully
reduced at 100 µM (Figure 3b,c). Additionally, we confirmed the expression level of Flag-MyD88 by
Western blotting to support these data.
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Figure 3. Effect of DAA on inflammatory transcriptional activation. (a) RAW264.7 cells were incubated
with DAA (0–100 µM) in the presence or absence of LPS (1 µg/mL) for 6 h. Total mRNA was prepared
from cells using Trizol methods, described in the Materials and Methods section. mRNA levels
of inducible nitric oxide (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α were
determined by semiquantitative PCR. (b,c) Flag-MyD88 was transfected into HEK293T cells using
polyethylenimine (PEI) with nuclear factor (NF)-κB-Luc or activator protein (AP)-1-Luc constructs,
respectively. β-galactosidase plasmid was used as a control. DAA was treated for an additional 24 h,
and luciferase activity was measured by a luminometer. The expression level of Flag-MyD88 (Lower
panels of b and c) was examined by Western blotting. Antibodies against Flag and β-actin were used.
Relative intensity (b,c) was values of the ratios calculated using densitometric scanning values of
tagging protein (Flag) and densitometric scanning values of β-actin by the DNR Bio-imaging system
(Gelquant software Version 2.7). ## p < 0.01 compared to the normal group, ** p < 0.01 compared to the
induced group.

2.3. The Anti-Inflammatory Effect of DAA on the NF-κB Signaling Pathway

Based on the results of the luciferase assay, we screened the NF-κB and AP-1 signaling pathways
to identify target proteins of DAA. By Western blotting analysis, phosphorylated signaling molecules
were detected in a time-dependent manner. In the NF-κB pathway, phosphorylation of IκBα was
blocked by DAA at 5 and 15 min, and phosphorylated IκB kinase (IKK)α/β (serine 176/180) was
decreased at 5 and 15 min, without showing decreased levels of IKKα and IKKβ (Figure 4a). Since DAA
regulated IκBα and IKKα/β at early time points (at 5 min), we prepared whole lysates of LPS-treated



Int. J. Mol. Sci. 2019, 20, 1593 5 of 14

RAW264.7 cells in a brief time (2, 3, and 5 min) with DAA to assess activation of Src and Syk kinases.
Src and Syk have been thought to be upstream molecules of NF-κB activation, and the blockade of Src
and Syk at early time points affects the phosphorylated state of IκBα [23–25]. Activities of Src and Syk
were suppressed by DAA at 3 min and at 3 and 5 min, respectively (Figure 4b). To clarify DAA targeted
proteins, we determined activation of Src and Syk by an overexpression strategy. As correlated
with previous results, DAA inactivated both Src and Syk kinases in Src- or Syk-overexpressing
HEK293T cells (Figure 4c). To clarify the role of Src and Syk kinase in inflammatory responses,
we additionally determined NO production under Src or Syk kinase inhibitor treatment conditions.
As expected, treatment of 4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine,
4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidin (PP2, a Src inhibitor) and piceatannol
(a Syk inhibitor) dose-dependently reduced LPS-mediated NO production without altering cell viability
(Figure 4e,f). By DAA inhibition on upstream molecules, the transcriptional activity of NF-κB was
repressed, resulting in downregulation of inflammatory responses.
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Figure 4. Effect of DAA in the NF-κB signaling cascade. (a,b) RAW264.7 cells were pre-treated with
DAA, and LPS was applied in a time-dependent manner. Whole cell lysates were prepared, and
immunoblotting was performed. Antibodies against phosphorylated or total IκBα, IKKα/β (serine
176/180), Src, Syk, and β-actin were used. (c,d) Myc-Syk or human influenza hemagglutinin (HA)-Src
plasmids were transfected into HEK293T cells for 24 h, and then DAA (0–100 µM) was applied for an
additional 24 h. Phosphorylated Syk and Src, Myc, HA, and β-actin were detected in whole cell lysates
by immunoblotting. (e) (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) (PP2) or
piceatannol (0–20 µM) was pre-treated on RAW264.7 cells for 30 min, and LPS (1 µg/mL) was treated for
additional 24 h. NO production was determined by Griess assay. (f) Cytotoxicity of PP2 or piceatannol
on RAW264.7 cells was examined by MTT assay. WCLs: whole cell lysates. Relative intensity (b,c)
was the calculated ratio using densitometric scanning values of phospho-proteins and densitometric
scanning values of β-actin or total forms of proteins from blots observed with independent repeats
(n = 3) by the DNR Bio-imaging system (Gelquant software Version 2.7). * p < 0.05 and ** p < 0.01
compared to the induced group.
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2.4. The Anti-Inflammatory Effect of DAA in the AP-1 Signaling Pathway

Next, we demonstrated the regulatory role of DAA on AP-1 signal cascades. The phosphorylation
of MAPKs was ascertained in a time-dependent manner using LPS-exposed RAW264.7 cells with
DAA. Among MAPKs, only c-Jun N-terminal kinase (JNK) phosphorylation was downregulated,
but phosphorylation levels of p38 and extracellular signal-regulated kinase (ERK) were not affected
by DAA (Figure 5a). Then, upstream signaling molecules of JNK were examined. Phosphorylated
levels of mitogen-activated protein kinase kinase 4 (MKK4) and MKK7 was reduced by DAA at
60 min (Figure 5b). In addition, the phosphorylation of MKK4 and MKK7 and their downstream
protein JNK at 120 and 240 min was found to be reduced by DAA (Figure 5c). However, activated
TAK1 (phosphorylated on serine 412) was not regulated by DAA, so we provisionally concluded that
the target molecule of DAA in the AP-1 pathway is TAK1. To confirm this, the activation of MKK4
and MKK7 under a TAK1-overexpressed condition was determined. The TAK1-mediated activity
of MKK4 and MKK7 were diminished by DAA without altering phospho-TAK1 level (Figure 5d).
Using an overexpression strategy, it was shown that DAA repressed inflammatory AP-1 signaling by
targeting TAK1.
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LPS (1 µg/mL) time-dependently, and whole-cell lysates were prepared. Phosphorylated or total levels
of p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK). mitogen-activated
protein kinase kinase 4 (MKK4), MKK7, transforming growth factor beta-activated kinase 1 (TAK1), and
β-actin were determined by immunoblotting. (d) TAK1-transfected HEK293T cells were treated with
DAA (0–100 µM) for 24 h. Whole-cell lysates of cells were prepared, and phosphorylated or total forms
of TAK1, MKK4, MKK7, HA, and β-actin were detected by immunoblotting. Relative intensity (b,c)
was the calculated ratio using densitometric scanning values of phospho-proteins and densitometric
scanning values of β-actin, HA or total forms of proteins from blots observed with independent repeats
(n = 3) by the DNR Bio-imaging system (Gelquant software Version 2.7). ** p < 0.01 compared to the
induced group.

3. Discussion

Dehydroabietic acid is a naturally occurring compound in many coniferous plants [26]
and has shown anti-leishmanial, antiaging, and antibacterial activities [19,27,28]. However,
the anti-inflammatory mechanism of DAA has not been revealed. In this study, we confirmed that
DAA reduced the inflammatory mediator (NO) and inflammatory genes (iNOS and TNF-α) (Figures 2a
and 3a). These diminished inflammatory responses were results of TAK1-, Src-, or Syk-inhibiting
effects of DAA in AP-1 and NF-κB signaling pathways (Figures 4–6).

In adipocytes and macrophages, peroxisome proliferator-activator receptors (PPARs) were
activated by DAA, and the secretion of pro-inflammatory cytokines such as monocyte chemoattractant
protein-1 (MCP-1), TNF-α, and nitrite was modulated [20,29]. From our data, we screened
inflammatory signaling, NF-κB and AP-1, and found target proteins of DAA in inflammatory cascades.
Taken together, these findings strongly support that DAA has anti-inflammatory properties with
regulation of several proteins.

Dehydroabietic acid blocked the phosphorylation of Src tyrosine kinase and Syk kinase, a hallmark
of activation of these enzyme in NF-κB cascades (Figure 4b,c). Src and Syk kinases in innate cells
either initiate or regulate various signaling pathways responding to many stimuli [9]. Activation of Src
kinases mediate phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/IκBα/NF-κB signaling,
and Src kinase plays an essential role to recruit or activate of immune cells [9,24,30–32]. The Src family
of kinase inhibitors has been considered as anti-inflammatory reagents, for example, dasatinib is used
for treatment of chronic myeloid leukemia [33]. Syk kinases are implicated in the initiation of signaling
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by binding immunoreceptor tyrosine activation (ITAM) domains of Syk and receptors [9,34]. Coupling
of Syk and immune cell receptors transduce the signals to regulate cellular responses [35]. Also, Syk
kinase could activate not only NF-κB but also MAPKs for the AP-1 pathway [36,37]. Due to these roles,
anti-Syk therapeutics for treating inflammatory disorders have been receiving attention, although
there is controversial findings in the role of Syk in macrophages. Inhibition of Src and Syk kinases in
immune cells suppresses the inflammatory responses, targeting of the pathways mediated by Src or
Syk kinases is proposed as a strategy to suppress inflammation [38–40]. In these respects, Src- and
Syk-targeted DAA has the potential to develop the anti-inflammatory drug.

TAK1 was originally found to be a transforming growth factor (TGF)-β-induced mitogen-activated
kinase kinase kinase (MAP3K) in the MAPK pathway. However, it is now known that TAK1 can
regulate not only the AP-1 pathway, but also the NF-κB pathway. TAK1 plays a critical role in
inflammatory responses by controlling cytokine production including that of TNF-α and IL-8 [41–43].
Activated TAK1 induced by TLR ligands could phosphorylate both MAPKs and IKKs [38]. This implies
that suppressing TAK1 activity leads to the downregulation of NF-κB and AP-1. In our results, DAA
blocked the activation of overexpressed TAK1, so it is possible that NF-κB and AP-1 inactivation results
from TAK1 blockade.

Dehydroabietic acid is a diterpene resin acid that has been traditionally used as herbal
medicine [29,41]. Dehydroabietic acid has been reported to exhibit biological activity including
antibacterial, antifungal, and anticancer effects [44]. DAA derivatives were already synthesized, and
their biological activities evaluated to improve the effect of DAA [44,45]. However, the molecular
mechanism underlying the anti-inflammatory effects of DAA is not understood, though DAA plays
diverse bioactive roles. We evaluated the molecular mechanism by establishing putative target
pathways of DAA linked to TAK1, Src, and Syk, as summarized in Figure 6. In conclusion, DAA is a
valuable and natural compound with anti-inflammatory effects. Our findings suggest that DAA could
be used as a medicine or cosmetic supplement to ameliorate inflammation.

Int. J. Mol. Sci. 2019, 20, 1593 9 of 14 

 

receptors [9,34]. Coupling of Syk and immune cell receptors transduce the signals to regulate cellular 
responses [35]. Also, Syk kinase could activate not only NF-κB but also MAPKs for the AP-1 pathway 
[36,37]. Due to these roles, anti-Syk therapeutics for treating inflammatory disorders have been 
receiving attention, although there is controversial findings in the role of Syk in macrophages. 
Inhibition of Src and Syk kinases in immune cells suppresses the inflammatory responses, targeting 
of the pathways mediated by Src or Syk kinases is proposed as a strategy to suppress inflammation 
[38–40]. In these respects, Src- and Syk-targeted DAA has the potential to develop the anti-
inflammatory drug. 

TAK1 was originally found to be a transforming growth factor (TGF)-β-induced mitogen-
activated kinase kinase kinase (MAP3K) in the MAPK pathway. However, it is now known that TAK1 
can regulate not only the AP-1 pathway, but also the NF-κB pathway. TAK1 plays a critical role in 
inflammatory responses by controlling cytokine production including that of TNF-α and IL-8 [41–
43]. Activated TAK1 induced by TLR ligands could phosphorylate both MAPKs and IKKs [38]. This 
implies that suppressing TAK1 activity leads to the downregulation of NF-κB and AP-1. In our 
results, DAA blocked the activation of overexpressed TAK1, so it is possible that NF-κB and AP-1 
inactivation results from TAK1 blockade.  

Dehydroabietic acid is a diterpene resin acid that has been traditionally used as herbal medicine 
[29,41]. Dehydroabietic acid has been reported to exhibit biological activity including antibacterial, 
antifungal, and anticancer effects [44]. DAA derivatives were already synthesized, and their 
biological activities evaluated to improve the effect of DAA [44,45]. However, the molecular 
mechanism underlying the anti-inflammatory effects of DAA is not understood, though DAA plays 
diverse bioactive roles. We evaluated the molecular mechanism by establishing putative target 
pathways of DAA linked to TAK1, Src, and Syk, as summarized in Figure 6. In conclusion, DAA is a 
valuable and natural compound with anti-inflammatory effects. Our findings suggest that DAA 
could be used as a medicine or cosmetic supplement to ameliorate inflammation. 

 
Figure 6. Inhibitory effects of DAA on inflammatory signaling pathways. DAA suppressed the 
activities of TAK1 in AP-1 cascades and of Syk and Src in NF-κB cascades. These inhibitory actions 
conclusively reduced the production of inflammatory mediators such as iNOS, COX-2, and TNF-α. T 
bars are inhibitory action of DAA and black arrows indicate signal transduction. 

4. Materials and Methods  

4.1. Materials 

Figure 6. Inhibitory effects of DAA on inflammatory signaling pathways. DAA suppressed the
activities of TAK1 in AP-1 cascades and of Syk and Src in NF-κB cascades. These inhibitory actions
conclusively reduced the production of inflammatory mediators such as iNOS, COX-2, and TNF-α.
T bars are inhibitory action of DAA and black arrows indicate signal transduction.
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4. Materials and Methods

4.1. Materials

Dehydroabietic acid (DAA) was purchased from Ramidus AB (Lund, Sweden). The RAW264.7
cells, a BALB/c-derived murine macrophage cell line (No. TIB-71), and HEK293T cells, a human
embryonic kidney cell line (No. CRL-3216), were acquired from ATCC (Rockville, MD, USA).
Lipopolysaccharide (LPS, Escherichia coli 0111:B4), polyethylenimine (PEI), PP2, and piceatannol
were obtained from Sigma Chemical Co. (St. Louis, MO, USA). 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) was purchased from Amresco (Solon, OH, USA). Fetal bovine
serum (FBS) was from Biotechnics Research (Lake Forest, CA, USA), and RPMI1640 and Dulbecco’s
Modified Eagle Medium (DMEM) were obtained from Hyclone (Grand Island, NY, USA). Total and
phosphorylated form antibodies against IκBα (Ser32/36), IKKα/β (Ser176/180), Syk (Tyr525/526), Src
(Tyr416), ERK (Thr202/Tyr204), JNK (Thr183/Tyr185), p38 (Thr180/Tyr192), MKK4 (Thr261), MKK7g
(Ser271/Thr275), TAK1 (Ser412), HA, Myc, and β-actin were purchased from Cell Signaling (Beverly,
MA, USA).

4.2. Cell Culture

RAW264.7 cells were cultured in RPMI1640 medium with 10% heat-inactivated FBS and 1%
penicillin–streptomycin. The HEK293T cells were incubated in DMEM supplemented with 5%
heat-inactivated FBS and 1% penicillin–streptomycin. All cells were housed in a 5% CO2 humidified
incubator at 37 ◦C.

4.3. NO Production and Griess Assay

The RAW264.7 cells (1 × 106 cells/mL) were plated in a 96-well plate and incubated overnight.
Dehydroabietic acid (0–100 µM) was pre-treated for 30 min and incubated in the presence or absence
of LPS (1 µg/mL). After 24 h, supernatants of cells were collected, and NO production was determined
using Griess reagent as previously reported [25,46].

4.4. Cell Viability Assay

The RAW264.7 cells (1 × 106 cells/mL) or HEK293T cells (5 × 105 cells/mL) were seeded in a
96-well plate. After preincubation, DAA (0–100 µM) was applied for 24 h. Conventional MTT assay
was performed [25].

4.5. Preparation of mRNA and Semi-Quantitative PCR

mRNA of LPS-treated RAW264.7 cells was prepared to measure the expression levels of
pro-inflammatory molecules. The RAW264.7 cells were pretreated with DAA for 30 min and exposed
to LPS for 6 h. Total RNA was isolated with TRIzol reagent following the manufacturer’s instructions.
Reverse transcription PCR was conducted [47]. A list of primers used in this study is provided in
Table 1.

Table 1. Primer sequences used in the RT-PCR analysis.

Name Sequence (5′ to 3′)

iNOS F CCCTTCCGAAGTTTCTGGCAGCAG
R GGCTGTCAGAGCCTCGTGGCTTTGG

TNF-α F TTGACCTCAGCGCTGAGTTG
R CCTGTAGCCCACGTCGTAGC

COX-2 F CACTACATCCTGACCCACTT
R ATGCTCCTGCTTGAGTATGT

GAPDH F CACTCACGGCAAATTCAACGGCA
R GACTCCACGACATACTCAGCAC

GAPDH, Glyceraldehyde 3-phosphate dehydrogenase.
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4.6. Plasmid Transfcetion and Luciferase Assay

The HEK293T cells (3 × 105 cells/mL) were seeded in a 12-well plate and incubated overnight.
Myc-Syk, HA-Src, or HA-TAK1 plasmids were transfected using PEI for 24 h [48]. Then, cells were
treated with DAA and incubated for an additional 24 h. For luciferase assay, HEK293T cells were
plated in a 24-well plate. The Flag-MyD88, NF-κB-Luc or AP-1-Luc constructs, and β-galactosidase
(as a control) were co-transfected into HEK293T cells using PEI. After 24 h, DAA was additionally
applied in a dose-dependent manner for 24 h. Promoter activity assay was performed following
Promega’s Luciferase Assay System (Promega, Fitchburg, WI, USA), as previously reported [49].

4.7. Preparation of Cell Lysates and Immunoblotting Analysis

Cells were washed with PBS once and collected. Cells were centrifuged at 12,000 rpm for 5 min at
4 ◦C. Cells were lysed with lysis buffer (20 mM Tris-HCl, pH 7.4; 2 mM ethylenediaminetetraacetic
acid (EDTA); 2 mM ethyleneglycotetraacetic acid (EGTA); 1 mM DTT; 50 mM β-glycerol phosphate;
0.1 mM sodium vanadate; 1.6 mM pervanadate; 1% Triton X-100; 10% glycerol; 10 µg/mL aprotinin;
10 µg/mL pepstatin; 1 µM benzamide; and 2 µM PMSF). Protein lysates was pelleted by centrifugation
(12,000 rpm, 5 min, 4 ◦C). Supernatant was used for Western blot analysis. The phosphorylated or
total forms of IκBα, IKKα/β, Syk, Src ERK, JNK, p38, MKK7, TAK1, HA, Myc, and β-actin were
used [38]. Densitometric scanning values of each protein from blots, observed with independent
repeats (n = 3), were obtained using the DNR Bio-imaging system (Gelquant software Version 2.7,
Neve Yamin, Israel). Calculation of relative intensity was carried out with following equation. Relative
intensity = densitometric scanning value of phosphoprotein or total protein/densitometric scanning
value of corresponding total protein or loading control (β-actin or Lamin C). The highest level of
densitometric scanning value of total or phospho-protein in a group was set as 1.

4.8. Statistical Analysis

The results were analyzed using either ANOVA/Scheffe’s post-hoc test or the Kruskal–Wallis/
Mann–Whitney test. A value < 0.05 was considered statistically significant. All statistical tests were
performed using the computer program SPSS (SPSS Inc., Chicago, IL, USA).
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Abbreviations

DAA dehydroabietic acid
iNOS inducible nitric oxide synthase
COX cycloocygenase
TNF tumor necrosis factor
PAMPs pattern-associated molecular patterns
PRRs pattern-recognition receptors
TLRs toll-like receptors
MyD88 myeloid differentiation primary response 88
IKK IκB kinase
IL interleukin
MAPKs mitogen-activated protein kinases
ERK extracellular signal-regulated kinase
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JNK c-Jun N-terminal kinase
STAT signal transducer and activator of transcription protein
MEK MAPK/ERK kinase
MKK mitogen-activated protein kinase kinase
TAK1 transforming growth factor beta-activated kinase 1
LPS lipopolysaccharide
poly(I:C) polyinosinic-polycytidylic acid
PGN peptidoglycan
NO nitric oxide
L-NAME NG-nitro-L-arginine methyl ester
PEI polyethylenimine
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
FBS fetal bovine serum
EDTA ethylenediaminetetraacetic acid
EGTA ethyleneglycotetraacetic acid
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